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Abstract—Liquid chromatography coupled to High-Resolution
Mass Spectrometry (LC-HRMS) is the most widely used ap-
proach for the global detection of small molecules in biological
samples (metabolomics). In complement to such MS1 data,
structural identification of metabolites implies the acquisition
of fragmentation spectra by performing tandem mass spec-
trometry (MS2) experiments. To achieve both global detection
and identification in a single run, the recently introduced
acquisition mode called Sequential Window Acquisition of all
THeoretical fragment ions (SWATH-type) Data Independent
Acquisition (DIA) alternates MS1 detection and MS2 analysis
of large and continuous m/z windows. The resulting MS2 data,
however, contain a mixture of fragment ions originating from
different precursor ions. To deconvolve these data and reconstruct
pure individual MS2 spectra, the few existing software rely on
determining a peak shape for each precursor ion. Such a strategy,
however, may fail to separate co-eluting compounds. Here, we
show how sparse non-negative matrix factorization (NMF) can
separate pure spectral components successfully. We developed an
end-to-end workflow called DIA-NMF to process SWATH DIA
files, identify the detected compounds, and showed that it out-
performs the reference algorithms MS-DIAL and DecoMetDIA,
especially in the case of low-intensity or co-eluting compounds.
Importantly, the reconstructed spectra include all the MS1 and
MS2 ions related to the sought compounds and thus provide
enriched chemical information that facilitates interpretation and
identification.

Index Terms—non-negative matrix factorization, sparsity, mass
spectrometry, SWATH DIA, metabolomics

I. INTRODUCTION

SWATH DIA for comprehensive metabolite detection and iden-
tification

Metabolomics (the large-scale analysis of small molecules
in a biological sample) is a powerful approach to discover
biomarkers for precision medicine [1]. Liquid chromatography
coupled with high-resolution mass spectrometry (LC-HRMS)
is the most sensitive technique for the global detection of small
compounds [2]. The sample first enters the LC, where the
molecules are separated according to their physico-chemical
properties. After desorption and ionization of the molecules,
the mass-to-charge ratios (m/z) of the ionized molecules are
then measured, generally in a few hundred milliseconds (de-
pending on the mass analyzer). The LC-MS file, therefore,
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consists of a succession of mass spectra (MS1), each being
a list of (m/z,intensity) ordered pairs, acquired at specific
retention times (rf). Aligning and concatenating the spectra
enables building each detected ion’s elution profile (i.e., its
Extracted Ton Chromatogram, or EIC).

Structural identification of the compounds detected by LC-
HRMS remains a challenge in metabolomics due to the huge
chemical diversity of metabolites. Tandem mass spectrometry
(MS/MS or MS2), which analyzes the fragmentation pattern
of a molecule, is the method of choice to gain insight into
the compound structure: in the most common conditions, ions
selected by the first mass analyzer are fragmented in a collision
cell, and the resulting product ions are analyzed in the second
mass analyzer.

Multi-event MS1 and MS2 acquisition protocols have been
developed to achieve the most comprehensive detection and
identification of metabolites. In the most common data-
dependent acquisition mode (DDA), the MS instrument au-
tomatically switches from MS1 to MS2 when ions satisfy a
predefined rule (e.g., the 10 most intense ions). In this mode,
precursor ions are selected using a small isolation window
(typically <1 Da wide), which leads to high-quality and high-
purity MS2 spectra for selected precursor ions. In contrast, the
sequential window acquisition of all theoretical spectra data-
independent acquisition mode (SWATH DIA) aims to select
and fragment simultaneously all MS1 signals (precursor ions)
within large and contiguous m/z isolation windows (typically
10-50 Da) which cover the whole mass range [3]. As a result,
each DIA MS2 spectrum is a hybrid spectrum resulting from
the fragmentation of many precursor ions within a selected
m/z range. It is, therefore, mandatory to precisely extract
the fragments originating from each precursor (by using the
property that all fragments from one MS1 precursor have the
same elution profile), i.e., to reconstruct the pure fragmentation
spectrum, before it can be used for compound identification.

Motivation

The two existing approaches that address the issue of
DIA data without relying on predefined spectral libraries for
unmixing, namely MS-DIAL and DecoMetDIA, are based
on the determination of peak models for each precursor:
the mixed elution profiles are then decomposed as linear
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combinations of these peaks [4, 5]. Such a strategy, however,
is not appropriate for small peaks whose retention time is
close to more intense ones (co-eluting compounds). In such
cases, the peak shape defined by the algorithm may in fact
encompass several analytical peaks and may not allow their
proper deconvolution [6].

As an alternative to peak models, we take advantage of
the blind source separation paradigm and develop here for
the first time a non-negative matrix factorization (NMF) ap-
proach to unmix the MS2 spectra. NMF is widely used for
analyzing high-dimensional data and feature extraction [7]. It
automatically extracts meaningful features from a non-negative
linear mixture. It has been recently applied to LC-MS [8] and
has been shown superior to model peak algorithms for gas
chromatography (GC)-MS data [6].

In this paper, we developed DIA-NMF as an end-to-end
workflow for SWATH DIA data analysis, which starts with
the raw data and outputs the identified molecules, and relies
on NMF for mixed data factorization.

II. NON-NEGATIVE MATRIX FACTORIZATION (NMF)

Given a mixed matrix X € R™*", the components’ sources
are mixed up in an unknown but linear way. The un-mixing
model can be compactly written in this matrix form:

X ~WH, (D

where W € R™*" is the basis matrix and H € R"™" is
the coefficients matrix. Each column of W is the unknown
spectrum/source that is not negative, whereas each row of H
represents an elution profile that determines the contribution of
each source, which is also non-negative. Thus, n is the number
of measurements, m is the number of source samples, and r
is the number of pure sources. Solving problem (1) can be
written under the constrained form:

argminD(X | WH) + J(W). (2)
W,H>0
D is a divergence function, as the Euclidean distance (I3),
it measures the discrepancy between the data X and it’s
factorization W H. J is an optional regularization function
providing prior information about the spectra.

NMF is NP-Hard [9] and can present numerous local min-
ima. For this reason, additional constraints or prior information
can help recover the sought sources. Here, we impose a
sparse on the sources and their non-negativity. The numerical
minimization of (2) is non-convex in both W and H, but the
sub-problems are convex. Thus, the minimization of this cost
function is generally solved by alternately updating W and H.

The first multiplicative NMF algorithm originated by Lee
and Seung updates W and H with a weighted gradient descent
[10]. The weights ensure that the gradient steps do not increase
the cost function in (2) and keep W and H non-negative.

Nevertheless, the non-negativity constraint is not always
sufficient to recover the sources and mixing matrix. Non-
negativity and sparsity of the sources are naturally inherent
in many applications, such as those using MS or Nuclear

Magnetic Resonance (NMR). In the context of Blind Source
Separation (BSS), sparsity has been shown to increase the
diversity between the sources which greatly helps their sepa-
ration [11, 12].

Puscual-Montano et al. introduced the non-smooth NMF
(nsNMF) algorithm [13]. They claimed its superiority over
previous sparse NMF variants for synthetic and real datasets.

Rapin et al. introduced the nGMCA? algorithm, which aims
to solve the sparse non-negative BSS [8]. This algorithm
minimizes the following optimization problem:

1 . ,
argmin || X — WH|[5 + N[W|[x +i" (W) +i (H), ()
W,H

where i1 is the characteristic function of the non-negative
orthant that enforces the non-negative constraints; it is applied
point-wise on every entry of W and H:
¢ (wm) = . 4
+o00 otherwise
nGMCA? alternatively minimizes the constrained sub-
problems to obtain stable solutions with the sought structure:

« Fix H, sub-problem in W is:
1 )
argmin §\|X ~WH|3+ N|W|| +it(W).  (5)
W

Let, f(W) = 3||X — WH||3 and g(W) = A|[W|}, +
it (W). f is differentiable, convex, and its gradiant, V f
is L = ||H H||, Lipschitz while g is convex, proper, and
lower semi-continuous. This sub-problem can be solved
by the forward-backward splitting algorithm (FBS) [14]
from proximal splitting methods.

More precisely, f is smooth; the gradient descent step is
employed. However, g is not, but its proximal operator
can be defined point-wise as:

proxy||+i+() (Wi ) = [Softa(wij)ly.  (6)

Where Soft is the soft thresholding operator and is
defined as:

Softx(wi,;) = sign(wi)[lwi;| — Al+ ©)
Then, the update of W is made by:

1
Wit = prox%g(Wk + va(Wk)) 3)

o Similarly, the sub-problem of H can be solved as (3), with
g(H) = iT(H). The proximal operator of this function
is the projection on the positive orthant [.];. Thus, the
FBS is reduced to the projected gradient algorithm.

III. MATERIALS AND METHODS
A. DIA-NMF workflow

The DIA-NMF workflow processes SWATH DIA raw data
files to generate a table of all detected compounds, including
their intensity and identity. It is implemented in R and includes
the following steps, which will be further detailed:

1) Detect and quantify all MS1 ions
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2) For each detected MS1 ion p:

a) Build the matrix X, of the elution profiles from all
candidate MS1 precursors (isotopes, adducts) and MS2
fragments of p.

b) Factorize X, to obtain the pure MS2 spectrum s,,.

c) Identify the compound p (e.g. by matching s, to a
reference spectral library).

1) MS1 data processing for ion detection and quantifica-
tion: The DIA raw files were converted to the .mzML open
format using the MSConvert software [15], and then processed
with the XCMS software to detect and quantify all MSI1
ions (as in DecoMetDIA). At this step, each detected ion is
characterized by its m/z, rt, and intensity.

2) MS2 data processing for ion identification: For each
detected (precursor) ion p, the matrix of the elution profiles
from all putative parent and fragment ions is built, and subse-
quently factorized by NMF to obtain the pure MS2 spectrum,
which is finally matched to a reference library to identify the
compound:

a) Extraction of the matrix X, , containing the elution
profiles from a candidate precursor p and its putative par-
ent and fragment ions: The MS1 spectra acquired within a
retention time window similar to p are aligned in the m/z
dimension, and concatenated column-wise to obtain the X},ﬁ ‘
matrix. Rows (i.e., elution profiles) with constant or noise-
only profiles are discarded. Similarly, the MS2 elution profiles
with non-constant intensities from the m/z isolation window
including p and within a retention time window similar to p
are concatenated row-wise to obtain the Xf,f; + matrix. Finally,
the X,l,f’ . and Xgﬁ . are concatenated row-wise to generate
Xt

Significantly, our strategy to build the mixed matrix X,’:m
differs from the DecoMetDIA and MS-DIAL approaches,
which consider only the elution profiles from the MS2 frag-
ments and the precursor ion p (i.e., not the parent ions of p).
However, all parent ions and their fragments have identical
elution profiles since they originate from the same compound.
It is, therefore, impossible to distinguish them in a DIA acqui-
sition. In contrast, our approach enables to comprehensively
group all MS1 and MS2 ions related to the same molecule
into a single spectrum to facilitate its interpretation and the
identification of the metabolite.

b) Non-negative matrix factorization: To select the ex-
pected number of pure components in the mixed matrix (the
factorization rank 7), the concordance metric from [16] was
used. The concordance exploits the stochastic nature of the
NMF estimates, examining their stability relative to reference
estimates obtained by non-negative double singular value
decomposition (NNDSVD) up to some permutation.

The mixed matrix X7, , is then factorized using nGMCA®
algorithm [8] and approximated by the product of the non-
negative matrices W7, . x Hy,. The column of W . with the
highest intensity at the m/z value of the precursor p is selected
as the spectrum of interest which groups all MS1 and MS2
ions related to p (i.e., all parent ions and fragments originating

from the same molecule).

c) Spectral matching: The pure spectrum is re-
stricted to the precursor and MS2 ions and matched
against our in-house database of reference spectra us-
ing the mean of two classical scores [4]: 1) the in-
verse dot product (i.e., the dot product > (Imeasured X
Liivrary)? /(2 Lrcasurea X 2= Iiiprary) Testricted to the frag-
ments common to the query and reference spectra), and
2) the percentage of reference peaks found in the query
spectrum (# matched fragments | # reference fragments). The
compound from the database with the highest matching mean
score above 0.3 was assigned to the MS1 precursor.

B. Experimental DIA dataset

Human plasma samples spiked with a pool of 47 chemical
compounds at 7 known concentrations (from 0 to 10 ng/mL
for each metabolite) were analyzed in triplicate by SWATH
DIA, as described in [17]. A full scan MS event was followed
by ten MS2 spectra collected from consecutive precursor ion
isolation windows (20 to 50 Da each) on an Orbitrap Fusion
instrument operated in the positive ionization mode. A stepped
Normalized Collision Energy (NCE) was used to optimize the
fragmentation: each MS2 spectrum is the mean of spectra
acquired at 30%=+20% NCE. MS1 and MS2 spectra were
recorded at a resolution of 120,000 and 15,000 (at m/z 200),
respectively.

C. Reference MS?2 database

Our comprehensive in-house spectral library comprises
11,417 MS2 spectra from 853 pure compounds. This reference
library includes spectra from the 47 metabolites spiked in the
experimental dataset. It was generated, however, with collision
energies slightly distinct from those used in the DIA dataset,
which may result in some differences in the fragmentation
patterns.

IV. RESULTS AND DISCUSSION

To process DIA data efficiently and achieve global detec-
tion, quantification, and identification of the compounds in
a biological sample, we developed a workflow called DIA-
NMF based on NMF to unmix MS2 spectra and link precursor
ions with their corresponding fragment ions. To evaluate the
performance of DIA-NMF, we used a ground truth DIA dataset
consisting of 24 files obtained from human plasma spiked with
47 compounds at 7 known concentrations in triplicate.

A. DIA-NMF successfully identify compounds, even at low
concentrations

We first assessed the number of correct identifications
among the spiked molecules (Fig. 1). DIA-NMF achieved 83%
of correct identification at the highest 10 ng/ml concentration
(30 correctly identified compounds out of 36 detected pre-
cursors) and still 71.43% at the lowest 0.05 ng/ml spiking
concentration (10 correct identifications out of 14 precursors).
Some missing identifications result from false positive detec-
tions of MS1 ions by the centWave algorithm at step 1, such
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as curcumin and cholic acid (in such cases, the mixed matrices
are merely noise). Importantly, DIA-NMF outperforms the
peak model approaches at all concentrations (except at 1 ng/ml
where DIA-NMF and MS-DIAL achieve similar results).

40

%)

XY . DIA-NMF

c 30+

g . DecoMetDia

2 20

I3 . MS-DIAL

Q

S 404 . MS1-step
0_

005 01 025 05
concentration (ng/mL)

Fig. 1: Identification of spiked compounds in plasma by DIA-NMF,
DecoMetDIA, and MS-DIAL. The 24 files from the DIA dataset were
processed by the three software. The error bars correspond to the
mean +/- standard deviation of the three replicates, whereas the red
dashed line indicates the total number of spiked compounds (47).
Note that at 0 ng/ml, the compounds were not spiked. Hence, the
signal comes from the endogenous plasma compounds.

B. DIA-NMF outperforms the model peak approach

For a finer evaluation of the quality of the reconstructed
MS2 spectra, we inspected the value of the matching score
for all identified compounds (Fig. 2). At high spiking concen-
tration (10 ng/mL, replicate 1), DIA-NMF, DecoMetDIA, and
MS-DIAL identify 30, 23, and 32 compounds, respectively
(Fig. 2 left). Notably, the 2 compounds specifically detected
by MS-DIAL in this replicate (riboflavin and D-sphingosine)
are also detected by DIA-NMF in the 2 other replicates from
the same sample, suggesting that the absence of identifica-
tion by DIA-NMF in the first replicate may result from an
absence of detection of the precursor ion by the centWave
algorithm which is used in step 1 in both DIA-NMF and
DecoMetDIA pipelines. At a lower concentration (0.5 ng/mL,
replicate 1), DIA-NMF still identifies 19 spiked molecules,
while DecoMetDIA and MS-DIAL only identify 9 and 11
compounds, respectively (Fig. 2 right).

The NMF approach outperforms the model peak methods
for compounds with close retention times. In the case of
atropine (Fig. 3), DIA-NMF successfully unmixed the single
peak EIC (Fig. 3 left) into two components (Fig. 3 middle) and
correctly assigned component 1 to the pure MS2 spectrum of
atropine (Fig. 3 right) with a score of 0.775 at 0.5ng/mL. The
latter was superior to those from DecoMetDIA and MS-DIAL
(0.61 and 0.66, respectively).

C. DIA-NMF spectra are enriched in chemical information

An advantage of our approach is that it groups all related
MS1 and MS2 ions from the same molecule within a single
component. In particular, adducts and isotopes of the precursor
and their corresponding fragments are included in the gener-
ated spectrum (Fig. 4). Such additional fragments are of high
interest for the chemical interpretation of the spectrum and
the elucidation of the compound structure: the presence of
an isotope (e.g., >*S) may be used to confirm the molecular
formula; additionally, the presence of adducts gives insights

[ onnve [l Decometvia [l ms-DIAL

0.5ng/mL_rep1

10ng/mL_rep1

a-Ergocryptine 4
Triethanolamine 4
trans-Zeatin glucoside 4
Testosterone
Taurocholic acid 4
flavin 4
Psychosine 4
Prédnisone 4
Pantothenic acid 4
Ochratoxin A 4
Nicotinic acid -
incomycin 4
Glycocholic acid 4
ormononetin 4
Folic acid 4
Flavone 4
Finasteride 4
Dextrorphan 4
Dextromethorphan 4
Deoxy. 21-gluc. 4
D-Sphingosine 4
D-| amethme 9
tropine o
Apigenin 7- O neoh q
Tyr
7a-l deroxytestosterone 9
Pyridylacetic acid 4
4-Methylumbelliferone 4
-Deoxycortisol 4
2-Aminophenol 4
19-Nortestosterone 4
éPropranolol 9
copolamine 4

o

 ——————
0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
mean(inverse dot product, fragments presence)

0.

o
S

Fig. 2: Matching scores for the spiked compounds identified. The
matching scores of the pure MS2 spectra resulting from the process-
ing by DIA-NMF, DecoMetDIA, and MS-DIAL of the acquisition
files at 0.5 ng/mL and 10 ng/mL spiking concentration (first replicate)
are displayed.
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mz_value
Fig. 3: Successful factorization by DIA-NMF of atropine from a
co-eluting precursor of the same m/z 290.1751. Left: The EIC of the
atropine precursor seems to contain a single peak (black dashed line),
but the EICs from the candidate fragments (colored lines) suggest that
it results from the contribution of two distinct precursors. Middle: The
two components are factorized by NMF (the 2 rows of the HY,,
matrix are shown), and component 1 is assigned to the atropiI{e
precursor. Right: The pure MS2 spectrum W72 (top) matches

mz,1

the reference spectrum from atropine (bottom) with an inverse dot
product and a percentage of common fragments of 0.82 and 0.73,
respectively. Retention times are expressed in seconds.

about the ionization of the molecule, and hence its structure.
These additional peaks, however, are absent from the reference
spectra in classical databases, where only a single ion species
is selected as precursor for fragmentation (DDA approach).
We, therefore, acquired reference spectra in the DIA mode
(similar to the one used to analyze spiked plasma samples) for
some of the compounds. As expected, the spectra generated
by our DIA-NMF approach achieve the highest match to these
DIA reference spectra compared to the pure spectra from
DecoMetDIA and MS-DIAL (Fig. 4).

V. CONCLUSIONS

SWATH DIA is a promising approach for the high-
throughput and comprehensive annotation of metabolites in
biological samples. However, processing multiplexed data and
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spectra inverse_prod frag_presence mean
0.75, DIA-NMF 09 0.739 0.8195 0.75

spectra inverse_prod frag_presence mean
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0.75, MS-DIAL 0812 0.696 0.754 0.75

spectra
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Fig. 4: DIA-NMF MS?2 spectra contain additional relevant peak in-
formation: example of the flavone compound. Pure MS2 spectra were
obtained with DIA-NMF, DecoMetDIA, and MS-DIAL compared to
the MS2 reference spectrum obtained in the DIA mode.

extracting a pure MS2 spectrum for each precursor is chal-
lenging. Here, we present the DIA-NMF framework, which
relies on NMF to efficiently unmix the fragments and extract
pure MS2 spectra. DIA-NMF is an end-to-end workflow for
SWATH DIA data analysis, consisting of several modules to
process the raw data, factorize the multiplexed MS2 data,
extract the pure MS2 spectra, and compute the matching scores
to a reference database.

By applying DIA-NMF to a real dataset of human plasma
spiked with 47 known compounds, we show that identifica-
tion recalls up to 83% are achieved, outperforming existing
approaches based on model peaks, especially at low concen-
trations and for co-eluting compounds.

Since the existing peak detection software (such as cent-
Wave used in DIA-NMF) is known to generate false positives
and negatives, especially at low compound concentrations, we
are currently developing alternative MS1 detection algorithms
to increase the identification rate. In addition, to further im-
prove the separation between the components (i.e., the purity
of the MS2 spectra), we are developing new NMF algorithms
that include sparsity on the elution profiles and use alternatives
to the [; norm.

Interestingly, our method to build and factorize the matrix
of elution profiles for each precursor p generates a spectrum
that gathers all the MS1 and MS2 fragments related to the
sought compound. This differs from existing approaches that
only relate all the selected MS2 fragments to p. Our strategy is,
therefore, not only more rigorous (because the detected MS2
ions in DIA may originate from adducts or isotopes of p since
they all have similar elution profiles), but it also provides new
insights into chemical interpretation by gathering the full MS
and MS2 information about the compound. The comparison
with reference spectra acquired in the same DIA conditions
confirms that the DIA-NMF spectra contain additional peaks
from isotopes and adducts. We are currently working on new
algorithms to automatically annotate the spectra and facilitate
their interpretation by the chemists.

In conclusion, DIA-NMF provides a new approach and
workflow that will be of value for the global detection and
identification of metabolomics.
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