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Fig. 1. We introduce a novel data-driven approach to produce high-quality shape deformations. Conditioned on a coarse representation of the deformation
as the input signal (left top), we learn a detail-preserving deformation (right-bottom). Leveraging this novel deformation framework, we perform three
downstream tasks: refining an approximate shape correspondence, unsupervised shape matching, and interactive editing, as shown in subsequent columns.

We introduce a novel data-driven approach aimed at designing high-quality
shape deformations based on a coarse localized input signal. Unlike previ-
ous data-driven methods that require a global shape encoding, we observe
that detail-preserving deformations can be estimated reliably without any
global context in certain scenarios. Building on this intuition, we leverage
Jacobians defined in a one-ring neighborhood as a coarse representation of
the deformation. Using this as the input to our neural network, we apply
a series of MLPs combined with feature smoothing to learn the Jacobian
corresponding to the detail-preserving deformation, from which the embed-
ding is recovered by the standard Poisson solve. Crucially, by removing the
dependence on a global encoding, every point becomes a training example,
making the supervision particularly lightweight. Moreover, when trained
on a class of shapes, our approach demonstrates remarkable generalization
across different object categories. Equipped with this novel network, we
explore three main tasks: refining an approximate shape correspondence,
unsupervised deformation and mapping, and shape editing. Our code is
made available at https://github.com/sentient07/LJN.
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1 INTRODUCTION
Estimating meaningful deformations of surfaces is a classical prob-
lem in computer graphics [Bechmann 1994; Terzopoulos et al. 1987],
with applications in several downstream tasks such as surface map-
ping and registration, character reposing, and handle-based editing
to name a few [Aigerman and Lipman 2013; Amberg et al. 2007;
Bouaziz et al. 2013; Innmann et al. 2016; Li et al. 2008; Trappolini
et al. 2021]. Due to its broad applicability, numerous techniques
have been developed to address this task [Botsch and Sorkine 2008].
While early approaches relied on numerical techniques [Botsch

and Sorkine 2008], recent methods, following the ubiquitous trend,
leverage structured data-driven priors to estimate plausible defor-
mations [Aigerman et al. 2022; Dodik et al. 2023; Groueix et al.
2018a; Sundararaman et al. 2022]. Despite significant ongoing ef-
forts, this problem remains challenging. A key difficulty with most
existing data-driven methods lies in constructing a feasible latent
space [Maesumi et al. 2023]. This typically requires amassing a
collection comprising all plausible deformations [Aigerman et al.
2022; Groueix et al. 2018b], thus necessitating a significant amount
of training data. Furthermore, even when such data is available,
representing shapes using a global encoding typically ties existing
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approaches to specific shape categories, and thus requires extensive
re-training for cross-category generalization.
To that end, instead of relying on a global shape encoding, we

condition our predictions on a coarse, local deformation input signal.
This choice is motivated by the observation that, in specific scenar-
ios, as wewill demonstrate in this paper, constructing an appropriate
local input signal is sufficient to learn category-agnostic high-quality
deformations. Building on the recent success of Jacobian fields as
learnable deformation representation [Aigerman et al. 2022], we
design a network that predicts Jacobian matrices per simplex. The
input to our network is thus a field of Jacobian matrices, averaged to
vertices around a one-ring neighborhood, representing a coarse de-
formation. Our network comprises a series of MLPs coupled with a
smoothing operator, which takes coarse Jacobians as input and pro-
duces detailed Jacobians. Unlike the globally-conditioned approach
in [Aigerman et al. 2022], our network has fully shared weights and
is applied independently at each simplex.
Our network prediction is trained by supervising Jacobians cor-

responding to the detailed mesh, mesh vertex positions, and an
integrability loss on Jacobians. Due to the purely local and fully
shared nature of our networks, they can be trained using a handful
of shapes, as each simplex becomes a training instance. In summary,
our deformation framework learns to produce the input deforma-
tion at each vertex, represented as Jacobians, without utilizing any
global information about the shape. For this reason, we refer to our
network as the Local Jacobian Network (LJN).

Given this general framework, the key question lies in the choice
of the appropriate coarse input signal. In this work, we consider two
general scenarios: shape correspondence and shape editing. For map
refinement and shape correspondence, given a fixed source shape
and a target shape representing a coarse deformation of the source,
we first express the coordinate function of the target shape using
the low-frequency eigenfunctions of its Laplace-Beltrami Operator
(LBO) to obtain a smooth approximation of its geometry [Lévy and
Zhang 2010], referred to as the spectrally projected shape. This is a
natural representation supported by shape correspondence methods
that use the functional map framework [Ovsjanikov et al. 2012]. We
then define the Jacobians from the source shape to the spectrally
projected target shape as the coarse deformation signal, which forms
the input to our network. For shape editing, we use the rotation
matrices at each face, averaged to the incident vertex, as the input
signal to produce Jacobians corresponding to a valid shape. The
network, training data, and supervision remain consistent across
all input signals.

Since LJN relies on localized input signals, unlike a globally shape-
aware network, it is inherently agnostic to shape categories [Guer-
rero et al. 2018]. As a result, there is no need to amass a large training
dataset or perform category-specific training, since, as mentioned
above, each point (i.e., local region in the shape) becomes a training
sample. Therefore, we limit our dataset to only 60 shape pairs in all
our supervised training experiments. Trained on these 60 pairs of
human shapes, LJN demonstrates remarkable generalization across
object categories in recovering minimal distortion embeddings.
We explore three main tasks using our framework: map refine-

ment, unsupervised non-isometric shape correspondence, and in-
teractive shape editing as shown in Figure 1. In the first task, given

an approximate vertex-based correspondence as input, we refine it
using our deformation method. Specifically, we construct a coarse in-
put signal by projecting the target geometry onto the spectral basis,
from which we first recover the detail-preserving deformation using
LJN. Subsequently, we perform an NNSearch in R3 to obtain an im-
proved point-wise map (i.e., registration). Evaluated across standard
near-isometry and non-isometry benchmarks, LJN achieves signif-
icant improvements in accuracy, coverage, map smoothness, and
reduction of map inversions compared to existing map-refinement
techniques, all while being non-iterative and fully differentiable.
In our second task, we do not assume an input approximate

correspondence but rather simultaneously estimate the map and
the shape deformation. For this, we train LJN alongside a Deep
Functional Map (DFM) [Cao et al. 2023; Donati et al. 2022a; Sun et al.
2023] network on a collection of animal shapes with distinct mesh
connectivities from the SMAL [Li et al. 2022] and SHREC-20 [Dyke
et al. 2020] datasets. Our joint network improves map coverage and
map smoothness compared to current state-of-the-art unsupervised
correspondence techniques.

Finally, as our third task, to demonstrate that LJN can generalize
to different local input signals, we focus on interactive shape editing.
Specifically, a user deforms a shape by displacing selected vertices,
and our goal is to solve for an embedding with minimal distortion.
In this setup, we utilize the closest rotation matrix to the prescribed
deformation as the input signal and learn to produce Jacobians
corresponding to a valid shape. At the inference time, this task
is akin to ARAP [Sorkine 2006], however, instead of iteratively
updating the Jacobians, we learn a Jacobian that corresponds to
detail-preserving deformation in a single feed-forward pass. We
demonstrate that LJN generalizes to arbitrary object categories,
producing more plausible and minimal distortion embeddings in
comparison to ARAP.

2 RELATED WORKS
Shape deformation is a thoroughly researched yet continually evolv-
ing field. Given the extensive literature, we refer the readers to
existing surveys [Botsch and Sorkine 2008], and we focus our dis-
cussion on aspects directly relevant to our work.

2.1 Neural Deformation Techniques
In recent years, data-driven deformation techniques have shown
promising results in shape registration and correspondence tasks [De-
prelle et al. 2019; Groueix et al. 2018b; Sundararaman et al. 2022;
Trappolini et al. 2021]. Earlier models primarily learned displace-
ment fields over a fixed template [Groueix et al. 2018b; Kanazawa
et al. 2015; Litany et al. 2017a], relying on a global latent code derived
from point-based [Qi et al. 2016], graph-based [Wang et al. 2019], or
mesh-based representations [Hanocka et al. 2019], as well as implicit
surfaces [Bhatnagar et al. 2020]. The proliferation of extensive train-
ing datasets [Osman et al. 2020; Varol et al. 2017] has facilitated the
development of more sophisticated, template-free methods [Aiger-
man et al. 2022; Trappolini et al. 2021]. Although neural deformation
techniques predominantly focus on learning displacement fields, sev-
eral alternatives have emerged, including cage-based [Dodik et al.
2023; Yifan et al. 2020], control-point-based [Kurenkov et al. 2017;
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Sundararaman et al. 2022], vector-field-based [Jiang et al. 2020], and
differential-based methods [Aigerman et al. 2022]. Notably, the Neu-
ral Jacobian Field approach [Aigerman et al. 2022] stands out due
to efficiency and capacity to simulate realistic deformations. Conse-
quently, this representation has been applied to various downstream
applications, such as text and image-guided deformation [Gao et al.
2023; Yoo et al. 2024]. However, to the best of our knowledge, nearly
all data-driven deformation techniques utilize a global encoder for
learning across collections. While these methods are discretization-
agnostic [Aigerman et al. 2022; Groueix et al. 2018b], they often fail
to generalize to unseen object categories or necessitate category-
specific training. Additionally, they require a significant number of
training shapes that share a common 1:1 correspondence. To over-
come these limitations, our work employs a localized input signal
for supervised and unsupervised training, thereby rendering our
approach more data-efficient and category-agnostic.

2.2 Map-Refinement
Map-refinement techniques are typically iterative and can be broadly
classified into two categories: spatial and spectral refinement tech-
niques. The former considers the embedding of shapes in Euclidean
space, while the latter focuses on the spectral domain, spanned by
the first k-eigenfunctions of the Laplace-Beltrami Operator [Dubrov-
ina and Kimmel 2010]. A classical approach in the spatial domain
includes Iterative Closest Point (ICP) [Besl and McKay 1992; Chen
and Medioni 1992] and its specific adaptations [Amberg et al. 2007;
Bouaziz et al. 2013; Gelfand et al. 2005]. While the aforementioned
approaches treat individual points separately, probabilistic approaches
such as Gaussian Mixture Models (GMMs) [Hirose 2023; Myronenko
and Song 2010] and Optimal Transport [Mandad et al. 2017; Solomon
et al. 2016] have been well-explored. However, these methods strug-
gle to converge when the shapes in the input pair are geometrically
distant. Spectral approaches [Ovsjanikov et al. 2012] are less affected
by geometric proximity but often fail to recover high-frequency de-
tails due to the truncation of basis. To counteract this, upsampling
techniques [Li et al. 2022; Melzi et al. 2019b; Ren et al. 2021, 2018]
augment the spectral frequency during each iteration. Yet, their
dependence on the alignment of intrinsic quantities limits gener-
alization to significant non-isometries. While spatial coupling has
been explored to address non-isometries [Ezuz and Ben-Chen 2017;
Ezuz et al. 2019a,b; Magnet et al. 2022], these methods are costly and
challenging to integrate into differentiable frameworks. In contrast,
our approach achieves a more accurate point-wise map through a
single feed-forward pass and a back-substitution being orders of
magnitude faster.

2.3 Functional Map and Deformation
Corman et al. [Corman et al. 2017] were first to define distortion
between pairs of meshes with differing connectivity using the func-
tional map framework. Similarly to our approach, the authors pro-
posed to pull back the intrinsic metric of the target shape onto the
source. However, in that work, the authors used the shape difference
operator [Rustamov et al. 2013] and constructed the embedding via
Poisson solve [Panozzo et al. 2014]. Since the Functional Map oper-
ator lacks extrinsic awareness, they employed an offset surface to

fully recover the embedding. In contrast, our work involves pulling
back the coordinate functions in the truncated basis and learning the
Jacobian corresponding to the coordinate functions in the full basis.
More recently, the basic deep functional map approach [Donati et al.
2020; Litany et al. 2017b] has been enhanced with spatial awareness,
often defined via properness [Ren et al. 2021] to enforce cycle consis-
tency [Cao et al. 2023; Sun et al. 2023]. Leveraging this observation,
recent [Jiang et al. 2023] and concurrent work [Cao et al. 2024] have
explored various deformation models to improve point-wise map
extraction. Our work aligns with these developments, as our un-
supervised deformation-mapping experiments demonstrated. Our
deformation model is learned alongside map estimation without
requiring any correspondence information.

3 PRELIMINARIES
Notations: We represent shapes as compact 2-dimensional Rie-

mannian manifoldsM possibly with boundary ∂M. The space of
square integrable functions on M is noted L2 (M) and equiped
with the scalar product ⟨f ,д⟩ =

∫
M

f д dµ. We denote the tangent
plane at p asTpM. We discretizeM as a triangle meshS := {V, F }

with V vertices and F faces. We refer to the list of the coordinates
of the verticesV ∈ R3 as the embedding of the shape. On the mani-
foldM, we discretize the Laplace-Beltrami Operator (LBO), denoted
∆, using the standard cotangent-based discretization [Pinkall and
Polthier 1993]. We adopt the face-based discretization of the tangent
plane [Azencot et al. 2013]. Since ∆ is a symmetric operator, by solv-
ing the generalized eigenvalue problem ∆Ψ = λMΨ, we obtain the
LBO eigen-basis Ψ = [ψ1 . . .ψk ], where,M is the diagonal-lumped
vertex-mass matrix [Meyer et al. 2003]. These eigen-basis are an
orthonormal basis (w.r.t.M) for the truncated subspace of L2 (M)

of smooth, low-frequency functions. Given an embedding V , we
consider its spectral projectionV̄ = ΨΨ†V , where Ψ† is the Moore-
Penrose pseudo-inverse of Ψ. Analogously, we use S̄ to denote the
shape whose vertices are V̄ .

For each face, we define a possibly non-orthonormal frame E :=
[®e1, ®e2, ®N ]T , which is a 3×3matrix. The frame comprises the first two
edge vectors of the face and the face normal. We denote the frames
for all faces as E := [E1 . . . E |F |]. For any given point x ∈ M, a local
deformation can be defined using a Jacobian matrix Jx ∈ R3×3, the
matrix of all the first-order partial derivatives of the deformation.
In the discrete setting, given our face-based discretization of the
tangent plane, Jacobians are piece-wise constant per-face.We denote
J := [J1 . . . J |F |] to be the Jacobian across all faces represented in
matrix form. If x ∈ Fi , we have Jx = Ji , where Fi is the ith face.

Given two discretized shapes S1 and S2 (often called source and
target shapes) with respectively n1 and n2 vertices, we can write
a correspondence φ : S1 → S2 between those shapes as a binary
matrix Π ∈ Rn1×n2 where Π[i, j] = 1 denotes jth vertex on S2
being the image of ith vertex on S1. When the two shapes are in
1:1 correspondence, Π12 is an identity matrix.

Functional Map. The functional map pipeline, introduced in [Ovs-
janikov et al. 2012], is an efficient and compact representation for
maps between shapes. More specifically, let φ : S1 → S2 be a point-
wise map, and Π12 its corresponding binary matrix. The pull-back
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operator associated with this map, expressed in the LBO truncated
eigen-basis and denoted as C21 ∈ Rk×k , is referred to as the Func-
tional Map [Ovsjanikov et al. 2012]. C21 : L2 (S2) → L2 (S1) acts
as a linear operator between the square integrable functions on
the respective shapes. This can be derived from the binary matrix
C21 = (Ψ1)†Π12Ψ2. Where, Ψ†

1 is the Moore-Penrose pseudoinverse
of Ψ1. Given the functional map C21, in the simplest setup, we can
compute an associated Π∗

12 via a nearest-neighbors search [Ovs-
janikov et al. 2017]:

Π∗
12 = argmin

Π12

∥Ψ2C21 − Π12Ψ1∥
2
F (1)

Jacobian-based deformation. Let S1,S2 be shapes with 1:1 corre-
sponding vertices and same connectivity but two different vertex
embeddings V1,V2 ∈ R3. We can consider the deformation be-
tween them as a per-vertex coordinate re-assignment. The linear
part of this deformation quantifying the change in edge-vectors
is referred to as the Jacobian J12 between S1 → S2. This change
of edge vectors [Botsch et al. 2006; Sumner and Popović 2023]) is
explicitly given by:

J12 = E−1
1 E2 (2)

where Eℓ = [E1 . . . E |Fℓ |
], ℓ ∈ 1, 2, are the frames corresponding

to all faces, rewritten in matrix form. Note that while quantify-
ing the change in edge vectors is sufficient to define J12, solving
Eqn (2) becomes under-determined (see Chap 3.1.2 [Sumner 2005]).
While [Sumner and Popović 2023] overcomes this by tetrahedraliza-
tion of each face, we simply use the unit-normal vector, as changes
along normal directions are inconsequential for a surface undergo-
ing deformation in R3. Given a Jacobian J12, we can compute its
closest embedding in the least-square sense by solving the following
Poisson equation:

∆1V2 = ∇T1 A1J12 (3)
∇T1 A1 is the divergence operator where ∇1 is the gradient opera-

tor and A1 is the area element of each face of S1. Since ∆1 is only
semi-definite, the solutionVV2 is not unique and is only valid up-to
global translation [Botsch et al. 2006].

4 PROPOSED METHOD
We begin by describing the general framework for training and per-
forming inference with LJN in Section 4.1. In Section 4.2, we discuss
the supervised training strategy for map refinement, followed by the
inference strategy that alleviates the necessity for consistent connec-
tivity in Section 4.3. In Section 4.4, we introduce a novel method to
simultaneously learn the deformation and mapping between shape
pairs with different triangulations. Finally, in Section 4.5, we discuss
the utility of LJN for handle-based shape editing.

4.1 Detailed Deformation Learning from Coarse Signals
Given a source shape S1 and a coarse deformation input signal, we
aim to learn the detailed deformation of the source shape, expressed
as Jacobian J12. Note that our coarse input signal might not cor-
respond to a valid shape. When these Jacobians are integrated to
produce an embedding, they must correspond to a plausible shape.
We let S2 be the shape which the target detailed Jacobian J12 corre-
sponds to. We refer to S2 as the target shape. We let Θ12 ∈ R |V |×d

.
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Fig. 2. Illustration of our learning framework with spectrally projected
input signal. Given a source shape and the coarse deformation signal, we
feed in individual triangle deformations, as Jacobians, averaged to incident
vertices. Then, we apply series MLPs coupled with spectral projection in the
feature-space to recover detail-preserving deformation.

be the d−dimensional coarse input signal defined at vertex. In the
case of Jacobians defined on faces, we first average them to vertices
with the operator I mentioned below. Recall that, unlike [Aigerman
et al. 2022], we do not rely on a global encoding of the target shape
but instead condition the input to our network using Θ12 alone.

Features after
spectral
projection

Given this input signal, we apply
MLPs per-vertex in tandem with a spec-
tral projection layer to learn the detailed
Jacobian corresponding to S2. The spec-
tral projection layer projects the learned
features to the eigenbasis of the LBO
operator as given in Equation (6). We
observed that this enables effective in-
formation sharing in a small local neighborhood around each vertex.
For visualization purposes, we consider a single Jacobian as a Dirac
signal defined at the ith vertex as shown in the inset figure (left).
Then, upon projecting this signal to the eigenbasis of the LBO oper-
ator, the features are smoothly spread out in a small neighborhood
around the vertex of interest as shown in the inset figure (right).
Our learning process can then be described as follows:

Ĵ12 = IT1 G6(. . . (Proj1(G1(Θ12))) (4)

The above equation sequentially applies an MLP, G(.), whose
specifications are provided in the Supplementary. Here, Proj(·) :=
Ψ1ΨT1 M1· expresses features in the orthonormal basis defined by
Ψ1. The operator I1 is a sparse row-stochastic matrix that averages
quantities from faces to vertices. The non-zero entries are corre-
sponding to row i of I1 sum up to 1 and are all equal to 1

fi
, where

fi denotes the number of faces incident on vertex i . Its transpose,
IT1 averages the per-vertex predictions back to faces. Given the
ground-truth Jacobian J∗12 : S1 → S2, to train our network, we
minimize a loss function consisting of three terms as follows:

LTr = α1
����J∗12 − Ĵ12

����2
F + α2

������V2 − V̂1
������2

2
+ α3

����J∗12 − E−1
1 Ê

����2
F . (5)

Here V̂1 = ∆−1
1 ∇T1 A1Ĵ12 is the embedding corresponding to the

predicted Jacobian recovered via the Poisson solve (cf. Equation 3).
The first two terms are used to supervise the positions and pre-
dicted Jacobians w.r.t the ground truth, while the third term penal-
izes discrepancies between the integrated Jacobian and the ground
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Ground-Truth Norm discrepancy visualized on target shapes

Source Shape
with seed vertex

Input norm discrepancy visualized on target shapes

Fig. 3. Illustration of the fidelity of our training framework. We select a seed
vertex, marked with a dotted circle. The Frobenius norm of the difference
between the Jacobian at this seed vertex and all other vertices is plotted. The
similarity in the distribution between the input (projected Jacobian) and
the ground truth suggests the well-posed nature of our learning problem.

truth Jacobian. More precisely, we compute the Jacobian correspond-
ing to the recovered embedding V̂1 using the corresponding non-
orthonormal frame as E−1

1 Ê1 and minimize the discrepancy with
the ground truth Jacobian.

Our learning pipeline, along with one possible coarse input signal
used in this paper, is visualized in Figure 2. In summary, given some
input Jacobians, we first average them to vertices, spectrally project
them and then train our to reconstruct the detailed Jacobian between
the source and target shapes. At inference time, the embedding can
be obtained via a simple feedforward pass and a Poisson solve (cf.
Eqn 3). Task-specific inference is discussed in subsequent sections.

4.2 Supervised Learning from Spectral Inputs
In this section, we discuss the construction of a coarse deformation
input signal geared for shape registration-related tasks. Our choice
of representation for the input signal is designed to be easily inte-
grated into existing shape correspondence frameworks [Ovsjanikov
et al. 2012]. To construct the input signal, we first express the coor-
dinate function of the target shape using the first k eigenfunctions
of the LBO, referred to as the spectrally projected shape. Let S̄2 be
the shape obtained by applying spectral projection to S2, and V̄2
be its vertex set. Then, the closed-form expression for V̄2 is given
as follows:

Proj(V2) = V̄2 = Ψ2Ψ
†
2V2 = Ψ2Ψ

T
2 M2V2 (6)

Where Ψ†
2 = ΨT2 M2 because of orthonormality with respect to

M2. Denoting the frames per face corresponding to the spectrally
projected shape as Ē2, the input signal to our network during training
is defined as follows:

Θ12 := I1J12 = I1E−1
1 Ē2 (7)

Discussion. For a learning problem to be well-posed, distinct in-
puts should produce distinct outputs. We demonstrate this quali-
tatively on pairs of shapes, as shown in Figure 3. We consider a

0.94

1.1 1.4

(a) (b) (c) (d) (e)

0.87

Fig. 4. Visual insights on how our input signal is affected by near-isometric
and non-isometric deformations. In the first row, we show a human shape
undergoing two deformations into a similar pose but taken by two subjects,
one similar and one not. We compare the discrepancy between the input
Jacobian and the ground truth Jacobian as the Frobenius norm (plotted in
the second and third columns). We repeat this for a pair of animals with
a significantly higher degree of non-isometry between them. We observe
that our input signal Θ12, remains comparable to the ground-truth across
different levels of non-isometry.

fixed source shape and a vertex of interest in this source shape as
the "seed" vertex, say the ith vertex. We then plot the Frobenius
norm of the difference between the input signal at the ith vertex
and all the remaining vertices, expressed as ∥Θi ,12 − Θj ,12∥F∀i , j ,
in the first row. Similarly, in the second row, we plot the difference
between the ground truth Jacobian ith vertex and all the remaining
vertices, ∥ J∗i ,12 − J∗j ,12∥F∀i , j. The similarity in the distributions
of the norm at each vertex between input and ground truth across
different deformations asserts the well-posed nature of our learning
problem. Additionally, in Figure 4, we provide an intuition on how
this input signal behaves over near and non-isometric deformations.

4.3 Inference: Meshes with differing connectivity.
The requirement for shapes to be in 1-1 correspondence when con-
structing the input signal is impractical for real-world applications.
To address this, we utilize the Functional Map framework to model
deformations between shapes with differing connectivities. There-
fore, given a pair of shapes S1,S2 with differing connectivity and
a functional map C21 between them, we aim to extract the defor-
mation Ĵ12 between them. The Functional Map can be estimated
via an existing Deep Functional Map (DFM) framework [Cao et al.
2023; Sun et al. 2023], or using our unsupervised method detailed
in Section 4.4.

Different from training time, at inference, we first write the spec-
tral projection of the coordinate function of the target shape and
‘pull’ back the embedding function to the source shape using the
functional map, as follows,

V̄1 = Ψ1C21Ψ
†
2V2 (8)
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(a) (b) (c) (d)

Fig. 5. Given a source (a) and a deformation (Jacobian), we compute the
embedding following Eqn 3 and visualize in (b). While the deformation
is near-perfect, the surfaces do not ‘align’ as shown in (c) where (b) is
juxtaposed to the target shape. Computing the embedding via Eqn 10 yields
a surface that is geometrically closer to the target as shown in (d).

The above equation expresses the coordinate function of the
target shape in the LBO eigenbasis of the source shape, with the
functional map acting as the change of basis operator. Since V1
and V̄1 share the same connectivity, we can define the input to our
network as given in Equation (7) and perform a feedforward pass
to obtain Ĵ12. To retrieve the embedding, instead of simply solving
the Poisson equation (3), we also leverage the point-wise map Π12
arising from the Functional Map (using c.f Eqn (1)). We do this to
address numerical errors in the learned Jacobian which might lead
to detailed deformation but “un-aligning” surface as highlighted
in Figure 5. To this end, our embedding recovery from Jacobian is
solved via the following minimization:

V̂1 = min
V̂1

α4
������V̂1 − Π12V2

������2
M1
+α5

������∆1V̂1 − ∇T1 A1Ĵ12
������2
M1
+

������V̂1
������2
∆1

(9)
Here, the first term ensures that the recovered embedding remains

geometrically close to the target surface, while the second term
promotes the recovered embedding to respect the learned Jacobians.
The final term encourages smoothness in the recovered embedding
by favoring a minimum norm solution. Setting the gradient of the
above expression w.r.tV1 to be zero yields:

(∆1 + α4M1 + α5∆
T
1 M1∆1)V̂1 = α4M1Π12V2 + α5∆

T
1 M1∇

T
1 A1Ĵ12

(10)
Since the LHS in the above expression depends only on the Lapla-

cian and the mass matrix, it can be pre-factored. If registration is
the final goal, one can obtain a refined pointwise map using the
deformed embedding V̂1. This can be done by the following mini-
mization:

Π∗
12 = argmin

Π∗
12

∥V̂1 − Π∗
12V2∥

2
2 (11)

which yields, Π∗
12 = NNSearch(V̂1,V2).

4.4 Unsupervised Deformation Learning and Mapping
In this section, we propose an unsupervised training methodology
on a collection of shapes without consistent triangulation, leverag-
ing the Functional Map framework. Unlike in Section 4.3, we do not
assume to have access C21 to as input, but rather learn it alongside
J12. To this end, we employ a recent two-branch Deep Functional
Map (DFM) [Cao et al. 2023; Sun et al. 2023] approach and combine

it with LJN. We denote the feature extractor within the standard
DFM [Sharp et al. 2020] corresponding to source and target shapes
as D1 and D2 respectively. Between the input pair, we estimate
the Functional Map in a differentiable manner, similar to [Cao et al.
2023] as follows,

Ĉ21 = Ψ†
1 Π̃12Ψ2 (12)

Where Π̃12 = Softmax
(
D1DT

2 /τ
)
, is the soft pointwise map with

τ = 0.07 being the temperature parameter. Using the Ĉ21 estimated
above, we compute V̄1 using Eqn 8 and use it to compute Θ12 via
Eqn (7). Then, we perform a feed-forward pass through LJN to get
predicted Jacobian Ĵ12. We train the two-branch functional map
network and our LJN jointly by minimizing the following loss:

Lun =
∑

i ∈{1,2}, j ∈{2,1}

CTi , jCi , j − I
2

F
+
Ci , j − Ĉi , j

2
F + LJ(Jj ,i )

(13)
Where, Ci , j is the predicted Functional Map and Ĉi , j is the func-

tional map arising from the soft-pointwise map (c.f Eqn (12)). Note
that the summation in the above equation optimizes the Functional
Map and Jacobian in both directions. For simplicity and consistency,
we elaborate on the minimization objective for J1,2 while noting that
the same applies analogously to J2,1. Our unsupervised deformation
objective LJ(J1,2) is given as follows:

LJ(Ĵ12) =
J̊12 − Ĵ12

2

F
+ α6

Ĵ12 −H1Ĵ12
2
F + α7

det(Ĵ12) − 1.
2

(14)
Here, J̊12 is the Jacobian corresponding to the deformation pre-

scribed by Π̃12. More specifically, we first compute the deformation
of the source embedding as V̊1 = Π̃12V2. Then, denoting the frame
corresponding to mesh S̊1 = {V̊1, F1} as E̊1, we define J̊12 := E−1

1 E̊1.
The second term in the loss function is a smoothness prior, enforc-
ing minimal norm differences between predicted Jacobians corre-
sponding to adjacent faces withH1 denoting the unsigned face-face
incidence matrix. The third term promotes volume preservation, an
important regularization term, which is deemed empirically useful
when supervising with Π̃12 due to the effect of truncation of basis.

4.5 Interactive Editing
To demonstrate that the LJN deformation framework is applicable
to tasks beyond shape correspondence, we consider the task of inter-
active shape editing. In this scenario, a user prescribes deformation
at selected vertices (handles). Our goal is to produce a minimal dis-
tortion embedding consistent with the user-prescribed deformation.
Interactive editing can often result in meshes with degenerate ele-
ments, making the computation of differential operators and their
eigendecomposition ill-defined. Therefore, we use the closest rota-
tion matrix to the ground truth Jacobians as our input signal. This
scenario is more challenging since the input deformation signal does
not correspond to a valid shape, i.e, there is no guarantee that an
embedding exists whose differentials correspond to the input signal.
To compute the input signal, we apply polar decomposition to the
ground truth Jacobian J∗12 = Q12W12, where Q12 is the orthonormal
matrix andW12 is an SPD matrix. Since our training pairs consist
of valid shapes, J∗12 is always full rank and admits a unique polar
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decomposition. Therefore, to compute Θ12 (cf. Eqn 7), we use Q12
instead of E−1

1 Ē2. The rest of the training pipeline remains identical
to our discussions in Section 4.2. In summary, given rotation matri-
ces averaged over the one-ring neighborhood, we learn the Jacobian
corresponding to the detail-preserving deformation.

4.6 Implementation details
All our supervised training is performed over the first 50 shapes
from SCAPE [Anguelov et al. 2005] dataset and the first 10 shapes
from the FAUST dataset [Bogo et al. 2014]. Our choice stems from
the compactness of the dataset size and the range of deformation
between each pair. We use a 4-layered MLP of 256 feature dimen-
sions with the spectral projection followed by 2 layers without
spectral projection with 9-dimension output, which is our Jacobian.
We train with ADAM optimizer for a total of 50 epochs, with an
initial learning rate of 1e-3 decayed progressively to 1e-5. The coef-
ficients across different objective functions used in this paper are
respectively α1 = 1, α2 = 10., α3 = 2, α4 = 20000, α5 = 150000,
α6 = 20. and α7 = 10. respectively. We used 128 eigenfunctions for
smoothing the learned feature while we used 40 eigenfunctions to
project the embedding of the shape. While training our network,
as form of data augmentation, we vary the number of eigenfunc-
tions used to construct the spectrally smooth embedding. Our full
implementation and data will be released upon publication.

5 EXPERIMENTAL RESULTS
In this section, we demonstrate the utility of our deformation mod-
ule, LJN, across three tasks - namely, Map Refinement in Section 5.2,
Unsupervised Deformation and Mapping in Section 5.3 and finally
Interactive Editing in Section 5.4. Before delving into individual
tasks, we first elaborate the metrics used to gauge different meth-
ods in Subsection 5.1. For supervised experiments, our network
is trained on 60 shape pairs from FAUST [Bogo et al. 2014] and
SCAPE [Anguelov et al. 2005] datasets.

5.1 Evaluation Metrics
For evaluating shape correspondence, we used the standard mean
geodesic error [Kim et al. 2011]. Additionally, we assessed map
inversion, the Dirichlet energy [Magnet et al. 2022] of the map, and
coverage [Ren et al. 2018]. For completeness, we provide elaboration
on these metrics below.

(1) Map Inversion: This metric measures the change in orienta-
tion induced by the map. For surface correspondence tech-
niques, matching via nearest neighbors search can result in
a 180◦ twist, commonly referred to as the candy-wrapper
effect (see [Abulnaga et al. 2022] Fig. 2). To quantify this,
we use map-inversion metric, which penalizes the deviation
in the sign of the dot product between the normal on the
target shape and the mapped shape. The mapped shape nor-
mal is estimated by permuting the target vertices via Π12
and estimating the normals using the orientation prescribed
by the source mesh. More precisely, let S1 : {V1, F1} and
S2 : {V2, F2} be the source and the target mesh. We let ®̂ni1
be the normal corresponding to the mesh Ŝ1 : {Π12V2, F1},
whose vertices image of V2 under Π12 with winding defined

by F1. Since Π12 acts as a map between vertices, let ®̂nj2 be the
normal at vertex index j on S2, such that Π12[i, j] = 1. Note
®̂n
j
2 is defined by the orientation of S2. Then, map inversion is

quantified as

Inv :=

∥V2 ∥∑
j=1

1
(
m∑
i=1

®̂ni1 ·
®̂n
j
2 < 0

)
∥V2∥

× 100 (15)

(2) Dirichlet Energy: Following the standard convention used in
previous works [Ezuz et al. 2019c; Magnet et al. 2022], we
define map smoothness as ∥Π12V2∥∆1 . For uniformity, we
scale all shapes to have a unit area before computing this
energy.

(3) Coverage: Similar to [Ren et al. 2018], we define coverage as
the percentage sum of the unique area of the vertex image
given by Π12V2. Note that since we scale shapes to have a
unit area, normalization is not required.

5.2 Map-Refinement
5.2.1 Overview. Given an approximate shape correspondence, ei-
ther as a fuzzy point-wise map or a functional map [Ovsjanikov et al.
2012], our task is to produce a refined point-wise map. To that end,
we first construct the spectrally projected input signal (c.f Eqn 8),
then, perform a feedforward pass over LJN to obtain the Jacobian,
from which we compute the embedding using Eqn 10. Finally, the
refined point-wise map is obtained via Eqn 11.

5.2.2 Setup. As our input correspondence, we use two recent Deep
Functional Mapmethods [Cao et al. 2023; Sun et al. 2023] as our base-
line maps, for which open-source implementations are available. We
evaluated our approach and all baselines on the FAUST, SCAPE [Ren
et al. 2018] and the SHREC-19 dataset [Donati et al. 2020] for near-
isometric shape correspondence. We used the inter-class category
of Deforming-4D [Magnet et al. 2022] and SMAL-remeshed [Li et al.
2022] for non-isometric correspondence.We use geodesic error [Kim
et al. 2011] (cm), map coverage [Ren et al. 2018] (%), map inversions
(%) and map smoothness as evaluation metrics.

5.2.3 Comparisons. We compare our method against axiomatic it-
erativemap-refinement methods: ZoomOut (ZO) [Melzi et al. 2019b]
, Discrete Optimization (DZO) [Ren et al. 2021], and Smooth Func-
tional Maps (SmFM) [Magnet et al. 2022]. More details on the evalua-
tion and implementation of baselines are provided in the Supplemen-
tary. Additionally, we consider two more plausible alternatives. First,
we set α5 = 0, so that the recovered embedding (viz., the refined
map) does not rely on the learned Jacobians. Secondly, we use the
coordinate function ‘pulled’ by Functional Map (cf. Equation 8) to re-
cover the map. i.e, we solve for the map as Π12 = NNSearch(V̄1,V2)
(c.f Eqn 11). We denote this baseline as “Spec Proj”.

5.2.4 Discussion. The quantitative evaluation averaged across two
initializations, is summarized in Table 1. Our approach consistently
outperforms iterative baseline methods ZO, DZO, and SmFM across
various benchmarks and evaluation metrics. Notably, despite being
trained solely on human shapes, our method demonstrates remark-
able generalization inmodeling animal deformations from the SMAL
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Refinement Near-Isometry Non-Isometry

FAUST [Ren et al. 2018] SCAPE [Ren et al. 2018] SHREC-19 [Melzi et al. 2019a] SMAL [Li et al. 2022] DT4D-Inter [Magnet et al. 2022]

Geod Inv DirE Cov Geod Inv DirE Cov Geod Inv DirE Cov Geod Inv DirE Cov Geod Inv DirE Cov

Init 1.7 7.4 3.2 80.8 2.3 8.1 4.2 76.2 5.1 7.9 6.6 72.6 4.7 13.6 13.9 62.0 6.8 9.8 17.8 61.9

Spec Proj 3.1 11.4 3.1 58.5 3.0 9.9 3.2 58.3 5.8 10.5 3.5 53.9 4.9 10.1 3.5 58.0 7.4 10.5 4.4 47.0

α5=0 1.7 7.2 3.0 81.2 2.1 5.7 3.4 78.2 5.1 7.9 4.5 72.9 4.7 14.2 7.5 62.9 6.6 9.4 8.1 63.1

ZO 1.7 10.9 3.1 83.3 2.2 8.2 3.6 80.8 5.1 9.7 4.0 74.2 5.6 11.9 24.2 69.9 6.6 11.1 11.6 69.7

DZO 1.8 10.4 3.2 79.8 2.4 10.4 3.9 78.3 5.1 10.7 3.9 71.6 4.9 11.1 9.6 68.5 6.3 9.9 9.7 70.1

SmFM 2.2 14.7 2.8 75.5 3.8 19.7 3.0 69.9 6.1 20.7 3.1 65.2 6.1 12.0 4.2 61.1 7.5 21.2 4.0 59.7

Ours 1.5 4.1 2.7 83.7 1.9 1.8 2.8 81.3 4.8 5.9 3.3 75.8 4.1 10.2 3.5 71.5 6.1 6.4 4.0 71.1

Table 1. Summary of quantitative comparisons formap refinement with different baselines across various datasets and averaged over two different initializations:
CDFM [Sun et al. 2023] and ULRSSM [Cao et al. 2023]. The best scores are highlighted in bold, and the second-best scores are highlighted in blue.

(a) (b) (c) (d) (e) (f)

Fig. 6. Illustrating how LJN achieves high map-refinement accuracy: Given
(a) the source shape and (b) an input map containing high-frequency ar-
tifacts, (c) we convert it to the Functional Map and pull the coordinates.
The pulled coordinates are devoid of high-frequency artifacts. Subsequently,
(d) our reconstruction and (e) the obtained map are detail-preserving. (f)
denotes the target shape. We color-code correspondence from refined maps.

dataset. Additionally, maps recovered by our method exhibit less dis-
tortion compared to those from SmFM [Magnet et al. 2022], which
explicitly aims to minimize Dirichlet energy. This improvement is
attributed to the truncation of the basis inherent in their approach,
whereas our deformation operates in the spatial domain (R3). We
illustrate the effects of map smoothness and overall map refinement
accuracy in Figure 7. Furthermore, we show qualitative reconstruc-
tion across more object categories with different triangulations in
Figure 8. Finally, we provide an intuitive explanation in Figure 6 to
illustrate how our approach achieves superior performance. Overall,
LJN shows state-of-the-art results, which is remarkable due to the
difficulty of the problem and the presence of strong recent baselines.

5.3 Unsupervised Deformation and Mapping
Given a collection of shapes with different triangulations, we aim
to produce the deformation and the map as detailed in Section 4.4.
We use the SMAL [Li et al. 2022] and SHREC20 [Dyke et al. 2020]
datasets for two separate experiments, which include a variety of
largely non-isometric animal shapes. For the former setup, we train
on 28 shape pairs in SMAL across 5 categories and evaluate on 20
shape pairs spanning 3 unseen categories. In Figure 9, we provide
the qualitative deformations obtained from unsupervised training
on SMAL. Despite being supervised with a noisy training signal
(first-row), LJN produces detail-preserving deformation. Due to the

Source OursInit GTSmFMDZOZO

Fig. 7. Qualitative results for map refinement. The first two rows depict
near-isometric shape pairs from SHREC’19 [Melzi et al. 2019a] dataset, while
the last two rows show non-isometric datasets: SMAL [Donati et al. 2020]
and Deforming4D [Magnet et al. 2022]. We note that LJN not only preserves
correspondence but also improves the smoothness of the produced map.
For initialization, we used CDFM [Sun et al. 2023] for the first two rows
and ULRSSM [Cao et al. 2023] for the latter two.

limited training data in SHREC20, following [Cao et al. 2023], we
perform zero-shot learning on each pair. Owing to the absence of
dense correspondence in the dataset, we only provide coverage and
smoothness as the quantitative measures. We compare with recent
DFM methods ULRSSM [Cao et al. 2023], CDFM [Sun et al. 2023],
and a variant of our approach where point-wise map is extracted
without our deformation module (c.f Eqn 1), denoted as W/o LJN in
Figure 10.
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Ground-TruthSource OursInput

Fig. 8. Generalization of LJN to different object categories. Trained on 60
pairs of human shapes, our LJN shows robust generalization to unseen
categories with near-perfect reconstruction. Meshes in the first row are
from the MANO dataset [Romero et al. 2017], the subsequent three rows
are from the Deforming-4D Dataset [Magnet et al. 2022], and the last row is
from the TOSCA dataset [Ren et al. 2018]. Shapes in rows 2-5 do not share
identical triangulations. To estimate the deformation, we used a 40 × 40
FMap. The embedding is then recovered following Section 4.3.

FAUST-Challenge. To demonstrate the generalizability of our ap-
proach to real-world scans, we evaluated our unsupervised LJN (Sec.
4.4) on the FAUST-Challenge dataset [Bogo et al. 2014]. This dataset
contains 100 shape pairs across near-isometric (INTRA) and non-
isometric (INTER) registration challenges. The scans include various
artifacts such as non-manifold edges, self-intersections, and topolog-
ical noise. Despite not having specific mechanisms for handling data
imperfections and without hyperparameter tuning, LJN achieves
comparable performance to unsupervised state-of-the-art methods,
with a mean error of 3.89 cm for INTRA and 2.62 cm for INTER
challenges respectively. We remark especially on the low error on
the more challenging INTER dataset. For the INTER dataset, our
average error is dominated by three outlier pairs with significant
error due, especially to symmetry mixing, which have an average
error of 30 cm. We believe that such errors could be potentially be
reduced by using symmetry disambiguation [Donati et al. 2022b,a]

Ground-Truth

Source

Ours

Training signal

Fig. 9. Qualitative reconstruction results of training LJNwithout supervision.
For a given source, the first row depicts the training signal used in our
unsupervised loss (c.f Eqn 14). In spite of training with noisy supervision,
LJN recovers cleaner deformation as depicted in the subsequent row. Please
refer to Tab.3 in Appendix for quantitative result.

and post-processing [Huang et al. 2020; Melzi et al. 2019b; Vestner
et al. 2017] techniques.

5.4 Interactive Editing
For this task, we re-trained our network on the same dataset of 60
human shape pairs, but with the closest rotation as the input signal
to LJN. We evaluated two setups for handle-based deformation. In
the first, we performed handle-based manual deformation, where
a user drags a selected portion of the mesh. This was done by se-
lecting regions of the mesh in Blender and applying a sequence
of rigid transformations to the selected vertices. We evaluated our
method on five different object categories, as shown in Figure 11. We
compared our approach with ARAP and observed that our method
produces lower distortion, measured by symmetric Dirichlet [Smith
and Schaefer 2015]. LJN produces a smoother embedding than ARAP
without undesirable artifacts such as changes in pose (row 2) and
self-intersection (row 4).
In the second setup, we used datasets containing meshes corre-

sponding to deformation sequences. Please note that this second
experimental setup is more challenging since the deformation is
significantly larger. We considered animals from the [Li et al. 2021;
Sumner and Popović 2023] datasets and automatically selected key
points, corresponding to the group of vertices that undergo the
largest displacement. Given the new positions of the key points, we
estimated the Jacobians between the source mesh and the suggested
deformation, projected them to the closest rotation, and estimated
the smoother deformation predicted by LJN. We evaluated this on
three animals—Cat, Buck, and Horse—as shown in Figure 12. LJN
produces more plausible deformation, especially at regions pertain-
ing to bending in comparison with ARAP.

6 ADDITIONAL EXPERIMENTAL INSIGHTS
We first perform an ablation study in Section 6.1, where we em-
pirically justify the simple architecture of LJN. Next, we provide a
runtime comparison between our approach and different baselines
across various datasets evaluated in Section 6.4.
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Source OursCDFM W/o LJNULRSSM

Fig. 10. Qualitative and Quantitative results for unsupervised shape cor-
respondence on the SHREC’20 [Dyke et al. 2020] dataset. We compare
our results with those from CDFM [Sun et al. 2023], ULRSSM [Cao et al.
2023], and a variant of our approach (W/o LJN) where the point-wise map
is obtained by following the standard procedure (cf. Eqn 1) instead of our
proposed method (cf. Eqn 11). In the last column, we show the point-wise
map recovered by LJN. ULRSSM produces plausible maps but exhibits se-
vere distortion in various highlighted regions. In contrast, our approach
preserves correspondence while minimizing distortion.

6.1 Ablation Studies
We perform an ablation study to understand the effect of supervis-
ing Jacobians, using displacement fields instead of Jacobians, input
discretization (face vs. vertex), and impact of feature smoothing (Pro-
jection of features to the eigenspace of LBO Operator). To this end,
we compare the reconstruction accuracy of the deformation and the
correspondence error by measuring the mean geodesic discrepancy.
We summarize our results in Table 2. Face-based discretization lacks
information sharing within the local neighborhood, resulting in
implausible deformations leading to poor reconstruction results. On
the other hand, LJN promotes smoother feature space and as a result,
achieves more plausible deformation. We visualize the problems
inherent to alternatives we tried in Figure 14. All baselines produce
artifacts in reconstruction corresponding to high-frequency parts

Input ARAPInitialization Ours

5.7 2.9

21.1 1.9

0.932.4

10.5 6.8

Fig. 11. Qualitative results for handle-based deformation. We selected a set
of handles (shown in red) and applied a deformation by displacing those ver-
tices. We then compare the reconstruction between our approach and ARAP.
The error plot on the outputs depicts the distribution of symmetric Dirichlet
energy, with the average value given in the annotation. LJN produces a more
plausible mesh with smooth embedding compared to ARAP [Sorkine 2006].
Please refer to the supplementary material for more quantitative insights.

of the shape while ours recovers the near-exact geometry. For a fair
comparison, all methods were trained on the same training data,
following the same hyper-parameters.

6.2 Robustness to changes in tesselation
We analyze the effect of tesselation on LJN. To this end, we take
a pair of shapes from the animal dataset in [Sumner and Popović
2023] and re-mesh to generate shapes with varying triangulation.
Namely, we generate the same shape with varying triangulation
ranging from 2K faces to 200K faces.We applymesh decimationwith
Quadric Edge collapse to obtain the simplified meshes with reduced
vertex and face count. To increase the resolution, we apply loop
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Input Initialization ARAP Ours

15.8 3.8

8.3 6.2

7.8 4.8

Fig. 12. We perform interactive editing on animation sequence meshes by
selecting handles as vertices with the largest motion between the first and
second columns. Our approach produces more plausible meshes in bending
regions compared to ARAP. The values annotated above are symmetric
Dirichlet scaled by 10−2

Source

Ours

Ground
-Truth

2k 4k 10k 40k 140k

Fig. 13. Comparison of deformation between the same source and target
geometry across different tessellations. The face counts are annotated along
the rows. Across varying resolutions, our deformation remains faithful to
the target geometry.

subdivision until a meshwith the desired face count is obtained. This
re-meshing is done to the pair of initial meshes. Then, we compute
the spectrally projected Jacobians between (c.f. Eqn 6) and estimate
the deformation from the network prediction. We compare different
mesh resolutions in Figure 13. Across different discretizations, our
LJN produces a deformation which is consistently faithful to the
target geometry.

6.3 Baseline Details
Across all experiments, we used the open-source code released by
the authors of the respective papers for baseline comparisons. Start-
ing with axiomatic refinement methods, we ran ZoomOut beginning

Module FAUST SCAPE

CD Geod CD Geod

α1 = 0 5.1 1.7 10.0 2.4

Displacements 5.2 1.8 10.4 2.3

Face-based 7.4 2.1 13.1 3.0

W/o Smooth 4.8 1.8 10.7 2.6

Baseline (Ours) 3.9 1.5 7.6 2.1
Table 2. Ablation study on map refinement and deformation reconstruction
on the test set of the FAUST and SCAPE datasets [Ren et al. 2018]. CD
denotes Chamfer’s Distance and Geod is the mean geodesic error [Kim et al.
2011]

(a) (b) (c) (d) (e) (f)

Fig. 14. Ablation study performing a qualitative comparison between pos-
sible alternatives. Given the (a) Source shape, (b) is the reconstruction
from displacement field, (c) denotes Face-based discretization, and (d) is
the reconstruction without using the feature smoothness in the MLP. Our
reconstruction is depicted in (e) and finally, (f) denotes the target shape.

Fig. 15. Performance (run-time) comparison of different methods. Our LJN
shows orders of magnitude faster performance than other baselines.

with a 20 × 20 Functional Map, upsampling with a step-size of 5
to reach the resolution of a 120 × 120 sized functional map. For
SmFM [Magnet et al. 2022] and Discrete Optimization [Ren et al.
2021], we used the Python implementation available in the PyFM
library. Specifically, for Discrete Optimization, we initialized the
Functional Map at 20×20 and upsampled it to 100×100, whereas for
SmFM, we initialized a 10 × 10 Functional Map and upsampled it to
70 × 70. For Consistent FM [Sun et al. 2023] and ULRSSM [Cao et al.
2023], we used the author-provided code and pre-trained models.
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Fig. 16. We compare the input signal between different evaluation datasets and our standard training set, which was identical across two supervised
experiments detailed in the main paper using Principal Component Analysis (PCA). The evaluation datasets we compare with respectively are FAUST [Bogo
et al. 2014], SCAPE [Anguelov et al. 2005], sequences of Cats from [Sumner and Popović 2023]. Racoon and Mousey are two object categories from the
Deforming4D Dataset [Li et al. 2021]

For Consistent-FM, we used the point-wise map corresponding to
80 × 80 Functional Map. Finally, for handle-based deformation, we
used the libigl implementation of ARAP [Jacobson et al. 2018] as
our baseline.

6.4 Run-Time Comparison
We perform a run-time comparison between our approach and
different baselines for the task of map refinement. We show this
comparison in Figure 15, evaluated over shape pairs consisting of dif-
ferent number of vertices. We do not count the pre-processing time
since both LJN and all baselines require the Eigen decomposition
of the LBO operator. To recall, our LJN performs map refinement
in a single feedforward pass followed by back substitution, while
the baselines are iterative refinement techniques. As a result, LJN is
orders of magnitude faster than baselines. These experiments were
performed on a machine with AMD 7302 and Nvidia A100 GPU.

6.5 Discussion on Generalization
We provide an empirical overview to explain why our approach
generalizes across different categories of objects. To demonstrate
this, we compare the input signal from our training set with the input
signals across different object categories used in our qualitative and
quantitative evaluations. Recall that our input signal is the Jacobian
corresponding to the spectrally projected target shape, averaged
over vertices. We compare this input signal, defined at vertices,
across different datasets using Principal Component Analysis (PCA),
as depicted in Figure 16. The strong correlation between the input
signals in our training and test datasets highlights the remarkable
ability of LJN to generalize.

6.6 Effect of Training Data
LJN is highly data-efficient, requiring only 60 pairs of human shapes
to demonstrate significant generalization across different shape cate-
gories. In this section, we empirically investigate the minimum data
required to achieve optimal performance. We begin with a dataset
of 10 shapes and incrementally increase it to 80 shape pairs, all from
the FAUST dataset. We evaluate the performance of LJN over dif-
ferent training set using reconstruction and shape correspondence
metrics on both the FAUST and SCAPE datasets, following the map-
refinement setup detailed in Section 5.2. The results, visualized in
Figure 17, indicate that LJN achieves accurate results with as few as

Fig. 17. Understanding the effect of training data required to achieve opti-
mal performance. Trained on 10 shapes, our approach demonstrates com-
parable performance for shape correspondence as a model that has been
trained on 80 shapes.

Source NJF Ours Ground-Truth

Fig. 18. Comparison of reconstructions produced by a global encoding (NJF)
and our LJN which uses local signals to learn deformation. NJF and our
approach produce near-perfect deformations when evaluated on a pair
of shapes from the same training category (first row). However, NJF fails
to produce cross-category generalization, where, LJN shows consistent
reconstruction (second row).

10 shape pairs. Moreover, evaluating SCAPE [Anguelov et al. 2005]
also yields accurate results despite the pairs being near-isometric
and having different connectivity than the training (FAUST) shapes.

November 2024.



Deformation Recovery: Localized Learning for Detail-Preserving Deformations • 13

6.7 Comparison with Global Encoding
We also compare our LJN approach with the original Neural Jaco-
bian Fields (NJF) [Aigerman et al. 2022] method which relies on a
global latent code to define a deformation of a shape. As mentioned
above, the global nature of the latent code along with the supervised
nature of NJF imply that that approach requires extensive data and
per-category training to produce plausible deformations. Thus, the
basic version of NJF cannot be directly compared with the various
experimental setups in this paper, as its use of global encoding fun-
damentally limits its generalization. We illustrate this difference in
Figure 18. In the first row, we visualize a deformation between a
pair of human shapes, a category on which NJF was trained. In the
second row, we evaluate the same model on a pair of cat shapes.
For fairness, our LJN method was also trained on human shape pairs,
yet unlike NJF, LJN produces near-perfect deformation for shapes
outside the trained category.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK
This paper presented LJN, a data-driven framework that efficiently
estimates deformations by computing high-quality Jacobian fields
from coarse inputs. Unlike the typical global encoding for repre-
senting deformations, we showed that constructing appropriate
local signals is generally sufficient to learn robust deformations.
These input signals constrain the neural network to learn defor-
mation within a small neighborhood while leveraging the Poisson
system for global coherence. This approach makes LJN data-friendly
and robust in cross-category generalization, with both supervised
and unsupervised pipelines applicable to various deformation-based
tasks. While tailored for detailed deformations, LJN can still produce
implausible results such as shrinkage of volume or failure to produce
sharp bending. Future work could include integrating physics-based
energies into the data-driven realm for more realistic deformations.
Another avenue is to explore better approximations to deformation
spaces, such as constructing input signals from eigenfunctions of
the Discrete Shell-Operator [Tamstorf and Grinspun 2013].
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Appendix

.1 Overview
In this document, we provide additional details pertaining to our work. We
provide an overview of all symbols used throughout the paper in Table 5 for
expositional clarity. In Table 3, we provide the details of the dataset used in our
handle-based deformation. Finally in Table 4, we provide quantitative results of
unsupervised deformation and mapping on the SMAL dataset.

Object Symmetric Dirichlet #V, F #Handle

ARAP Ours

Pig 0.26 0.05 4K,8K 330

Hand 5.7 2.9 700, 1.3k 72

Eiffel 2.4 0.93 3k, 6.1k 21

Chicken 10.5 6.8 8k, 16k 400

Head 1.9 21.1 5k, 8k 63

Cat 7.8 4.8 7k, 14k 800

Buck 6.2 8.3 5k, 8k 2300

Horse 15.6 3.8 5k, 8k 600
Table 3. Quantitative comparison for handle-based deformation. We provide
the quantitative symmetric Dirichlet scores denoting the smoothness in the
deformation alongside details of the mesh used.

Method Geod Inv DirE Cov
W/o LJ 5.5 12.5 17.1 59.6
α6, α7 = 0 5.3 11.9 15.4 59.6
α7 = 0 9.7 11.7 25.2 53.2
Ours 5.0 10.6 9.8 60.4

Table 4. Quantitative result for unsupervised deformation on the SMAL dataset.
We ablate the different terms used in our unsupervised loss function Lun (c.f
Eqn 13) over the SMAL dataset.

Symbols Description

S1 Source Shape

S2 Target Shape

Vi Vertex corresponding to Si

Fi Face corresponding to Si

∆ Laplace Beltrami Operator

∇ Discrete gradient operator R|3F |×|V |

A Area of each face, written as diagonal matrix R|3F |×|3F |

M Voronoi-area of each vertex, written as diagonal matrix R|V |×|V |

Ψ Eigenbasis of Laplace operator

I R|V |×|F | vertex-face incidence matrix

H R|F |×|F | face-face incidence matrix

V̄ Projection of Vi to the LBO eigenbasis

Ek Non-orthonormal frame of face k

Ek Rewriting Ek across all faces in matrix form

φ12 Continuous map between S1 and S2

Π12 Vertex-Vertex map between S1 and S2

Π∗
12 Refined vertex-vertex map

Π̃12 Soft pointwise map

C21 Functional map corresponding to Π12

J12 Jacobian between S1 and S2

Θ12 Input signal to our network

e i1 First edge vector of ith face

Q12 Closest rotation matrix to J12

Table 5. Collecting all symbols used in our main paper
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