Supplementary material for Study of PVAc/EVA Polymer Series: Influence of the Inter/Intra molecular Interaction Ratio on the Molecular Mobility at the Glass Transition

Jules Trubert^{a)}, Liubov Matkovska, Allisson Saiter-Fourcin, Laurent Delbreilh

Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, GPM UMR 6634, F-76000 Rouen, France

^{a)} Author to whom correspondence should be addressed: jules.trubert@univ-rouen.fr

SUPPLEMENTARY TEXT

Example of dielectric spectrum approximation. The dielectric relaxation curves obtained were analyzed using the Havriliak-Negami (HN) complex function. An example of a dielectric spectrum approximation using the HN fitting function and conductivity is shown in **Fig. S1**.

Pressure dependency of the glass transition temperature. The pressure influence on T_g for the PVAc/EVA series is shown in **Fig. S2**. The nonlinear relationship between T_g and pressure can be fitted by the empirical Andersson-Andersson model.

FIG. S1. Example of approximation to (a) the real and (b) the imaginary part of the complex permittivity at P = 15 MPa and T = 329 K for PVAc. Experimental data are represented by empty squares. The red curves correspond to the sum the contributions from conductivity (dotted line), α -relaxation (dashed dotted lines) and β -relaxation (dashed dotted lines).

FIG. S2. Pressure dependence of the glass transition temperature (from the extrapolation of VFT fit to $\tau = 10 s$) for EVA60, EVA80 and PVAc. Solid red line indicates an experimental data fit to the Andersson–Andersson model.

Table S1. Parameters of HN fits for secondary relaxation and conductivity. For the secondary relaxation, the dielectric strength $\Delta \varepsilon_{\beta}$ and the broadening parameters $\alpha_{HN\beta}$ and $\beta_{HN\beta}$ are constants. Only the ohmic conductivity σ_0 and the secondary relaxation time τ_{β} are considered temperature dependent.

	$\Delta arepsilon_{eta}$	$\alpha_{HN\beta}$	$\beta_{HN\beta}$
PVAc	1.32	0.3	1
EVA80	1.00	0.5	1
EVA60	0.65	0.5	1

Example of conductivity σ_0 and the secondary relaxation time τ_β as function of temperature at 100 MPa for PVAC, EVA80 and EVA60.

PVAc				EVA8	30		EVA60		
Т	$\text{Log}_{10}(\sigma_0)$	$\log_{10}(\tau_{\beta})$	Т	$\log_{10}(\sigma_0)$	$\log_{10}(\tau_{\beta})$	Т	$\log_{10}(\sigma_0)$	$\log_{10}(\tau_{\beta})$	
[K]	$[S. cm^{-1}]$	[s]	[K]	$[S. cm^{-1}]$	[s]	[K]	$[S. cm^{-1}]$	[s]	
331	-13.7	-10.1	301	-14.4	-6.8	268	-14.6	-6.6	
333	-13.7	-10.0	303	-14.3	-6.9	270	-18.4	-6.8	
335	-13.7	-9.9	305	-14.2	-7.0	272	-14.9	-6.9	
337	-13.8	-9.9	307	-14.1	-7.1	273	-14.7	-7.3	
339	-13.8	-9.7	309	-14.1	-7.4	275	-14.8	-8.1	
341	-13.8	-9.9	311	-14.0	-7.5	277	-14.8	-8.3	
343	-13.7	-9.6	313	-14.0	-7.8	279	-14.9	-8.6	
345	-13.6	-9.5	315	-13.9	-8.2	281	-15.1	-8.9	
347	-13.6	-9.8	317	-13.7	-8.9	283	-15.0	-10.5	
349	-13.5	-9.6	319	-13.6	-8.9	285	-15.0	-10.0	
			322	-13.5	-8.9	287	-14.9	-9.7	
			324	-13.4	-8.9	289	-14.8	-9.6	
			326	-13.3	-8.9	291	-14.8	-9.9	
			328	-13.1	-8.9	293	-14.7	-11.0	
			330	-13.0	-8.9	295	-14.5	-10.4	

Table S2. Frequency list of dielectric measurements shown in **Fig. 4**. The frequency range is from 10^{-1} up to 10^{6} Hz, and is composed of 42 measurements spaced logarithmically.

				f [Hz]			
-	1.00E+06	1.17E+05	1.03E+04	9.02E+02	7.92E+01	6.95E+00	6.11E-01
	8.89E+05	7.80E+04	6.85E+03	6.02E+02	5.28E+01	4.64E+00	4.07E-01
	5.93E+05	5.20E+04	4.57E+03	4.01E+02	3.52E+01	3.09E+00	2.71E-01
	3.95E+05	3.47E+04	3.05E+03	2.67E+02	2.35E+01	2.06E+00	1.81E-01
	2.63E+05	2.31E+04	2.03E+03	1.78E+02	1.56E+01	1.37E+00	1.21E-01
	1.76E+05	1.54E+04	1.35E+03	1.19E+02	1.04E+01	9.16E-01	1.00E-01

Table S3. Fit parameters (log(τ_{∞}), *D*, T0), uncertainties of *D* and *T*0, glass transition temperature T_g , isobaric fragility m_P and the R-squared of the VFT laws of isobars (Eq. (2) in the main manuscript) for PVAc, EVA80 and EVA60.

EVA 60								
P [MPa]	$\log(\tau_{\infty}[s])$	D	ΔD	<i>T</i> 0 [K]	Δ <i>T</i> 0 [K]	T_g	m_P	<i>R</i> ²
P _{atm}	-14	8.94	0.08	195.07	0.46	246	73	0.9965
25	-14	9.33	0.15	195.30	0.87	248	71	0.9981
50	-14	8.84	0.12	202.46	0.71	254	74	0.9979
75	-14	9.17	0.24	203.19	1.37	257	71	0.9931
100	-14	9.09	0.21	205.88	1.19	260	72	0.9935
125	-14	9.21	0.22	207.39	1.24	263	71	0.9957
150	-14	9.13	0.19	211.20	1.07	267	72	0.9961
175	-14	9.62	0.24	210.13	1.38	269	69	0.9959
200	-14	10.10	0.16	211.32	0.93	273	66	0.9972

EVA 80

P [MPa]	$\log(\tau_{\infty}[s])$	D	ΔD	<i>T</i> 0 [K]	Δ <i>T</i> 0 [K]	T_g	m_P	<i>R</i> ²
P _{atm}	-14	10.04	0.13	209.94	0.77	271	82	0.9977
25	-14	10.39	0.22	210.40	1.31	274	79	0.9964
50	-14	10.50	0.23	214.94	1.38	280	83	0.9959
75	-14	10.08	0.16	220.97	0.99	285	80	0.9978

100	-14	10.21	0.16	223.29	0.95	289	81	0.9981
125	-14	10.58	0.27	222.58	1.63	291	80	0.9960
150	-14	10.73	0.18	224.66	1.09	294	81	0.9977
175	-14	10.68	0.21	228.02	1.28	299	77	0.9973
200	-14	11.13	0.19	230.51	1.18	305	74	0.9973

PVAc

P [MPa]	$\log(\tau_{\infty}[s])$	D	ΔD	<i>T</i> 0 [K]	Δ <i>T</i> 0 [K]	T_g	m_P	R^2
P _{atm}	-14	9.80	0.12	239.36	0.83	307	76	0.9984
20	-14	9.77	0.08	244.11	0.50	313	76	0.9993
40	-14	9.76	0.05	247.86	0.30	318	76	0.9998
60	-14	9.84	0.04	250.83	0.30	322	76	0.9998
80	-14	9.89	0.05	253.84	0.32	327	76	0.9997
100	-14	10.03	0.09	256.16	0.53	331	75	0.9993
120	-14	9.77	0.06	260.22	0.36	334	76	0.9997
140	-14	9.85	0.09	262.65	0.54	338	76	0.9994
160	-14	10.06	0.15	264.22	0.87	341	75	0.9984
180	-14	10.47	0.23	264.56	1.31	345	72	0.9969
200	-14	11.02	0.39	264.14	2.12	348	70	0.9930