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Abstract
In this paper, we present and study a stopping criteria based on a priori error estimate
for nonlinear variational problems. We show that for nonlinear variational problems,
the a priori error estimate is divided into two sub errors namely: the discretization
error and the linearization error. We then used that representation to devise a stopping
criteria that help to reduce the computational time. Themethodology is applied to three
problems and the numerical results demonstrate the superiority of the new approach.

Keywords Nonlinear variational problems · Finite element method ·
Iterative scheme · A priori error estimates · Linearization error · Discretization error ·
Stopping criterion

Mathematics Subject Classification (2010) 65N30

1 Introduction

The a priori error analysis controls the overall discretization error of a problem by
providing upper bounds that tend to zero with the mesh size. The upper bound of the
error is not computable because depends most of the time of the exact solution of the
problem. The present work investigates a priori error estimates of the finite element
approximation of nonlinear problems. The goal of this analysis is to prove that for
nonlinear variational problems, the overall error is decomposed into two parts; the
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discretization error and the linearization error. The discretization error is a result of
the finite element approximation, while the linearization error is a consequence of
solving the nonlinear finite element equations by iterative or incremental approach.
From the theory, this approach is more appropriate than the traditional one where only
the discretization error is measured (see [1–5] just to cite a few).
The idea of the stopping criteria taking into account the iterative solution was initially
introduced and developed by in [6, 7] in the context of the a posteriori error estimates.
In their works, the error between the exact and the approximated solutions is bounded
by some local quantities called "indicators" which is divided in two parts namely;
linearization and discretization indicators. It is shown that a good management of
this two sources of error leads to a drastic reduction of the number of iterations.
We note that this approach of the a posteriori error estimates combined with the
stopping criteria based on the linearization and discretization indicators has proved
to be very effective/competitive for mesh adaptation method, and it has been used in
several works (see for instance [8–13]). In this work, our focus is on a priori error
estimates, and we would like to see if the approach proposed in [6, 7] to reduce the
iterations is applicable. We note that this exercise has not yet been explored in the
literature. The task is not straightforward because the a priori analysis is a global
analysis compared to the a posteriori analysis which is local analysis where the study
had been performed. The a priori estimates depend only on the exact solution, but
not the numerical solution and hence can be (in theory if not in practice) evaluated
before computing the numerical solution. Conversely, a posteriori estimates depend
on the numerical solution but not the exact solution, so they do require computing
the solution but can actually be evaluated in practice. Hence from the theoretical
analysis, there is a vast difference. From a mathematical point of view it is natural
when dealing with a nonlinear problem to regard the source of the error as twofold:
the dicretization and linearization. In this work, we show that the idea proposed in [6,
7] can help to reduce the number of iterations for the nonlinear variational problems
we will be dealing with. It is apparent that to reduce the computational time, we
have to balance these two sources of error. Indeed, if the discretization error is more
important than the linearization error, then we have less iterations. We illustrate the
methodology by treating; a Nonlinear model problem in Section 2. In Section 3, we
analyse the systems of equations ofDarcy andForchheimer,while in Section 4,we treat
the Navier-Stokes system. Our approach of proof relies on the triangle’s inequality
to separate the discretiation error to the linearization error, and then each error is
estimated by exploiting the variational formulation. Concluding remarks and some
perspectives are gathered in Section 5.

2 Nonlinear problem

Continuous problem We considered the following nonlinear problem:

− �u + λ|u|2pu = f in �, and u = 0 ∂� , (2.1)
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where u is the unknown, λ and p are two positive real numbers, and f ∈ H−1(�), the
dual of the Sobolev space H1

0 (�). The variational model associated with (2.1) reads:

⎧
⎨

⎩

Find u ∈ V = H1
0 (�) such that

for all v ∈ V ,

∫

�

∇u · ∇v dx +
∫

�

λ|u|2puv dx = 〈 f , v〉 .
(2.2)

We readily proved that the variational problem (2.2) is equivalent to the following
minimization problem

⎧
⎪⎨

⎪⎩

Find u ∈ V = H1
0 (�) such that

for all v ∈ V , J (u) ≤ J (v)

J (v) = 1
2

∫

�
|∇v|2dx + λ

2p+2

∫

�
v2p+2dx − 〈 f , v〉 .

(2.3)

Thus the existence theory of (2.2) is obtained via (2.3) by using the direct method of
calculus of variations (see for instance [10, Theorem 2.3]).

The following well known relations will be used: for all (a, b, p) ∈ R × R × R,
with p ≥ 1,

∣
∣
∣|a|p − |b|p

∣
∣
∣ ≤ p|a − b|

(
|a|p−1 + |b|p−1

)
,

(
|a|2pa − |b|2pb

)
(a − b) ≥ 0 . (2.4)

2.1 Finite element approximation

For the discretization, we consider a regular family of triangulations (Th)h of �, as
described in Ciarlet [5], which is a set of closed non-degenerate triangles for d = 2
or tetrahedra for d = 3, called elements, satisfying,

• for each h, � is the union of all elements of Th ;
• the intersection of two distinct elements of Th is either empty, a common vertex,
or an entire common edge (or face when d = 3);

• the ratio of the diameterhK of an element K ∈ Th to the diameterρK of its inscribed
circle when d = 2 or ball when d = 3 is bounded by a constant independent of h:
there exists a positive constant σ independent of h such that,

max
K∈Th

hK
ρK

≤ σ.

As usual, h denotes the maximal diameter of all elements of Th . To define the finite
element functions, let r be a non-negative integer. For each K in Th , we denote Pr (K )

the space of polynomials in d variables, restricted to K, with a total degree at most r.
We introduce the following finite element space:

Vh =
{
vh ∈ V ∩ C(�) : ∀K ∈ Th, vh |K ∈ P1(K )

}
.
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The finite element approximation associated to (2.2) reads:

⎧
⎨

⎩

Find uh ∈ Vh such that

for all vh ∈ Vh ,

∫

�

∇uh · ∇vh dx +
∫

�

λ|uh |2puhvh dx = 〈 f , vh〉 .
(2.5)

The unique existence solvability of (2.5) can be obtained by invoking the same direct
method of calculus of variations. The similarity is drawn with [10, Theorem 2.3]. We
state that

Proposition 2.1 [10] Let u be the solution of (2.2), and uh the solution of (2.5). Assume
that u ∈ H2(�), there exists a real number h0 > 0 such that for all h ≤ h0, the
following a priori error estimate holds:

‖u − uh‖1 ≤ Ch‖u‖2,� .

The nonlinear variational problem (2.5) can be solved by a fixed point strategy which
is described next.

2.2 Iterative scheme: fixed point algorithm

Given u0h ∈ Vh , for i ≥ 0, knowing uih ∈ Vh , we compute ui+1
h ∈ Vh solution of

for all vh ∈ Vh ,

∫

�

∇ui+1
h · ∇vh dx +

∫

�

λ|uih |2pui+1
h vh dx = 〈 f , vh〉 . (2.6)

We readily checked by using Lax-Milgram theorem that (2.6) has a unique solution
uih ∈ Vh which satisfies the bound

‖∇uih‖ ≤ ‖ f ‖−1,� . (2.7)

Concerning the convergence of the algorithm (2.6), we state that

Proposition 2.2 [10, Theorem 4.1] Let uih be the solution of (2.6), and uh the solution
of (2.5). There exists a positive constant C( f , λ, p) such that

‖ui+1
h − uh‖1 ≤ C( f , λ, p)‖uih − uh‖1 .

If we take f and λ such that C( f , λ, p) < 1 (smallness condition on the data), then
uih −→

i→∞ uh in H1(�).

Remark 2.1 The triangle inequality

‖ui+1
h − uih‖1 ≤ ‖ui+1

h − uh‖1 + ‖uh − uih‖1

and Proposition 2.2 implies that ‖ui+1
h − uih‖1 −→

i→∞ 0.
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The main result of this paragraph is the following

Theorem 2.1 Let u be the solution of (2.2), with u ∈ H2(�), and uih given by (2.6).
Then there exists a positiveconstant c independent of h and i, and such that

‖u − uih‖1 ≤ c
(‖uih − ui+1

h ‖1 + h‖u‖2,�
)
.

Proof We quickly observe that

‖u − ui+1
h ‖1 ≤ ‖u − uh‖1 + ‖uh − ui+1

h ‖1

with ‖uh − u‖1 given by Proposition 2.1. Thus it remains to estimate ‖uh − ui+1
h ‖1.

The difference between (2.5) and (2.6) gives

for all vh ∈ Vh ,

∫

�

∇(ui+1
h −uh)·∇vh dx+λ

∫

�

(|uih |2pui+1
h −|uh |2puh)vh dx = 0 .

(2.8)
We take vh = uh −ui+1

h in (2.8), we use (2.4), Cauchy-Schwarz’s inequality, Hölder’s
inequality, Sobolev’s inequality, and (2.7) to obtain

‖∇(ui+1
h − uh)‖2 + λ

∫

�

(|ui+1
h |2pui+1

h − |uh |2puh)(ui+1
h − uh)

︸ ︷︷ ︸
≥0

dx

= λ

∫

�

(|uih |2p − |ui+1
h |2p)ui+1

h (uh − ui+1
h ) dx

≤ 2pλ
∫

�

|ui+1
h |(|ui+1

h |2p−1 + |uih |2p−1)|uih − ui+1
h | |uh − ui+1

h | dx
≤ c‖∇ui+1

h ‖ ‖|ui+1
h |2p−1 + |uih |2p−1‖L8‖∇(uih − ui+1

h )‖ ‖∇(uh − ui+1
h )‖

≤ c1‖∇(uih − ui+1
h )‖‖∇(uh − ui+1

h )‖

from which we deduce that

‖∇(ui+1
h − uh)‖ ≤ c1‖∇(uih − ui+1

h )‖

which ends the proof. �
Remark 2.2 If

‖uih − ui−1
h ‖1 ≤ c1h,

where c1 is a positive constant which balances the discretization error and the lin-
earization error, then

‖u − uih‖1 ≤ ch .

If
‖ui−1

h − uih‖1 ≥ c1h

then
‖uih − u‖1 ≤ c‖ui−1

h − uih‖1 −→ 0 geometrically when i → ∞.
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2.3 Numerical experiments

In this paragraph we evaluate the performances of the method by introducing a new
stopping condition. In fact, we assess the convergence properties of the method by
performing a standard mesh refinement analysis. The numerical simulations in 2d
are performed using Freefem++ (see [14]). The relative iterative error due to the
linearization of the nonlinear problem (2.1) is

Er1i = ‖uih − ui+1
h ‖1

‖ui+1
h ‖1

.

We introduce the following conditions to stop the computations

Classical one : Er1i < 10−5, (2.9)

New one : Er1i < γ h , (2.10)

where the parameter γ ∈ (0, 1). In fact, for the new stopping criterion we consider

Er1i < γ h instead of Er1i < γ
h

‖ui+1
h ‖1

to be coherent with the relative error given by

the classical one. Evidently, this new stopping criterion is efficient when γ h ≤ 10−5,
otherwise we must used the classical stopping criterion.
We start the iterative scheme (2.6) by taking u0h = 0, for the numerical investigations,
we consider the domain (x, y) ∈ � = (0, 1)2 where each edge is divided into N
equal segments. Then � is divided into N 2 equal squares and equivalently into 2N 2

triangles. we consider p = 2, λ = 1 and the following exact solution:

u = 30xy(x − 1)(y − 1)(x2 + y2)exy .

So f is given by the first equation of (2.1).
First of all, we will study the convergence of Algorithm (2.6) with respect to the
parameter γ in order to get a good precision with a fast algorithm. We introduce the
following relative error

Ee1i = ‖u − uih‖1
‖u‖1

where uih is computed after the convergence of the iterative scheme (2.6) using one of
the above stopping criteria. We denote by Niter the number of iterations of Algorithm
(2.6) to reach the desired stopping criterion.

We consider N = 50 and use the classical stopping criterion (2.10). Algorithm
(2.6) gives Ee1i = 0.0524 after Niter = 139 iterations. Furthermore, Table 1 shows
the error Ee1i with respect to γ (new stopping criterion (2.10)). We deduce that, for
this particular case and for γ ≤ 1.5 we have the same error obtained with the classical
stopping criterion (2.9), whereas for γ = 1.5 the number of iterations is Niter = 50.
Hence the advantage of the method proposed in this paper.
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Table 1 2D non-linearmodel: Ee1i and Niter with respect to γ (New stopping criterion (2.10)) for N = 50

γ 0.1 1 1.3 1.5 1.7 2 5 10

Ee1i 0.0524 0.0524 0.0524 0.0524 0.0526 0.0527 0.0540 0.0576

Niter 87 56 52 50 49 47 35 26

To complete this case, we show in Fig. 1 comparisons of the a priori error estimates
between the classical criterion (2.9) and the new one (2.10) for γ = 1.5. The presented
curves coincide and the corresponding slope is equal to 0.99 which is close to the
theoretical one equal to 1.
Let us now compare our stopping criteria (2.10) with that introduced in [6, 7] cor-
responding to the a posteriori error estimates. We begin by recalling the indicators
introduced in [10] and summarizing the corresponding error between the exact solution
of Problem (2.2) and the iterative solution of Problem (2.6):

|ui+1
h −u|1,� ≤ C

(( ∑

K∈Th
(
(
η

(D)
K ,i

)2+h2K ‖ f − fh ‖2L2(K )
)
)1/2+( ∑

K∈Th

(
η

(L)
K ,i

)2)1/2
)
,

where fh is an approximation of the data f and,

η
(L)
K ,i = |ui+1

h − uih |1,K ,

(
η

(D)
K ,i

)2 = h2K ‖ fh + �ui+1
h −λ|uih |2pui+1

h ‖2
L2(K )

+1

2

∑

E∈Eh,�

hE ‖ [∂u
i+1
h

∂n
] ‖2L2(E)

.

Fig. 1 2D non-linear model: A comparison of the a priori error between the classical criterion (2.9) and
the new criterion (2.10) for γ = 1.5
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The a posteriori stopping criterion is given by

η
(L)
i ≤ γpη

(D)
i , (2.11)

where γp is a given real parameter and

η
(D)
i =

( ∑

K∈Th

(
η

(D)
K ,i

)2
)1/2

and η
(L)
i =

( ∑

K∈Th

(
η

(L)
K ,i

)2
)1/2

.

Table 2 shows the error Ee1i with respect to γp for N = 50 and for the a posteriori
stopping criteria (2.11). We deduce that for γp ≤ 0.02, we have the same error as that
obtained by the classical stopping criteria (2.9),where forγp = 0.02 the corresponding
number of iterations (Niter = 50) is close to that obtained with the stopping criterion
(2.10) for γ = 1.5. Thus, both stopping criteria (2.10) (for γ = 1.5) and (2.11) (for
γp = 0.02) require similar number of iterations.
To complete this test, we show in Fig. 2 the comparison of the a priori error estimates
obtained with the classical stopping criterion (2.9) and with he a posteriori stopping
criterion (2.11) (for γp = 0.02). The slops of the corresponding lines are equal to 0.99
and close to the theoretical one equals to 1.

We conclude that both stopping criteria (2.10) and (2.11) gives similar results with
the following remarks:

• (2.10) requires an a priori error estimate while (2.11) is based on the a posteriori
error estimate and needs to compute the indicators at each iteration of the iterative
algorithm.

• (2.11) is very useful for the adaptive mesh method while (2.10) is restricted to the
stopping criteria condition for the iterative algorithm.

3 Darcy-Forchheimermodel

Formulation of the problem The Darcy-Forchheimer model is described by the
following system:

⎧
⎪⎪⎨

⎪⎪⎩

μ

ρ
K−1u + β

ρ
|u|u + ∇ p = f , in �

div u = 0 , in �

u · n = 0 on ∂�.

(3.1)

Table 2 2Dnon-linearmodel: Ee1i and Niter with respect to γp by using the a posteriori stopping criterion
(2.11) for N = 50

γp [6, 7] 0.001 0.01 0.02 0.03 0.04 0.05 0.07 0.1

Ee1i 0.0524 0.0524 0.0524 0.0527 0.0531 0.0536 0.0545 0.0561

Niter 88 58 51 44 41 37 33 29
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Fig. 2 2D non-linear model: A comparison of the a priori error between the classical stopping criterion
(2.9) and the a posteriori stopping criterion (2.11) for γp = 0.02

In (3.1), | · | is the Euclidean vector norm |u|2 = u · u, K is the permeability tensor
assumed to be uniformly positive definite and bounded abd� is a bounded open set in
R
d (d=2,3) with a Lipschitz-continuous boundary ∂�. The data f : � −→ R

d is the
external body force per unit volume acting on the fluid. The unknown are the velocity
u the pressure and p. The parameter ρ is the density of the fluid, μ is its viscosity and
β represent the Forchheimer number of the porous media, all assumed to be positive
constants.
The weak formulation reads (see [15–18]):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find (u, p) ∈ L3(�)d × M , such that

and for all (v, q) ∈ L3(�)d × M,

a(u, v) + β

ρ

∫

�

|u|u · vdx + b(v, p) =
∫

�

f · v dx ,

b(u, q) = 0,

(3.2)

where

M =
{
q(x) ∈ W 1,3/2(�);

∫

�

q(x)dx = 0
}

,

and

a(u, v) = μ

ρ

∫

�

K−1u · vdx , b(v, q) =
∫

�

∇q · vdx .

The variational problem (3.2) is nonlinear of monotone type. Thus its existence is
shown with the help monotone operator theory (see for instance [15, 18]).

123



Numerical Algorithms

3.1 Finite element approximation

The finite element approximation of (3.2) is standard, and keeping the notation used
before, we approximate the velocity, and the pressure respectively in the spaces Vh ,
Mh defined as follows

Vh =
{
vh |vh ∈ L3(�)d , for all K ∈ Th, vh |K ∈ P0(K )d

}
,

Mh =
{
qh |qh ∈ M ∩ C0(�), for all K ∈ Th, qh |K ∈ P1(K )

}
.

With these spaces, we approximate (3.2) by the following finite element scheme

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find (uh, ph) ∈ Vh × Mh, such that

for all (vh, qh) ∈ Vh × Mh,

a(uh, vh) + β

ρ

∫

�

|uh |uh · vhdx + b(vh, ph) =
∫

�

f · vh dx ,

b(uh, qh) = 0 .

(3.3)

For the existence and uniqueness of the solution of (3.3), we can refer to [18] where
the authors have addressed a similar problem but using non-conforming finite element
approach. The convergence of the finite element solution of (3.3) is well known and
we refer the interested readers to [12], where the following is derived

Theorem 3.1 Let (u, p) the solution of (3.2), and (uh, ph, ) the solution of (3.3). If
(u, p) ∈ W 1,4(�) × H2(�), Then the following a priori errors holds

‖p − ph‖W 1,3/2(�)d + ‖u − uh‖L2(�)d ≤ c1h

‖u − uh‖L3(�)d ≤ c2h
2/3.

Iterative scheme Knowing u0h and for i ≥ 1, we compute (uih, p
i
h) ∈ Vh × Mh as

solution of

⎧
⎪⎪⎨

⎪⎪⎩

for all (vh, qh) ∈ Vh × Mh,

a(uih, vh) + β

ρ

∫

�

|ui−1
h |uih · vhdx + b(vh, p

i
h) =

∫

�

f · vh dx ,

b(uih, qh) = 0 .

(3.4)

The linear system of equations (3.4) is well posed, and we have

‖uih‖ + ‖uih‖L3(�)d + ‖∇ pih‖L3/2(�)d ≤ c , (3.5)

where c is a positive constant depending on f . Themain contribution of this paragraph
is the following:
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Theorem 3.2 Let (u, p) be the solution of (3.2) and (uih, p
i
h) given by (3.4). If (u, p) ∈

W 1,4(�) × H2(�), then there exists a positive constant c independent of h and i such
that

‖p − pih‖W 1,3/2(�)d + ‖u − uih‖L3(�)d ≤c1‖uih − ui−1
h ‖2/3

L3 + c2h
2/3 .

Proof The triangle inequality gives

‖u − uih‖L3 ≤ ‖u − uh‖L3 + ‖uh − uih‖L3

‖p − pih‖W 1,3/2 ≤ ‖p − ph‖W 1,3/2 + ‖ph − pih‖W 1,3/2 ,

where ‖uh − u‖L3 and ‖ph − p‖W 1,3/2 are given by theorem 3.1. Thus it remains to
estimate ‖uh − uih‖L3 , and ‖ph − pih‖W 1,3/2 .

The difference between (3.4) and (3.3) gives
⎧
⎪⎪⎨

⎪⎪⎩

for all (vh, qh) ∈ Vh × Mh,

a(uih − uh, vh) + β

ρ

∫

�

(
|ui−1

h |uih − |uh |uh
)

· vhdx + b(vh, p
i
h − ph) = 0 ,

b(uih − uh, qh) = 0 .

(3.6)
We take vh = uih − uh and qh = pih − ph in (3.6), and obtain the following

a(uih − uh, uih − uh) + β

ρ

∫

�

(
|uih |uih − |uh |uh

)
· (uih − uh)dx

= β

ρ

∫

�

(
|uih |uih − |ui−1

h |uih
)

· (uih − uh)dx

= β

ρ

∫

�

(
|uih | − |ui−1

h |
)
uih · (uih − uh)dx

≤ β

ρ

∫

�

|uih − ui−1
h | |uih | |uih − uh |dx

≤ β

ρ
‖uih − ui−1

h ‖L3‖uih‖L3‖uih − uh‖L3 . (3.7)

We recall that (see [15])

for all x, y ∈ R
n there exists c independent of x, y such that

for s > 2, c| y − x|s ≤
(
|x|s−2x − | y|s−2 y, x − y

)

for s ≥ 2,
∣
∣
∣ |x|s−2x − | y|s−2 y

∣
∣
∣ ≤ c| y − x| (|x| + | y|)s−2 . (3.8)

The left hand side of (3.7) combined with the first relation in (3.8) gives

C‖uih − uh‖2 + c‖uih − uh‖3L3 ≤ a(uih − uh, uih − uh) +
∫

�

(
|uih |uih − |uh |uh

)
· (uih − uh)dx

123



Numerical Algorithms

which together with (3.7), (3.5) and Young’s equality yields

‖uih − uh‖2 + ‖uih − uh‖3L3 ≤ C‖uih − ui−1
h ‖2L3 . (3.9)

Next, ph − pih ∈ Mh and (Mh,Vh) is inf-sup stable. Hence from (3.6) there exists
γ > 0 such that

γ ‖ph − pih‖W1,3/2

≤ sup
v∈Vh

b(v, ph − pih)

‖v‖L3

≤ sup
v∈Vh

a(uih − uh , vh) + β
ρ

∫

�

(
|ui−1

h |uih − |uih |uih
)

· vhdx + β
ρ

∫

�

(
|uih |uih − |uh |uh

)
· vhdx

‖v‖L3
≤ C‖uih − uh‖ + ‖ui−1

h − uih‖L3‖uih‖L3 + C‖uih − uh‖L3 (‖uih‖L3 + ‖uh‖L3 )
≤ C‖uih − uh‖ + ‖ui−1

h − uih‖L3 + C‖uih − uh‖L3 ,

which together with (3.9) implies that

‖ph − pih‖W 1,3/2 ≤ C‖uih − ui−1
h ‖L3 + ‖ui−1

h − uih‖L3 +C‖uih − ui−1
h ‖2/3

L3 . (3.10)

(3.9) and (3.10) complete the proof. �
Remark 3.1 Adopting the similar approach as the proof of Theorem 3.2, and provide
a condition on the data, we can show that lim

i→∞‖uih − ui−1
h ‖L3 = 0.

3.2 Numerical experiments

For the numerical simulations we use the iterative scheme (3.4). The error due to
linearization is

Er2i = ‖uih − ui+1
h ‖L3

‖ui+1
h ‖L3

and the stopping criterion will be one of the following tests:

1. Classical one: Er2i < 10−5,
2. New one: Er2i < γ h.

Here alsowemention that if γ h ≥ 10−5, we use simply the classical stopping criterion.
We observe that both stopping criterion gives the following error:

‖p − pih‖W 1,3/2(�)d + ‖u − uih‖L3(�)d ≤ c1h
2/3 .

3.2.1 2D numerical simulations

We consider in this case � = (0, 1)2 and the following exact solution:

ψ(x, y) = x2y2(x − 1)2(y − 1)2exp(xy),
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u(x, y) = (u1, u2) = cu (
∂ψ

∂ y
,−∂ψ

∂x
),

p(x, y) = cp xy(x − 2./3.)(y − 2./3.).

Then f can be computed by using the first equation of (3.1) where cu = 50, cp =
10, β = 5, ρ = 1, μ = 1.

We begin by studying the convergence of the iterative system (3.4) with respect to
γ . We introduce the following relative error

Ee2i = ‖u − uih‖L3

‖u‖L3
+ ‖p − pih‖W 1,3/2

‖p‖W 1,3/2

where (uih, p
i
h) is computed after the convergence of the iterative scheme (3.4) using

one of the above stopping criteria.
By taking N = 50 ( the number of segments by edge) and using the classical

stopping criterion, we get Niter = 54 and Ee2i = 0.049 . Furthermore, Table 3 shows
the error Ee2i with respect to γ . We deduce that in this case and for γ = 1.5, we have
(as in the previous case) the same error obtained with the classical stopping criterion
Ee2i = 0.049 and for γ = 1.5 the number of iterations is Niter = 19. Hence, we also
observe the advantage of the method proposed in this paper.
We give in Fig. 3 comparisons of the a priori error estimates between the classical
stopping criterion and the new one for γ = 1.5. The slope of the curves is 0.95 which
agrees (even better) with the theoretical slope 2/3.

3.2.2 3D numerical simulations

In this part we consider � = (0, 1)3 and the following exact solution:

ψ(x, y) = x2y2z2(x − 1)2(y − 1)2(z − 1)2exp(xyz),
u(x, y) = (u1, u2, u3) = cu curl (ψ,ψ,ψ),

p(x, y) = cp xyz(x − 2./3.)(y − 2./3.)(z − 2./3.).

Here also the mesh is such that every edge of the cube is divided into N segments, so
the mesh contains 6N 3 elements. We begin by studying the iterative convergence of
(3.4) with respect to γ where cu = 10, cp = 10, β = 10, ρ = 1, μ = 1.

By considering the classical stopping criterion and taking N = 20, the iterative
scheme (3.4) converges after 20 iterations with an error Ee2i = 0.314. Otherwise,
by taking the new stopping criterion, Table 4 shows the error Ee2i and the number
of iterations Niter with respect to γ . Here in the 3D case, γ = 1.5 seems to be the

Table 3 2D Darcy-Forchheimer model: Ee2i and Niter with respect to γ (New stopping criterion) for
N = 50

γ 0.001 0.01 0.05 0.1 0.5 1 1.5 2 5

Ee2i 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.051 0.054

Niter 49 39 33 30 23 20 19 17 14
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Fig. 3 2D Darcy-Forchheimer model: A comparison of the a priori error between the classical criterion
and the new one for γ = 1.5

suitable value giving the same error obtained with the classical stopping criterion but
with Niter = 6 and showing the advantage of the new stopping criterion proposed in
this paper.
Figure 4 shows comparisons of the a priori error estimates between the classical
criterion and the new one for γ = 1.5. The slope of the curves is 0.71 which agrees
(even better) with the theoretical slope 2/3.

4 Navier-stokes equations

We consider for a positive constant ν, the following system:

⎧
⎪⎨

⎪⎩

ν�u + [u · ∇]u + ∇ p = f , in �

div u = 0 , in �

u = 0 on ∂�,

(4.1)

Table 4 3D Darcy-Forchheimer model: Ee2i and Niter with respect to γ (New stopping criterion) for
N = 20

γ 0.001 0.01 0.05 0.1 0.5 1 1.5 2 5

Ee2i 0.314 0.314 0.314 0.314 0.314 0.314 0.314 0.313 0.308

Niter 18 14 11 10 8 7 6 6 4
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Fig. 4 3D textbfDarcy-Forchheimermodel:Acomparisonof theapriori error between the classical criterion
and the new one for γ = 1.5

where the unknowns are the velocity u and the pressure p of the fluid. f is an external
forces acting on the fluid, assumed to be in L2(�)d . The variational formulation of
(4.1) reads;

⎧
⎪⎨

⎪⎩

Find (u, p) ∈ V × M, such that for all (v, q) ∈ V × M,

a(u, v) + b(v, p) + c(u, u, v) = (v),

b(u, q) = 0 ,

(4.2)

with

V =
{
v ∈ H1(�)d : v|� = 0

}
,

M = L2
0 =

{
p ∈ L2(�) :

∫

�

pdx = 0
}
.

and

a(v, u) = ν

∫

�

∇u : ∇v dx, b(v, q) = −
∫

�

div vq dx ,

c(u, v,w) =
∫

�

[u · ∇]v · wdx , (v) =
∫

�

f · v dx .
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The nonlinear boundary value problem (4.2) has been studied by several authors, and
under smallness assumption on data (see [3, 4, 19]). In fact it is shown that there exists
a positive constant C such that if

ν2 > C‖ f ‖ , (4.3)

then (4.2) has a unique solution (u, p) ∈ V × M which moreover satisfies

‖u‖1 + ‖p‖ ≤ C‖ f ‖ .

4.1 Finite element approximation

The finite element approximation of (4.2) is standard, and keeping the notation used
before, we introduce the subspaces Vh and Mh given such that the following inf-sup
condition holds: there exists β > 0 (independent of h) such that

for all qh ∈ Mh, β‖qh‖ ≤ sup
v∈Vh

b(v, qh)

‖v‖1 . (4.4)

With these spaces, we approximate (4.2) by the following finite element scheme

⎧
⎪⎨

⎪⎩

Find (uh, ph) ∈ Vh × Mh, such that for all (vh, qh) ∈ Vh × Mh,

a(uh, vh) + b(vh, ph) + c̃(uh, uh, vh) = (vh),

b(uh, qh) = 0 ,

(4.5)

with

c̃(uh, vh,wh) = c(uh, vh,wh) + 1

2

∫

�

(div uh)vh · whdx .

As usual, the trilinear form c̃(·, ·, ·) is used to compensate for the fact that div uh may
not be equal zero. Of course, using Green’s formula and the functions regularity, we
get

c̃(uh, vh,wh) = 1

2

( ∫

�

(uh · ∇)vh · whdx −
∫

�

(uh · ∇)wh · vhdx
)

.

Thus the trilinear form c̃(·, ·, ·) is anti-symmetric. The discrete problem (4.5) has at
least one solution (uh, ph) ∈ Vh × Mh (see [3, 4, 19]). Moreover under (4.3), the
solution is unique, and satisfies the bound

‖uh‖1 + ‖ph‖ ≤ C

ν
‖ f ‖ ,

and the following error estimate holds

‖u − uh‖1 + ‖p − ph‖ ≤ C
(

inf
vh∈Vh

‖u − vh‖1 + inf
qh∈Mh

‖qh − p‖
)

(4.6)
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Remark 4.1 Following [3, 4], we can take one of this tow discretization:

1. Taylor-Hood elements: for some k ≥ 2 we set

Vh =
{
vh ∈ V ∩ C(�)d , for all K ∈ Th, vh |K ∈ Pk(K )d

}
,

Mh =
{
qh ∈ L2(�) ∩ C(�) : for all K ∈ Th, qh |K ∈ Pk−1(K )

}
.

Then the inf-sup condition (4.4) is satisfied, moreover for all v ∈ Hs(�)d , 1 ≤
s ≤ k + 1, and for all q ∈ Ht (�), 0 ≤ t ≤ k we have

inf
vh∈Vh

‖v − vh‖1 ≤ Chs−1‖v‖s, inf
qh∈Mh

‖qh − q‖ ≤ Cht‖q‖t .

Thus if the solution of (4.2) satisfies u ∈ Hk+1(�)d and p ∈ Hk(�), (4.6) gives

‖u − uh‖1 + ‖p − ph‖ ≤ Chk
(
‖u‖k+1 + ‖p‖k

)
.

2. Mini-element:

Vh =
{
vh ∈ V ∩ C(�)d , for all K ∈ Th, vh |K ∈ P1(K )d

}
,

Mh =
{
qh ∈ L2(�) ∩ C(�) : for all K ∈ Th, qh |K ∈ P1(K )

}
. (4.7)

where P1(K ) = [P1(K ) ⊕ span{λ1, . . . , λd}]d . We have

‖u − uh‖1 + ‖p − ph‖ ≤ Ch
(
‖u‖2 + ‖p‖1

)
.

Iterative algorithm Let u0h be an initial guess, We take, for i ≥ 0, the following
scheme:

⎧
⎪⎨

⎪⎩

Find (ui+1
h , pi+1

h ) ∈ Vh × Mh, such that for all (vh, qh) ∈ Vh × Mh

a(ui+1
h , vh) + b(vh, p

i+1
h ) + c̃(uih, u

i+1
h , vh) = (vh)

b(ui+1
h , qh) = 0 .

(4.8)

Knowing uih , the scheme (4.8) is a linear variational problem which is theoretically
solved using Lax-Milgram’s theorem. Taking the difference between (4.5) and (4.8)
for vh = ui+1

h − uh , one gets

a(ui+1
h − uh, u

i+1
h − uh) = c̃(uh, uh, u

i+1
h − uh) − c̃(uih, u

i+1
h , ui+1

h − uh)

= c̃(uh − uih, uh, u
i+1
h − uh)

≤ C‖∇(uh − uih)‖ ‖∇uh‖ ‖∇(ui+1
h − uh)‖

≤ C

ν
‖ f ‖ ‖∇(uh − uih)‖ ‖∇(ui+1

h − uh)‖
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which by the coercivity of a(·, ·) gives

‖∇(ui+1
h − uh)‖ ≤ C

ν2
‖ f ‖ ‖∇(uih − uh)‖ . (4.9)

From (4.9), we deduce that the algorithm (4.8) converges if (4.3) is verified. We next
discuss a consistency notion introduced in [18, Remark 5]. We state that

Lemma 4.1 The algorithm (4.8) is consistent with (4.5) in the sense that if there is
j ≥ 1 such that the solution (u j

h, p
j
h) coincides with the solution (uh, ph) of (4.5),

then for all i > j , (uih, p
i
h) coincides with (uh, ph).

Proof It is done by induction. We assume that up to i , the solutions of (4.8) and (4.5)
are the same. We take the difference between (4.5) and (4.8) and obtain that

⎧
⎪⎨

⎪⎩

for all (v, q) ∈ Vh × Mh ,

a(ui+1
h − uh, v) + b(v, pi+1

h − ph) + c̃(uh, u
i+1
h , v) − c̃(uh, uh, v) = 0 ,

b(ui+1
h − uh, q) = 0 .

(4.10)
Thus taking v = ui+1

h − uh , and using the linearity of c̃(·, ·, ·) with respect to the
second component and the anti-symmetry property of c̃(·, ·, ·), we obtain

a(ui+1
h − uh, u

i+1
h − uh) = c̃(uh, uh, u

i+1
h − uh) − c̃(uh, u

i+1
h , ui+1

h − uh)

= c̃(uh, uh − ui+1
h , ui+1

h − uh) = 0 .

We deduce using the coercivity of a(·, ·) that ui+1
h = uh . Returning to (4.10), one

gets b(v, pi+1
h − ph) = 0. From the inf-sup condition (4.4), one obtains pi+1

h = ph ,
which ends the proof. �
The next result present an a priori error estimate and prove optimal convergence for
Hk+1(�)d × Hk(�) regularity of solution.

Theorem 4.1 Let (u, p) be the solution of (4.2) and (uih, p
i
h) given by (4.8). If (4.3)

is verified, then there exists C independent of h and i such that

‖∇(u − ui+1
h )‖ + ‖p − pi+1

h ‖ ≤ C‖∇(uih − ui+1
h )‖ + ‖∇(u − uh)‖ + ‖p − ph‖ .

Proof The triangle inequality gives

‖∇(u − ui+1
h )‖ ≤ ‖∇(u − uh)‖ + ‖∇(uh − ui+1

h )‖
‖p − pi+1

h ‖ ≤ ‖p − ph‖ + ‖ph − pi+1
h ‖ ,

with ‖∇(uh − u)‖+‖ph − p‖ is given by (4.6). We next estimate ‖∇(uh − ui+1
h )‖+

‖ph − pi+1
h ‖. Considering (4.9), and using triangle’s inequality, we get

(
1 − C

ν2
‖ f ‖

)
‖∇(ui+1

h − uh)‖ ≤ C

ν2
‖ f ‖‖∇(ui+1

h − uih)‖ . (4.11)
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The difference between (4.8) and (4.5) gives

b(vh, ph − pi+1
h ) = a(ui+1

h − uh, vh) + c̃(uih, u
i+1
h , vh) − c̃(uh, uh, vh) .

Next, ph − pih ∈ Mh and (Mh,Vh) is inf-sup stable, thus (4.4) applies and

β‖ph − pi+1
h ‖

≤ sup
vh∈Vh

b(vh , ph − pi+1
h )

‖vh‖1

≤ sup
vh∈Vh

a(ui+1
h − uh , vh) + c̃(uih , u

i+1
h , vh) − c̃(uh , uh , vh)

‖vh‖1

≤ sup
vh∈Vh

a(ui+1
h − uh , vh) + c̃(uih − ui+1

h , ui+1
h , vh) + c̃(ui+1

h , ui+1
h − uh , vh) + c̃(ui+1

h − uh , uh , vh)

‖vh‖1
≤ ν‖∇(ui+1

h − uh)‖ + C‖∇(uih − ui+1
h )‖‖∇ui+1

h ‖ + C‖∇ui+1
h ‖‖∇(ui+1

h − uh)‖ + ‖∇(ui+1
h − uh)‖‖∇uh‖

≤ ν‖∇(ui+1
h − uh)‖ + C

ν
‖‖ f ‖‖∇(uih − ui+1

h )‖ + C

ν
‖ f ‖‖∇(ui+1

h − uh)‖ + C

ν
‖ f ‖‖∇(ui+1

h − uh)‖

which together with (4.11) implies that

‖ph− pi+1
h ‖ ≤ ν‖∇(ui+1

h −uh)‖+C

ν
‖‖ f ‖‖∇(uih−ui+1

h )‖+C

ν
‖ f ‖‖∇(ui+1

h −uh)‖
(4.12)

Equations 4.11 and 4.12 complete the proof. �

4.2 Numerical experiments

In this part we will perform 2D and 3D numerical investigations based on the Mini-
element discretization given by (4.7) and using Freefem++ (see [14]). In both cases,
the domain � = (0, 1)d and the relative iterative error due to the linearization of the
nonlinear problem (4.2) is

Er3i = ‖uih − ui+1
h ‖1

‖ui+1
h ‖1

where the stopping criterion of Scheme (4.8) will be one of the following tests:

1. Classical one: Er3i < 10−5,
2. New one: Er3i < γ h.

We observe that both stopping criterion gives the following error:

‖p − pih‖ + ‖u − uih‖1 ≤ c1h .

where (uih, p
i
h) is computed after the convergence of the iterative scheme (4.8).

We introduce also the following relative error

Ee3i = ‖u − uih‖1
‖u‖1 + ‖p − pih‖

‖p‖
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Table 5 2D Navier-Stokes model: Ee3i and Niter with respect to γ (New stopping criterion) for N = 50

γ 0.001 0.01 0.05 0.1 0.5 1 1.5 5

Ee3i 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.138

Niter 13 10 7 6 4 3 3 2

where (u, p) is the exact solution of Problem (4.2) and (uih, p
i
h) is computed after the

convergence of the iterative scheme (4.8) using one of the above stopping criteria.

4.2.1 2D numerical simulations

We consider in this case � = (0, 1)2 and the following exact solution:

ψ(x, y) = x2(x − 1)2y2(y − 1)2 cos(4πx) cos(4π y),

u(x, y) = (u1, u2) = cu (
∂ψ

∂ y
,−∂ψ

∂x
),

p(x, y) = cp xy(x − 2./3.)(y − 2./3.),

where cu = 10, cp = 10, ρ = 1, ν = 0.01. Thus, f can be computed by using the
first equation of (4.8).
We first take N = 50 and (the number of segments by edge) and use the classical
stopping criterion, we get Niter = 15 and Ee3i = 0.135. Table 5 shows the dependency
of the error Ee3i and the number of iterations Niter with respect to γ . In this case,

Fig. 5 2D case textbfNavier-Stokesmodel: A comparison of the a priori error between the classical criterion
and the new one for γ = 1.5

123



Numerical Algorithms

Table 6 3D Navier-Stokes model: Ee3i and Niter with respect to γ (New stopping criterion) for N = 20

γ 0.001 0.01 0.05 0.1 0.5 1 1.5 5

Ee3i 0.183 0.183 0.183 0.183 0.183 0.183 0.183 0.188

Niter 9 7 6 6 4 4 4 3

γ = 1.5 gives the same error obtained with the classical stopping criterion but with 3
iterations instead of 15 iterations obtained with the classical stopping criterion. This
shows the advantage of this method.
Figure 5 shows comparisons of the a priori error estimates between the classical
criterion and the new one for γ = 1.5. The slope of the curves is 0.99 which agrees
with the theoretical slope equal to 1.

4.2.2 3D numerical simulations

We consider in this case � = (0, 1)3 and the following exact solution:

p(x, y) = cp xyz(x − 2./3.)(y − 2./3.)(z − 2./3.),
u(x, y, z) = (u1, u2, u3) = cucurl�(x, y, z),

where
�(x, y, z) = ψ(x, y, z), ψ(x, y, z), ψ(x, y, z)),

Fig. 6 3D Navier-Stokes model: A comparison of the a priori error between the classical criterion and the
new one for γ = 1.5
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and
ψ(x, y, z) = x2(x − 1)2y2(y − 1)2y2(y − 1)2 cos(2πxyz).

We take cu = 200, cp = 20, ν = 0.005. Thus, f can be computed by using the first
equation of (4.8).
We consider N = 20 (the number of segments by edge) and use the classical stopping
criterion, we get Niter = 11 and Ee3i = 0.183 . Table 6 shows the dependency of
the error Ee3i and the number of iterations Niter with respect to γ . As in the privious
cases, γ = 1.5 gives the same error obtained with the classical stopping criterion but
with 4 iterations instead of 11 iterations obtained with the classical criterion.
Figure 6 shows comparisons of the a priori error estimates between the classical
criterion and the new one for γ = 1.5. The slope of the curves is 1.09 which agrees
with the theoretical slope equal to 1.

5 Concluding remarks

Our aim is was to introduce a new stopping criterion based on the iteration error in
order to obtain a fast algorithm. This goal was achieved by avoiding the unnecessary
iterations in comparison with the order of the a priori error estimates (the discretiza-
tion error). This strategy was considered in three cases and the superiority of the novel
approach was clearly demonstrated. The current methodology should be further devel-
oped, in particular by (i) extending the present analysis to variational inequalities of
second kind; (ii) considering the case of a curved boundary.
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