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The control of heat flow in disordered materials presents a significant challenge due to the limita-
tions of conventional phonon transport models in systems lacking periodic long-range crystal order.
This study investigates energy dissipation mechanisms induced by structural irregularities, utilizing
folded polymers, particularly proteins, as model systems. Proteins, macromolecules characterized
by coexisting periodic amino acid chains folded into irregular three-dimensional structures, serve
as useful platforms for examining the impact of irregular topologies on vibrational properties. Our
research reveals an important enhancement of the phonon density of states at mid-band frequencies,
diverging from the Van Hove singularities typically expected at Brillouin zone edges in perfect crys-
tals. This state redistribution exhibits similarities to observations in some disordered electronic and
optical systems, generally known as Lifshitz tails. By interpreting this effect as a resonance between
multiple degrees of freedom tuned by gradients of an effective phonon confinement potential, we
provide a rational for interpreting the ubiquitous ”Boson Peak” reported in disordered materials.
Furthermore, this study elucidates how disorder allows heat to be channeled in narrow frequency
bands. To this purposes, we present mathematical tools that enable rapid and sharp estimation
of the phonon density of states and thermal currents, circumventing the need for solving expensive
eigenvalue problems. Our methodology may facilitate the characterization and control of heat trans-
port in specific amorphous and disordered solids, with implications for tailoring thermal materials
through strategic manipulation of structural disorder.

I. INTRODUCTION

The study of energy transfers, particularly heat, has
long been a focal point of scientific interest1. The thermal
conduction properties of crystalline materials, character-
ized by their ordered structures, have been thoroughly
investigated based on a comprehensive understanding of
their phonon dispersion relations and scattering rates.
These foundational insights have paved the way for ac-
curate predictions of thermal properties2,3. However, in
materials with structural disorder, long-range order van-
ishes, disrupting symmetries and invalidating the con-
cept of a canonical Brillouin zone4–9. This structural
disparity between crystals and ’glasses” consequently dis-
play stark contrast in thermal properties4–8. For in-
stance, the vibrational energy landscape in amorphous
silicon is complex, encompassing a range of modes like
propagons, locons, and diffusons4,10,11. These modes
defy simplistic classification, exhibiting characteristics
that are neither entirely plane-wave-like nor localized9,12.
Concurrently, investigations in various materials, such as
higher manganese silicides, graphene, and superlattices,
have revealed unexpected low-energy optical vibrational
modes9,13,14. Central to these findings is the ’Boson
Peak’, a salient feature in the density of states of glasses
and alloys, which has become a focal point of extensive
research15–26. This phenomenon, characterized by an ex-

cess of vibrational modes at low frequencies, deviates
from the Debye scaling and is observable even in super-
cooled liquids27,28. Despite these advancements, signifi-
cant gaps remain in our understanding of the interplay
between anomalous phonon density of states, localiza-
tion phenomena, and the resulting diminution in thermal
conductance in amorphous and disordered materials29–31.
Fundamental questions arise regarding the principles
governing energy dissipation in scenarios where struc-
tural disorder impedes phonon propagation and disrupts
group velocities. Is there a unifying theory that can co-
hesively integrate the diverse observations and findings
across various disordered materials? Recent advances in
theoretical approaches are indeed moving towards a more
unified understanding of disordered systems. Notably,
the Wigner transport equation approach32 and quasi-
harmonic Green-Kubo methods33,34 have shown promise
in bridging the gap between ordered and disordered ma-
terials. The Wigner formalism, by treating phonons as
partially coherent waves, provides insights into the tran-
sition between ballistic and diffusive transport regimes.
Similarly, the quasi-harmonic Green-Kubo approach of-
fers a framework to calculate thermal conductivity in
both crystalline and amorphous materials within a sin-
gle formalism. While these methods represent significant
progress, our work complements these approaches by fo-
cusing on the spatial aspects of energy localization and
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transport, particularly in systems with complex topolo-
gies like folded proteins.

By employing the mathematical framework of the lo-
calization landscape35 extended to phonon systems36,37,
we conduct a systematic examination of energy dissipa-
tion in disordered phonon systems38. Our focus is on
folded proteins, which, with their intrinsic mix of peri-
odicity modulated by topological irregularities, provide
an ideal model for our investigation18. Our findings,
based on dimensionality-reduced model reveal features
that may be applicable to a range of disordered solids
under specific conditions, particularly those ensuring co-
herence in phonon transport.

II. METHODS

In this Methods section, we present a comprehensive
framework for analyzing thermal phonons in disordered
systems, with a particular focus on folded proteins as
model structures. Our approach combines several key
elements: (1) a generalized equation of motion for vibra-
tional dynamics in random media, (2) the innovative ap-
plication of the localization landscape concept to phonon
systems, (3) a novel method for estimating the density
of states based on the effective confinement potential,
and (4) calculations of heat flux between degrees of free-
dom. We begin by introducing the fundamental equa-
tions governing the system’s dynamics, then explain how
we adapt the localization landscape to phonon systems.
Subsequently, we detail our approach to spectral decom-
position and heat flux calculations. Finally, we describe
our method for estimating the density of states and heat
capacity. Throughout, we emphasize how these tools al-
low us to predict and understand energy localization and
transport in disordered structures without resorting to
computationally expensive eigenvalue calculations.

Our description of thermal phonons in disordered sys-
tems is primarily guided by a mathematical framework
within the harmonic approximation. We consider the vi-
brational dynamics of discrete systems within a random
medium, accounting for inhomogeneous linear coupling
between degrees of freedom.

Equation of Motion

We begin with the fundamental equation of motion of
coupled harmonic oscillators:

ω2X̃i =

∑
j∼i

kij
mi

 X̃i −
∑
j∼i

kij√
mimj

X̃j (1)

This equation can be interpreted as follows:

• ω2X̃i: Represents the acceleration of the i-th de-
gree of freedom.

•
(∑

j∼i
kij

mi

)
X̃i: Describes the restoring force on the

i-th degree of freedom due to its own displacement.

• −
∑

j∼i
kij√
mimj

X̃j : Represents the influence of

neighboring degrees of freedom.

Here, kij is the coupling constant between the i-th and
j-th degrees of freedom, mi denotes the mass associated
with the i-th degree of freedom, and ω represents the
vibrational frequency corresponding to the displacement
X̃i. This formulation generalizes the standard equation
of motion for a simple harmonic oscillator by integrat-
ing terms that encapsulate the influence of neighboring
entities in random environments.

Localization Landscape Approach

The force constants are determined with a parameter-
free elastic network model39. We can cast this in the
form of an eigenvalue problem:

LhX̃ = (C − ω2)X̃ (2)

where Lh = −[div(A∇)− V ].
Using a mathematical tool termed the localization

landscape (LL) u35, we can access the localized distri-
butions of normal modes by solving:

−[∇ · (A∇)− V ]u = (1) (3)

where (1) is a column vector, A : (αij) = (−1)i−jkij ,

since eiπ(i·a−j·a)/a = (−1)i−j for a modulated structure
of period a and V is the difference between the diagonal
and off-diagonal elements (See SI40 for details).

Generalized Wave Equation

Introducing X̃ = uϕ to account for the modulation
of the mode with an envelope defined by u, and using
W = 1

u and Ω2 = C − ω2, we eventually arrive at:

[
−∇ · (A∇) + 2A

∇W

W
· ∇+ (W − Ω2)

]
ϕ = 0 (4)

This equation contains three key terms:

• −∇ · (A∇): It represents the propagation of waves
through the medium. It’s analogous to the diffusion
term in other physical systems

• 2A∇W
W ·∇: A convecto-diffusive term describing en-

ergy transport influenced by the landscape’s struc-
ture. It represents how the wave is influenced by
spatial variations in the effective potential W. This
term is responsible for directing the energy flow in
the system.
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• (W − Ω2): A confinement potential term that lo-
calizes waves. This term acts as an effective poten-
tial that confines the waves. W is the inverse of
the localization landscape, and Ω2 is related to the
frequency. The interplay between these two deter-
mines, as for an effective barrier, where modes are
likely to be localized.

Equation 4 captures the competition between wave
propagation, energy transport influenced by the land-
scape’s structure, and localization effects in disordered
systems. It’s a powerful formulation that combines as-
pects of wave physics, transport phenomena, and quan-
tum mechanics to describe phonon behavior in complex,
disordered materials.

Visualization of Key Quantities in 3D Protein
Structures

Figure 1 illustrates how the various quantities encoun-
tered in our equations project onto a 3D color-coded
structure, using a folded hydrogenase protein as an ex-
ample (Figure 1a). The confinement potential, shown in
Figure 1b, indicates regions where energy is likely to be
confined or trapped along the protein chain at the ex-
trema of the potential W . This potential plays a crucial
role in determining the localization of vibrational modes.

An alternative visualization of this potential’s effect
is presented in Figure 1e. Here, we plot the eigenvec-
tors of the system, ranked as a function of their corre-
sponding eigenvalues. This representation reveals that
the amplitudes of the eigenvectors are fully modulated
by the confinement potential, analogous to wave func-
tions in a quantum well. Figure 1c visualizes the gra-
dient of the confinement potential. This quantity is in-
trinsically linked to energy transport within the system.
As we will demonstrate later, it corresponds to the re-
sistance to heat flow, providing insight into the thermal
conductivity of the protein structure. The inverse of the
confinement potential, depicted in Figure 1d, serves as an
estimate of the phonon density of states (see40 for a com-
plete demonstration). This relationship, which we will
address in subsequent sections, offers a computationally
efficient method to approximate the vibrational spectrum
of the protein.

Heat Flux Calculation

We begin by discriminating domains defined by the
maxima of W and comparing the behavior in regions

where ∇W is most significant. To benchmark our ap-
proach, we first calculate the heat flux between two de-
grees of freedom (DoF) across the entire frequency spec-
trum using the established method of Matsuda et al.41:

qijh = kB(Tj−Ti)
∑
n

|Yi|2|Yj |2

|Yi|2 + |Yj |2
= kB(Tj−Ti)Tij (5)

where kB is the Boltzmann constant, Ti and Tj are
temperatures of the i-th and j-th DoF, Yi and Yj are
their respective eigenvector components, and Tij repre-
sents the transmission coefficient.

Novel Approach: Heat Flux from Confinement
Potential

We demonstrate that the gradient of the confinement
potential W corresponds to the resistance to heat flow.
This allows us to compute the inverse quantity of what
is obtained from Eq. 5, without solving the complete
eigenproblem. Our method relies solely on the knowledge
of ∇W , offering significant computational advantages.

Density of States Estimation

To elucidate the vibrational properties of the system,
we employ three distinct methods to calculate the density
of states (DoS). Specifically, these methods entail: (1) the
eigenvalue spectrum of Lh, (2) Weyl’s law for the count-
ing function, as elucidated by Arnold42, and (3) a novel
approach predicated on the curvature ofW . Notably, our
method for estimating the DoS exhibits enhanced speed
compared to directly solving the eigenproblem. The an-
alytical expression derived from this approach is detailed
in the Supplementary Information40 :

g∇(ω2) =
∑

(x1,x2)∈Sω2

1

∇W (x2)
+

1

∇W (x1)
(6)

where Sω2 is defined as:

Sω2 =
{
(x1, x2) ∈ Ω× Ω

∣∣ x1 < x2,W (x1) = W (x2) = ω2,∀x ∈ (x1, x2), W (x) < ω2
}

(7)

This DoS estimation method is computationally effi- cient, particularly valuable for large, complex systems.
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FIG. (1) Localization Phenomena in a Model of Disordered Structure: A Folded Protein. a) A
three-dimensional depiction of the hydrogenase protein chain with PDB ID 4xdc, showcasing the cohexistence of

periodicity and disorder. b) The effective confining potential W with highlighted high-frequency localized modes (in
red) and low-frequency localized modes (in blue). c) A color-coded three-dimensional visualization based on the

gradient of the effective potential. This highlights the core region dominated by high-frequency vibrations and the
external regions characterized by low-frequency vibrations. e) A 3D representation of the inverse gradient of the
effective potential (1/∇W ). This visualizes the primary thermally conductive degrees of freedom, emphasizing the
local density of states derived from the gradient operator. e) The effective heat confinement potential W (in red)
computed for the chain’s 581 Degrees of Freedom (DoF). This is juxtaposed with the corresponding normal modes

(in grey) and the eigenmodes spectrum (DoS) to highlight confinment effects.

Heat Capacity and the Boson Peak in Disordered
Systems

The heat capacity is a crucial experimental quantity
often investigated to capture the essence of disorder in
materials. Its deviation from the Debye law, particularly
the excess of low-frequency modes known as the Boson
peak, provides evidence that disorder has compromised
phonon dispersion. We now extend our analysis to in-
clude this important thermodynamic property. Once the
eigenvalue problem is solved, we can compute the heat
capacity of the protein in the harmonic approximation:

cV =
∂U

∂T
=

∑
n

ℏ2ω2
n

kBT 2

e
ℏωn
kBT

(e
ℏωn
kBT − 1)2

(8)

where U is the internal energy, T is the temperature,
ωn are the eigenfrequencies, and kB is the Boltzmann
constant.

Einstein-like Model for Discrete Systems

Introducing θn = ℏωn

kB
as the characteristic tempera-

tures of the modes, we obtain a heat capacity expression
similar to Einstein’s model, reflecting the discrete nature
of the protein system:

cV = kB
∑
n

(
θn
T

)2
e

θn
T(

e
θn
T − 1

)2 (9)
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Low and High Temperature Limits

In the low temperature limit, where T ≪ θm =
minn θn, the behavior resembles Einstein’s model:

cV ∼
T≪θm

kB
θ2m
T 2

e−
θm
T (10)

In the high temperature limit, where T ≫ θM =
maxn θn, we recover the Dulong-Petit law:

cV ∼
T≫θM

NkB (11)

where N is the number of degrees of freedom.

Application to Proteins and Disordered Structures

Our focus on disordered structures like proteins and
enzymes is particularly relevant for several reasons:

• Proteins, despite their irregular 3D topology, pos-
sess an intrinsic periodicity of 3.8Å along the
polypeptide chain, making them ideal models for
studying phononic properties in disordered mate-
rials. While the elastic model accounted in this
study and similar elastic network models are based
on 3D protein structures, they often employ sim-
plifications that result in effectively 1D representa-
tions of protein dynamics. This includes treating
residue fluctuations as scalar quantities and focus-
ing on nearest-neighbor interactions along the pro-
tein chain. However, it’s crucial to note that these
models still capture essential 3D structural infor-
mation through their initial construction from the
protein’s spatial configuration. Importantly, treat-
ing the system with a full 3D elastic tensor does
not fundamentally alter the underlying physics or
the shape of the confinement potential36. The use
of a simplified 1D-like model grants mathematical
simplicity in our demonstrations without sacrific-
ing the essential physical insights. This simplifica-
tion allows us to elucidate key principles of protein
dynamics while maintaining analytical tractability.
The core behaviors observed in our model, such
as the relationships between the potential gradi-
ent, density of states, and heat flux, remain valid
when considering the full 3D elastic properties of
the protein structure.

• Their naturally occurring structures are well-
documented in databases like CSA (Catalytic Site
Atlas), providing a rich source of data for analysis.

• Simplified elastic interaction models43 have proven
effective in describing normal modes of proteins44,
and we leverage these models in our study. It’s

important to note that our model employs a
coarse-grained representation, with each amino
acid treated as a single degree of freedom. While
this approach reduces the total number of de-
grees of freedom compared to an all-atom model,
it captures the essential dynamics relevant to en-
ergy storage and transport. The periodicity of
the protein backbone chain defines the Brillouin
zone in our model, while the influence of side
chain atoms is indirectly accounted for through
scaled force constants. This approach has been
validated against molecular dynamics simulations,
with Debye-Waller factors showing over 80% cor-
relation between our model and full atomistic
simulations45. This high correlation suggests that
our coarse-grained model effectively captures the
key physical behaviors of protein dynamics while
allowing for the study of larger systems and longer
time scales.

Significance and Future Directions

The analysis of protein heat capacity offers several sig-
nificant implications. By examining the heat capacity
of proteins, we can identify deviations from the Debye
law, particularly the Boson peak, which is indicative of
an excess of low-frequency modes characteristic of dis-
ordered systems. This analysis also provides valuable
insights into how structural disorder affects vibrational
properties and energy transport in complex biomolecules.
Furthermore, it may potentially establish connections be-
tween localization phenomena, as described by our con-
finement potential approach, and macroscopic thermody-
namic properties.
In this context, we define ”low temperature” as any

temperature below the Debye temperature (ΘD). The
Debye temperature represents the highest normal mode
of vibration in a crystal, and in the harmonic approxi-
mation, it is given by ΘD = ℏωD/kB , where ωD is the
Debye frequency. Given that our vibrational density of
states extends up to 4 THz, we can estimate the De-
bye temperature as ΘD ≈ ℏ(2π × 4 × 1012)/kB ≈ 192
K. Therefore, in our analysis, temperatures significantly
below 192 K are considered ”low temperatures,” where
quantum effects become increasingly important and the
system’s behavior deviates from classical predictions.

III. RESULTS

In the intricate realm of molecular structures, proteins
epitomize a fascinating interplay between order and dis-
order. When folded, they adopt an irregular 3D con-
formation, akin to polymers, as illustrated in Figure 1a.
Such spatial complexities, far from being mere anomalies,
often underpin protein functions39. Concurrently, the
protein maintains a periodicity in its amino acid arrange-
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ment, marked by a consistent a = 3.8Å period defining
the wave-vector k = 2π/a .

A. Model

To delve deeper into this balance, we examine a spe-
cific protein (PDB id 4xdc) composed of 581 amino acids,
treating each amino acid as a degree of freedom. Later
discussions will underscore that size or the number of
DoF does not influence our final conclusion. This protein
serves as our model for studying disordered phonon sys-
tems. For disordered phonon systems meeting the crite-
ria of harmonicity and coherence, our approach conceptu-
alizes the dynamics as a coexistence between wave propa-
gation or diffusion and wave localization, with modal am-
plitudes decreasing exponentially due to structural disor-
der (as described in eq.4). Central to our investigation
are the positions of the carbon Cα atoms, pinpointed with
a 1.6Å resolution via X-ray diffraction46, as showcased in
Figure 1a.

B. Localization Landscape Analysis

We compute the localization landscape (eq. 3) and
focus on its inverse (W = 1/u) which acts as an effective
confinement potential for eigenmodes37,42. This allow us
to

• partition the vibrations into distinct subdomains

• Observe eigemodes modulation by the potential’s
boundaries(Figures 1b and 1c).

As key observation, we found that high frequencies pre-
dominantly localize within the protein’s core, indicative
of stiffer regions. In contrast, external, soft degrees of
freedom (DoF) exhibit diminished cohesive energy37 and
display lower frequency motions. This underscore the
pivotal role of topology in the spatial localization of en-
ergy.

C. Heat Flux Analysis

Our investigation computes the heat exchanges occur-
ring between all degrees of freedom, as visualized in Fig-
ure 2. Unlike conventional crystals, the heat flux in our
structure is not uniformly distributed. Instead, we ob-
serve:

• A pronounced inhomogeneity in heat flux coupling
between different domains, with a variance of half
an order of magnitude (Figure 2a).

• A distinct dissipation network emerges (Figure 2b).

• The underlying influence of topology on this net-
work is evident (Figure 2e).

• Heightened heat flux in regions where the potential
increases rapidly.

D. Energy Equipartition

The observed variations in heat flux along the chain
are consistent with energy equipartition, reflecting the
dynamic nature of energy exchange between degrees of
freedom. While instantaneous local fluxes may vary,
each degree of freedom maintains the same average en-
ergy over time. This can be verified by examining the
normal modes across the entire frequency spectrum, en-
suring that each degree of freedom carries, on average,
the same amount of vibrational energy < Ei >(with
< Ei >= 1/2

∑
n miω

2
nX

2
i,n, for each eigenstate n ).

This analysis examines how protein structure may af-
fect phonon localization and heat dissipation. The co-
existence of order and disorder in proteins could poten-
tially create distinct patterns of energy distribution and
transport, offering insights into the intricate dynamics of
certain disordered systems.

E. Efficient Conductors and Energy Transfer

By progressively setting a specific heat flux threshold,
we identify the emergence of most efficient conductors
and their positions within the confinement potential. As
shown in Figure 2d, these efficient conductors primar-
ily occupy the mid-range of the confinement potential,
corresponding to the mid-frequency range of the phonon
spectrum.
To understand the underlying mechanisms, we exam-

ine the vibrational energy mismatches between each de-
gree of freedom (DoF) using the operator |∇W |. We
quantify this by computing ∥∇Wi∥2, applying the L2
norm to |∇W | to assess the local energy gap (Figure 1c).
To elucidate the underlying mechanisms, we investi-

gate the vibrational energy mismatches between each de-
gree of freedom (DoF) by employing the operator |∇W |.
This is quantified by computing ∥∇Wi∥2, which involves
applying the L2 norm to |∇W | to assess the local en-
ergy gap (Figure 1c). The gradient operator, defined
for a graph (see SI40), balances vibrational frequency
mismatch and topological proximity between DoF. Our
key observations include the following: high and low
frequency regions exhibit sparse energy states that lo-
calize on specific DoF, resulting in elevated ∇W val-
ues; the mid-localization band is characterized by ∇W
peaks where W ≈ 0.5; and sequence coordinates, due
to inhomogeneous coupling, display rapid oscillations,
which intensify localized vibrational states around the
mid-localization band. High values in this metric indicate
inefficient heat transfer, while low values suggest efficient
heat exchange (Figure 2c). This phenomenon, where in-
creased disorder along sequence coordinates enhances lo-
calized states’ resonance to form a thermal channel, is
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FIG. (2) Energy Transfers in a Disordered Folded Protein. a) Bottom: Depicts the effective heat
confinement potential (in red). Top: Represents the total flux per degree of freedom (DoF), highlighting a partial
correlation with the confinement potential. b) Visualizes the heat conductance between each DoF, emphasizing the

diverse thermal channels within the structure. c) Estimates the system’s thermal resistance, which inversely
correlates with the heat conductance shown in (b). d) Demonstrates the count of thermally coupled DoFs against an

energy threshold (ω2), indicating that optimal conductors emerge around the confinement potential’s midpoint
(approximately ∼ 0.5). e) 3D representation of the total flux per DoF.

termed the ’thermal lens’.

F. Density of States and Anisotropic Conduction

We introduce a novel method for estimating the den-
sity of states (DoS) based on the effective confinement
potential. The DoS, denoted by g∇(ω2), correlates with
the local gradient of the confining potential at a specific
energy state, as detailed in SI. Our method is validated
by comparing it with benchmark calculations, including
the dynamical matrix’s spectra and Weyl’s law counting
function, as shown in Figure 3b. The key findings from
this analysis are as follows: the DoS features pronounced
peaks around a normalized vibrational energy value of
∼ 0.7, which locate around the mid-band of the phonon
spectra; the density deviates from systems with an acous-
tic mode dispersion relation, lacking the expected Van
Hove singularity at the zone edge; protein chain folding
introduces additional vibrational frequencies due to lat-
eral interactions, leading to flat branches akin to Einstein
oscillators; and these branches contribute to a broadened
density of states, appearing as a variant of the Van Hove

singularity at lower frequencies. Notably, our findings
align with the notion that the Boson Peak can be viewed
as a modified form of the Van Hove singularity in cer-
tain disordered systems, as discussed by Chumakov47.
Furthermore, the system’s frequency-dependent thermal
conductance aligns with the DoS results, demonstrating
that degrees of freedom at the smoothest potential gra-
dients have the highest heat dissipation capacity, as il-
lustrated in Figure 3a. This investigation elucidates re-
markable analogies between the vibrational characteris-
tics of protein structures and well-established paradigms
in discrete electronic transport systems. We observe the
manifestation of Lifshitz tails, characterized by a dimin-
ished density of states (DoS) at both the Brillouin zone
center and periphery, closely mirroring phenomena doc-
umented in electronic systems48–51. Of particular signif-
icance is the discovery of a pronounced DoS concentra-
tion toward the mid-band region, which facilitates the
propagation of conductive coherent states. This distri-
bution pattern emerges in the absence of spectral gaps,
a distinctive feature that, while differentiating our find-
ings, maintains conceptual concordance with electronic
transport models. The observed mid-band shift of DoS
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FIG. (3) Phonon Density of States in a Disordered Protein Structure. a) A comparison of the density of
states based on the system’s eigenfrequencies with the frequency-dependent heat flux. Pulsations are normalized by

the maximum value, ωM . b) Benchmark methods for determining the Density of States (DoS) are evaluated:
Eigenfrequencies without approximation (blue); the Weyl law derived from a counting function42 (black); and our
proposed estimation using the operator ∇W (black). The correlation coefficients between the eigenvalues method

and the Weyl law, and the ∇W method are 0.85 and 0.92, respectively, highlighting the effectiveness of our operator.

and its role in enabling coherent transport resonates with
analogous phenomena in electronic systems, suggesting a
fundamental commonality in the influence of structural
disorder on energy transport across diverse physical do-
mains.

G. Heat Capacity and Boson Peak

We examine the heat capacity behavior (Cv(T )) in
comparison to the Einstein and Debye models. Figure 4a
displays the temperature-dependent Cv trends obtained
from eq.9 compared to both models. For the Einstein
model, we consider the frequency corresponding to the
density of state’s maximum (W ∼ 0.7) whereas for the
Debye model we employ the parameters θD and the num-
ber of degree of freedom N . What comes out is that in
a folded periodic structure Cv deviates from the Debye
scaling law and aligns closely with the Einstein model.

Disorder tends to spatially decouple domains while
consolidating these decoupled harmonic domains into
quasi-single frequency resonators. The DoS structure
comprises a compact ensemble of Dirac deltas, forming
an asymmetric Gaussian distribution peaking at ω ∼ 0.7.
Figure 4c visualizes deviations from the Debye law by

renormalizing Cv with T d. Here, d = 1. A distinct
peak, known as the Boson Peak, spans a temperature
range aligning with the equivalent temperature defining
the density of states’ spectral support. This peak rep-
resents the excess in the density of states resulting from
crystal symmetry disruption.

To ensure robustness, we analyzed 10 distinct proteins
with high spatial resolution, finding minimal statistical
dispersion (Figure 4d).

IV. DISCUSSION

A. Distinctive Density of States and Its
Implications

Our study reveals a unusual characteristic in the den-
sity of states (DoS) of polymer-like disordered phonon
systems: resonant peaks shifted to lower frequencies than
predicted by the Van Hove singularity. This observa-
tion serves as a predictive tool for the structure factor
in such systems. It’s important to note that any experi-
ments involving the measurement of these protein prop-
erties would typically involve either crystallized proteins,
as in Cryo-EM or X-ray diffraction studies, or proteins
in solution at concentrations close to saturation. These
conditions are necessary for the structure factor to be
meaningful and measurable. In this context, we antic-
ipate that localized and coherent resonnant vibrational
modes will predominantly exhibit two type of structures:

• Flat, high and low-frequency branches indicative
of localized state at the extrema of the phonon
spectra18, that is a pronounced ∆k >> 2π/L due
to localization (∆x << 1)

• A bright point close to the mid-band corresponding
the resonant modes driving coherent energy trans-
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port. One can possibly predict that this mid-band
frequencies might also coincide with ν ∼ Vg/L,
where L is the protein length and Vg is the bulk
group velocity derived from amino acids interaction
energy in the case where it is unfolded.

These predictions may prove to be possibly relevant for
predicting and interpreting experimental data obtained
from highly concentrated or crystallized protein samples.

B. Analytical Tools and Heat Transfer Mechanisms

To probe these phenomena, we introduced the opera-
tor |∇W |, specifically designed for graph systems. This
operator measures a structure’s resistance to heat flow,
eliminating the need for resolving the eigenvalue problem
or accessing the Green’s function. It identifies inefficient
heat transfer pathways, characterized by high |∇W |i,j
values, and correlates inversely with the local density of
states, which is crucial for heat transfer orchestration.
This approach offers enhanced efficiency and predictive
power compared to traditional methods, as demonstrated
in Figure 1d.

C. The Role of Confinement Potential

A key finding is the significance of the confinement
potential’s gradient (Figures 2a and 3a) to understand
thermal properties of our system.

The potential gradient (∇W ) reaches its maximum for
low and high-frequency modes, as the degrees of freedom
associated with these extreme energies are surrounded
by neighbors with significantly different energies. More-
over, the inverse of ∇W is proportional to the density
of states (DOS), since a low ∇W indicates that the DoF
is surrounded by neighbors with similar energies, cor-
responding to a high DOS. Given that the DOS is di-
rectly related to heat flux, we can establish that ∇W
is inversely proportional to the local thermal conductiv-
ity. The intermediate region of the energy band, corre-
sponding to amino acids located between the core and
the surface of proteins, exhibits a relatively low ∇W (see
Figure 1c). Consequently, this region facilitates efficient
coherent heat transport through quasi resonant degrees
promoting a sharp density of state and corresponding to
domains located distally.

Hence, The confinement potential acts as a spectral
lens, concentrating numerous degrees of freedom to spec-
trally synchronize, particularly in the middle frequency
domain when structural disorder is introduced.

D. Thermal Behavior and the Einstein Model

Proteins exhibit a unique coherent effect in their dis-
ordered phonon systems, deviating significantly from the

conventional Debye model in heat capacity analysis. This
phenomenon arises from the protein’s structural seg-
mentation into distal subdomains, which behave anal-
ogously to Einstein oscillators despite their spatial sep-
aration. The inherent disorder, characterized by inho-
mogeneously coupled harmonic oscillators, paradoxically
gives rise to spectral order through sharp frequency reso-
nances. These resonances facilitate long-range, coherent
coupling between spatially distant protein regions. En-
ergy exchange between subdomains occurs via these co-
herent resonances, a process enabled by regions of small
gradient in the confinement potential, typically in the
mid-frequency spectrum. This mechanism leads to a
redistribution of vibrational modes, depopulating both
high and low-frequency ranges of the phonon branches.
Consequently, the observed thermal behavior, particu-
larly at low temperatures, aligns more closely with Ein-
stein model predictions than with the Debye model. In
the protein’s folded state, this effect manifests as a ’con-
densation’ of the density of states into a broadened, sin-
gular peak, representing the resonant modes driven by
the confinement potential. This spectral feature sug-
gests an efficient energy transport mechanism across the
protein structure, potentially elucidating how proteins
rapidly dissipate or transfer energy despite their complex,
disordered structure. Understanding this phenomenon
could have profound implications for protein function and
the design of novel materials with unique thermal and vi-
brational properties.

E. A Perspective on the Boson Peak

Our findings provide a fresh theoretical perspective on
the origin of the Boson Peak - moving beyond viewing
it simply as an excess of low-energy vibrational modes.
We propose that the Boson Peak emerges from the spec-
tral focusing imposed by the thermal lens effect, more
specifically, the rugosity or fluctuation of the confinement
potential W promoting small gradient around the mid-
band. This fluctuation tends to produce more localized
states sharing the same frequency leading to distal reso-
nances promoting coherent transport, and decreasing the
number of states at the zone center and edge (Lifshitz
tail).

This interpretation aligns with recent studies18,52 at-
tributing anomalous heat capacity to quasi-localized vi-
brations in folded atomic chains where the Boson Peak’s
origin is traced to quasi-localized 1D vibrations reso-
nantly coupled with transverse phonons in glassy ma-
terials. Our results also show fair agreement with several
seminal works15–17,53 discussing densities of states, and
thermal conductivities typically at temperatures ranging
between 10K and 30K29.
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c
d

FIG. (4) Heat Capacity in a disordered phonon structure a) Compares the heat capacity with the Einstein
and Debye approximations, suggesting that the system operates akin to independent Einstein oscillators. Tp
corresponds to the thawing temperature of the dominand DOS peak : 135K (for 4xdc). b) Estimates the ratio

between the eigenvalues based calculation and the Debye, Einstein models. c) Displays the heat capacity normalized
by T , revealing the Boson Peak. Dash lines demarkate the equivalent temperature range of the DOS. d)

Demonstrates the universality of the results by estimating Cv(T ) for 10 folded proteins, highlighting minimal
dispersion although the 3D topologies differ tremendeously (inset).

F. Implications for Condensed Matter Physics

We can extend our results to different types of disor-
ders, including mass variations and bond/elastic constant
randomness. As long as these disorders disrupt the dy-
namical matrix, in a manner where each diagonal element
tends to produce an inhomogeneous set of coupled har-
monic oscillators, our theory holds. The more inhomoge-
neous the distribution of oscillators is, the more the effec-
tive confinement landscape will fluctuate, increasing the
number of localized states. Consequently, this confine-

ment potential will limit coherent phonon paths by spa-
tially distributing energy into few localized domains that
do not exchange energy, while thermal transport becomes
facilitated in a restricted energy channel instead of a wide
frequency range (acoustic branch) in regular solids. The
thermal lens concept is crucial in explaining the unique
thermal behavior in certain disordered systems. The ru-
gosity or fluctuation of this potential tends to promote
Lifshitz tails, resulting in a concentrated phonon density
of states and altered heat capacity behavior, facilitat-
ing resonant interaction among phonons at the mid-band
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where coherent energy transport will predominate.

1. Implications for Material Science

Our observations of the thermal lens effect naturally
occurring in proteins provide a rational to advance ma-
terials design leveraging this phenomenon. While na-
ture thorough evolution, exploits these thermal effects for
regulating biology macromolecular processes54, we un-
veil parallel opportunities in engineered systems. The
computational tools developed here enable rapid proto-
type screening to identify polymer structures exhibiting
desired heat channeling traits. Specifically, the ther-
mal lensing paradigm establishes prospects for designing
insulators that suppress propagation in targeted spec-
tral ranges, logic devices processing information through
frequency-selective heat flows, and thermal diodes or
transistors gating thermal currents. These diverse appli-
cations highlight the breadth of possibilities unlocked by
acquiring the ability to deliberately construct and con-
trol artificial thermal lenses at the materials scale. Much
as nature sculpted thermal landscapes over eons of evo-
lution to regulate biological functions36,37,54, our frame-
work brings this manifestation of structural disorder into
the realm of intentional design.

V. CONCLUSION

This study presents a comprehensive framework for an-
alyzing coherent thermal energy transport in disordered
systems, with particular emphasis on folded polymers.
By developing analytical tools and theoretical constructs,
we have addressed the complex interplay between struc-
tural disorder and phonon propagation in non-crystalline
materials. This allows us to elucidate the subtle ef-
fects of disorder—arising from both topological irregu-
larities and compositional variations—on phonon local-
ization and dissipation mechanisms, and attempts to
bridge the gap between theoretical predictions and ex-
perimental observations. More specifically, the method-
ology developed herein establishes correlations between
structural characteristics, spectral properties, and ther-
mal transport phenomena in a simplified model of amor-
phous solids. We believe that this approach also provides
a foundation for tailoring thermal conduction in more
complex systems. While primarily focused on phonon
dynamics, the physical principles underlying this study
may have broader implications for understanding energy
transport in various amorphous systems. We hope the
methodologies and insights presented here open new av-
enues for investigation in materials science, potentially
impacting fields ranging from energy management to ma-
terials engineering.
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