
HAL Id: hal-04802259
https://hal.science/hal-04802259v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hybrid a posteriori MOOD limited lattice Boltzmann
method to solve compressible fluid flows – LBMOOD

Ksenia Kozhanova, Song Zhao, Raphaël Loubère, Pierre Boivin

To cite this version:
Ksenia Kozhanova, Song Zhao, Raphaël Loubère, Pierre Boivin. A hybrid a posteriori MOOD limited
lattice Boltzmann method to solve compressible fluid flows – LBMOOD. Journal of Computational
Physics, 2025, 521, Part 2, pp.113570. �10.1016/j.jcp.2024.113570�. �hal-04802259�

https://hal.science/hal-04802259v1
https://hal.archives-ouvertes.fr


A hybrid a posteriori MOOD limited Lattice Boltzmann method to solve1

compressible fluid flows – LBMOOD2

Ksenia Kozhanova∗b, Song Zhaob, Raphaël Loubèrea, Pierre Boivinb
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Abstract6

In this paper we blend two Lattice-Boltzmann (LB) numerical schemes with an a posteriori Multi-dimensional Op-

timal Order Detection (MOOD) paradigm to solve hyperbolic systems of conservation laws in 1D and 2D. The first

LB scheme is robust to the presence of shock waves but lacks accuracy on smooth flows. The second one has a

second-order of accuracy but develops non-physical oscillations when solving steep gradients. The MOOD paradigm

produces a hybrid LB scheme via smooth and positivity detectors allowing to gather the best properties of the two

LB methods within one scheme. Indeed, the resulting scheme presents second order of accuracy on smooth solu-

tions, essentially non-oscillatory behavior on irregular ones, and, an ’almost fail-safe’ property concerning positivity

issues. The numerical results on a set of sanity test cases and demanding ones are presented assessing the appropriate

behavior of the hybrid LBMOOD scheme in 1D and 2D.

Keywords: Lattice Boltzmann Method (LBM), MOOD, Hyperbolic system of conservation laws, Shock,7

Hydrodynamics.8

1. Introduction9

Historically the Lattice Boltzmann (LB) method [1, 2] has been designed to solve fluid flow problems relying10

on a kinetic description, namely the Boltzmann equation. The Boltzmann equation describes the dynamics of a gas11

at a meso-scopic scale, which by integration leads to the equations of fluid dynamics at macroscopic scale, namely12

Navier-stokes or Euler inviscid partial differential equations (PDEs). While classical numerical methods, e.g. Finite13

Difference, Finite Element or Finite Volume (FV) methods, are usually designed to solve directly the macro-scale14

fluid dynamics equations, LB methods focus on the kinetic version of the PDEs. This kinetic version can be split15

into a local non-linear collision stage and a non-local linear advection stage [2], the latter being exactly solved by LB16

method.17

The generic working variable for LB approach is a distribution function while classical methods usually solve for18
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the macroscopic conservative variables such as density, momentum and energy. The distribution function models19

the probability density of finding particles at given position, velocity and time. Its first moments are indeed the20

macroscopic conserved variables. These fundamental differences render LB methods particularly appealing to solve21

the weakly compressible Navier-Stokes equations in an efficient manner[3]. However, for compressible flows, for22

which conservation of total energy becomes a necessary condition to capture the correct weak solutions, classical LB23

methods present some issues due to intrinsic isotropy errors [1, 4].24

Several approaches exist to advance LB methods to fully compressible flows [5]. The most intuitive one is to25

increase the number of lattice velocities . However, while it has been employed in recent studies [6], it has several26

known drawbacks such as high computational cost, particularly in 3D, sophisticated ways to deal with boundary27

conditions and stability issues due to the increased number of non-hydrodynamic modes. Another approach consists in28

solving the energy equation separately where two routes are possible. The first one introduces the double distribution29

function [7] where, yet again, stability ambiguity arises. The second one, the so-called hybrid LB method [8–10],30

resolves the energy equation and, hence, the temperature fluctuations using a finite difference scheme coupled with31

LBM. Additionally, the in-variance Galilean error is addressed by adding appropriate forcing terms.32

The hybrid LB methods for compressible flows can be based on coupling the LB scheme with explicit discrete33

energy equation solved by finite difference scheme, in which case new instabilities arise due to the strong coupling34

instabilities [11, 12]. An important question is, thus, how to avoid such a coupling and obtain better stability properties35

while retaining the accuracy of the scheme. This can be addressed by, for instance, solving a simple advection36

equation describing the evolution of the characteristic variables of hyperbolic system of Euler equations. A hybrid37

LBM can benefit from such an approach thanks to the entropy-based models, where entropy is indeed a characteristic38

variable of Euler equations. The advantage of this technique is its linear independence from the rest of the system39

modelled by LBM, which allows in return to control the entropy without degrading the stability and accuracy of the40

original LB method. However, explicit discretization of characteristic equation does not lead to a conservative system.41

This latter issue has been solved in [13] by deriving a fully conservative model for the total energy. The resulting42

scheme benefits from linear equivalence of conservative total energy equation and non-conservative characteristic43

entropy-based equation. This allows to keep the advantages of the linearly decoupled from LBM entropy-based model.44

However, while this hybrid LB method undoubtedly led to improved solutions and correct jump relations across45

shock-waves, e.g. detonations [14], some stability issues for higher Mach numbers remain a challenge. Innovative46

stabilisation strategy avoiding the need of the shock sensors, which have been used up to this date in classical LB47

schemes, is required.48

The difficulty when solving hyperbolic PDEs is the creation in finite time of discontinuous solutions, usually49

due to the presence or creation of shock waves or contacts. Conservative numerical schemes are mandatory in order50

to capture the correct wave speeds, and, ultimately converge towards a weak solution of the system of PDEs under51

consideration. However, when high accurate schemes are considered, that is beyond first order, unavoidably, one faces52

the creation of spurious numerical oscillations due to Gibbs phenomenon in presence of steep gradients. Therefore53
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any high order scheme requires to be supplemented with an additional dissipation operator. Most of the time, the54

extra dissipation consists in adding a large amount of numerical viscosity in the vicinity of steep gradients. Such a55

procedure is generally referred to as a ’limiter’ and is embedded into the numerical method. Philosophically, any56

effective limiting procedure answers two questions: (i) where in the computational domain is the solution presenting57

behaviors that would require extra dissipation? and (ii) how much extra dissipation should be supplemented?58

At first glance classical limiters seem to have different forms, for instance the artificial viscosity for Lagrangian59

staggered schemes [15], slope/flux limiter for finite volume/finite element second-order schemes [16], (Weighted)60

Essentially-Non-Oscillatory procedure for finite difference/volume schemes [17, 18], etc. In reality almost all limiters61

resort to ”sensors” to answer question (i) and mimic the dissipation of a first order accurate scheme to tackle (ii).62

Starting from the solution at time tn, any numerical scheme evolves the state variables during ∆t > 0 up tn+1 = tn +∆t.63

The limiters usually act on the states variables at tn, and must anticipate possible spurious oscillations or troubles64

which may manifest at time tn+1. Unfortunately, this task is complex because the system of PDEs as well as the65

numerical method, are often non-linear. Even the notion of ’spurious oscillations or troubles’ is not clearly defined66

especially at the beginning of their development. Moreover, the limiter can fail because there exists no mechanism67

to recover from possible mistakes. The consequence of this complex task of anticipation usually manifests as a68

precaution principle: the sensors are too sensitive, and, the amount of extra-dissipation is excessive, hence degrading69

the solution1.70

A new type of limiting procedure called MOOD (Multi-dimensional Optimal Order Detection) has emerged to71

solve this state of affair [19–21]. This procedure is quoted as being an a posteriori paradigm, because it relies on72

(a) the detection of a problematic situation on a candidate solution at time tn+1 computed with an accurate scheme,73

and, (b) the subsequent re-computation with a more dissipative scheme of the troubled cells. Because it is simpler74

to detect a troubled cell instead of anticipating its future occurrence, MOOD allowed to secure numerical finite vol-75

ume/difference, Smoothed Particle Hydrodynamics methods or Discontinuous Galerkin schemes in an efficient way76

[22–24]. Moreover, this approach allows the scheme to recover from positivity issues, occurrence of NaN values, etc.77

because of the a posteriori test and re-computation. In fact, the re-computation stage uses a ’parachute’ (i.e ultra-78

robust) numerical scheme as a last resort scheme for extreme situations [22]. As such, numerical methods which are79

a posteriori limited by a MOOD paradigm are fail-safe ones. As far as we know MOOD limiting procedure has never80

been coupled with LB methods for solving compressible fluid flows.81

Consequently, in this article we present a novel way to design a hybrid method from the LB family. Our approach82

relies on the high accurate LB scheme for compressible flows described in [10, 13] supplemented with an a posteriori83

MOOD limiting using a low order LB method as a fail-safe/low-order scheme. In this article we only focus on the84

compressible fluid flow model for this proof of concept, knowing that more complex models and more advanced set85

1For instance solving an isentropic vortex with a second order finite volume scheme with classical minmod slope limiter leads to a first-order

error in L∞ norm, and strictly less than second-order in L2 norm, although no limiting is required for such a smooth solution. If the limiter is turned

off a plain second order of accuracy is retrieved in both norms.
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of LB methods could be used in future studies.86

Following this introduction we present in Section 2 the discretized LB method dedicated to solve compressible fluid87

flows. Then, in Section 3 this numerical method is further blended with a low-order LB method via the a posteriori88

MOOD approach. Numerical experiments are carried out and presented in the Section 4 where sanity checks and89

more advances ones are proposed. A discussion (Section 5) follows and some trivial and non-trivial extensions are90

proposed. Section 6 concludes this article.91

2. Lattice-Boltzmann method for compressible flows92

In this section we briefly introduce Lattice-Boltzmann (LB) method focusing on systems of partial differential93

equations (PDEs) modeling the compressible fluid flows. The goal of the study is to provide a stable, accurate,94

non-oscillating and admissible numerical solution by means of Lattice-Boltzmann type of scheme.95

2.1. Target macroscopic equations96

This study focuses on the PDEs governing compressible gas dynamics written with Einstein’s notation97

∂ρ

∂t
+
∂ρuβ
∂xβ

= 0, (1)

∂ρuα
∂t
+
∂ρuαuβ + pδαβ

∂xβ
=
∂ταβ

∂xβ
, (2)

∂ρE
∂t
+
∂ρuβ(E + p/ρ)

∂xβ
=
∂ταβuα
∂xβ

. (3)

Here t refers to time, x = xα is the space vector, u = uα is the fluid velocity vector with .α referring to their αth
98

component, ρ is the mixture density and p it the thermodynamic pressure. E is the total energy (sum of internal99

energy e and kinetic energy u2
α/2), ταβ is the viscous stress tensor, and δαβ is the Kronecker symbol, i.e 1 if α = β, 0100

otherwise.101

The system is closed upon choosing an equation of state (EOS), for instance a complete one such as the perfect gas102

EOS103

p = (γ − 1)ρe = kρT, (4)

with γ the ratio of specific heats depending on the kind of gas considered, T its temperature and k is the Boltzmann104

constant (k = 1.38 × 10−23 J K−1). The sound-speed is defined as c2
s = γp/ρ for this EOS. The viscous stress tensor105

takes the form106

ταβ = µ

(
∂uα
∂xβ
+
∂uβ
∂xα
− δαβ

2
3
∂uγ
∂xγ

)
, (5)

which is proportional to the dynamic viscosity µ > 0 which is a physical parameter.107

The present study focuses on the Euler limit of the above system of PDEs, that is when ταβ → 0, hence all computa-108

tions are carried out with a negligible viscosity µ = 10−8 Pa.s. The system of PDEs then becomes of hyperbolic type109

with the possible creation of discontinuous solution in finite time, which is a difficult feature to capture.110
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2.2. Isothermal Lattice-Boltzmann method111

2.2.1. Boltzmann equation112

The Lattice-Boltzmann method builds upon a specific space, time and velocity discretization of the Boltzmann113

Equation (BE). In the absence of external forces, it reads114

∂ f
∂t
+ ξα

∂ f
∂xα
= Ω( f ), (6)

where f (ξ, x, t) is the probability density function of finding particles with velocity ξ = ξα at position xα at time t. The115

left hand-side of (6) indicates that particles travel with their own speed, ξ. The right-hand-side Ω( f ) is the so-called116

collision operator, taking into account particle collisions. Collisions tend to bring back the distribution f towards the117

Maxwell-Boltzmann distribution function (also called Maxwellian function)118

f eq =
ρ

(2πT )D/2 e
−∥ξ−u∥2

2T , (7)

where D is the spatial dimension.119

The simplest collision model is the BGK (Boltzmann-Gross-Bathnagar) model [25]120

Ω( f ) =
1
τ

( f eq − f ), (8)

where τ > 0 is a characteristic time between collisions, related to the fluid viscosity µ. It can be shown via Chapman-121

Enskog expansion [26] that the first moments of the above system are the Navier-Stokes equations (1-3) since the first122

three moments of f are related to the macroscopic variables123 ∫
f (ξ, t, x)dξ = ρ(t, x),

∫
ξ f (ξ, t, x)dξ = ρ(t, x)u(t, x),

∫
|ξ|2 f (ξ, t, x)dξ = ρ(t, x)E(t, x). (9)

2.2.2. Velocity discretization124

To construct a Lattice-Boltzmann model, the BE equation is first discretized in a reduced-order velocity space (ξi),125

so that fi(x, t) ≡ f (ξi, x, t), and126

∂ fi
∂t
+ ξi,α

∂ fi
∂xα
= Ω( fi). (10)

The main ingredient in the Lattice-Boltzmann model is to choose an appropriate basis for the velocity space. Given127

that f eq is a Maxwellian, a Hermite polynomial basis is chosen. This velocity basis is called the Lattice.128

Anticipating on the space/time discretization step, the system is normalized in a way such as each discrete velocity129

corresponds exactly to the distance to the next neighboring cell to the time-step. A number of classical lattices DnQm130

is available, where n is the spatial dimension (D in (7)), and m is the basis dimension. Popular examples include131

D1Q3, D2Q9, D3Q19, D3Q27, with the first two being illustrated in Fig. 1. The present work uses the D2Q9 basis132

and the interested reader is referred to [2] for a detailed description of the normalization and velocity discretization133

steps.134
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Figure 1: Examples of lattices for LB method in 1D, D1Q3 (left) and 2D, D2Q9 (right).

Finally, the normalized system of equation reads135

∂ fi
∂t
+ ci,α

∂ fi
∂xα
= Ω( fi), (11)

where ci = ci,α is the ith discrete velocity component of the selected lattice. Note that fi has now Lattice units [2],136

even though the same notation is classically retained.137

2.2.3. Space/time discretization138

Contrary to the Navier-Stokes equations, the convection velocity ci of distribution function fi is constant, so the139

convection term is linear. Furthermore, it is normalized such as fi is advected exactly to a neighboring cell during one140

time-step ∆t > 0. As illustrated in Fig. 1, space and time discretizations are closely related with the lattice. Integration141

along a characteristic line of the left-hand side of (11) therefore yields exactly142

fi(t + ∆t, x) = f coll
i (t, x − ci∆t), (12)

which corresponds to the streaming step of any Lattice-Boltzmann algorithm. f coll
i is called the post-collision distri-143

bution, to be defined hereafter. The exactness of this integration provides Lattice-Boltzmann methods with excellent144

dissipation properties compared to classical finite differences solvers [27].145

Via a trapezoidal rule, integration of the collision term – see [2, 28] for a step-by-step proof – yields the funda-146

mental formula147

f coll
i (x, t) = f eq

i (x, t) + (1 −
∆t
τ

) f neq
i (x, t) +

∆t
2

Fi(x, t), (13)

where the definition of f neq
i is dependent on the collision model. In the simple case of BGK [25],148

f neq
i (x, t) = fi(x, t) − f eq

i (x, t) +
∆t
2

Fi(x, t), (14)

but more advanced alternatives, such as multiple relaxation [29] and regularized [30, 31] models do exist. Contrary to149

the streaming step (12), the collision step is non-linear, but, fortunately it is a local operation.150

In (13), the relaxation time τ > 0 depends on the fluid dynamic viscosity µ as151

τ =
µ

ρc2
s
+
∆t
2
, (15)
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and Fi is a forcing term, which may contain volume forces (e.g. gravity) and correcting terms [32]. Note that this152

term was omitted up to equation (11) for the sake of clarity. Also remark that in the case of Euler limit, µ ≃ 0, hence153

τ ≃ ∆t
2 . The definition of ∆t can be found in Appendix A (A.2).154

A generic LB algorithm consists of a succession of Stream & Collide steps, respectively described in (12) and155

(13). Macroscopic mass and momentum are reconstructed after each streaming step as156

ρ(x, t + ∆t) =
m∑

i=1

fi(x, t + ∆t), ρuα(x, t + ∆t) =
m∑

i=1

ciα fi(x, t + ∆t). (16)

2.3. Collision models and its stability properties157

Better stability properties can be achieved by reconsidering the collision step. Indeed, the collision model (13)158

can be decomposed into two steps (neglecting the forcing term Fi):159

1. a pre-collision regularisation160

f reg
i = f eq

i + f neq
i , (17)

where the computation of f eq depends on the macroscopic variables, ρ, ux, uy and, as a result, three moments of161

discrete fi are involved. On the other hand, f neq depends on six variables, i.e. ρ, ux, uy, axx, axy, ayy where six162

independent moments of discrete fi are involved and163

ai j =
∑

k

( fk − f eq
k )Hi j (18)

whereHi j are Hermite polynomials. The reader is referred to [33] for more details.164

2. a BGK collision165

fi = f req
i −

∆t
τ

( f reg
i − f eq

i ), (19)

The regularisation strategy leads to the reduction in the system rank which yields to the reduction of the modes166

number, i.e. six modes. The reduction of the system rank results in further decrease of modes and, hence, better167

stability properties [34]. This can be simply achieved by setting the variable τ = ∆t where now the rank of the system168

is reduced and the number of remaining modes is three. This allows to obtain a substantial stability gain as a result of169

this modes filtering. The resulting collision model is then reduced to170

f coll
i (x, t) = f eq

i (x, t) +
∆t
2

Fi(x, t). (20)

Hence, our collision model can be changed by setting τ = ∆t to add extra dissipation to the solution where171

discontinuities are present by filtering out the non-physical modes. This concept has been analysed in details in [33]172

and, moreover, applied in a more traditional shock sensor framework in [35].173
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2.4. Extension to compressible flows174

The above LB scheme based on the D2Q9 lattice solves the 2D isothermal Navier-Stokes equations (1-2) in the175

weakly compressible regime. The corresponding equation of state is p = ρc2
s .176

Solving the full compressible set of equations is not possible with the above algorithm because the D2Q9 lattice177

quadrature order is too low [2]. This can be illustrated in a simple way: the total energy equation corresponds to178

the second-order moment of fi, and has a flux related to the third-order moment [28]. Since ci,α = {−1, 0, 1} for all179

nearest neighbor lattices (D1Q3, D2Q9, D3Q19, D3Q27), the third-order moment
∑

i ci,αci,αci,α =
∑

i ci,α depends on180

the first-order moment (corresponding to the mass flux).181

There are essentially two possibilities to tackle the full set of compressible equations (1-3):182

• Extend the lattice quadrature order, e.g. D2Q37 and D3Q343. The advantage is that the required changes are183

minimal, but the numerical cost may dramatically increase.184

• Solve for the energy equation aside, e.g. not as the second-order of fi. This can be achieved either with a second185

distribution function (double distribution methods), or a scalar (hybrid methods).186

For a detailed review of these alternatives, the reader is referred to [5]. The present paper pertains to the hybrid method187

category, but the authors expect the MOOD strategy presented in section 3 to apply to other compressible LB methods188

through minor modifications.189

The hybrid LB method employed in this work allows to rewrite the evolution equations for the mass and momen-190

tum in conservative form as well as the evolution for the total energy, as has been shown in [13]. These evolution191

equations are192

ρ(x, t + ∆t) = ρ(x, t) −
∆t
∆x

[
Fρ,LB
+ α2

(x, t) − Fρ,LB
+ α2

(x − cα∆x, t)
]
, (21)

(ρuα)(x, t + ∆t) = (ρuα)(x, t) −
∆t
∆x

[
Fρuα,LB
+ α2

(x, t) − Fρuα,LB
+ α2

(x − cα∆x, t)
]
, (22)

(ρE)(x, t + ∆t) = (ρE)(x, t) −
∆t
∆x

[
FρE,FV
+ α2

(x, t) − FρE,FV
+ α2

(x − cα∆x, t)
]
, (23)

where the LB fluxes are defined in Appendix B and the definition for the total energy flux in (23) can be found in [13]193

equation 35.194

2.5. LB algorithm for compressible flows195

The LB model for compressible flows is summarized in Table 3.4. Derivation details may be found in the reference196

papers [10] for the LB algorithm, and [13] for the numerical scheme specifically developed for the energy equation.197

The consistency with the full Navier-Stokes equations (1-3) is proved in [28].198

The hybrid algorithm of LB method for compressible flows is summarised below. At time t the conserved fields199

fi, ρ, ρuα and ρE are available along with the knowledge of ρ, T at time t − ∆t.200
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1. Compute f coll
i at time t by using the collision model detailed in Appendix A The computations of the correction201

term Fi require the knowledge of ρ and T at the time t − ∆t.202

2. Perform the streaming step in order to obtain the values of fi at time t + ∆t.203

3. Compute the LB fluxes Fρ
∆x/2, Fρ

∆y/2, Fρuα
∆x/2, Fρuα

∆y/2 from the knowledge of f coll as detailed in Appendix B.204

4. Compute the macroscopic variables ρ and ρuα at time t + ∆t. These can be obtained by either computing the205

moments of fi or by using the LB fluxes. Both methods are equivalent as has been demonstrated in [13].206

5. Compute the total energy flux (as per equation 35 in [13]). The total energy is then transported according to207

(23).208

All these steps being done, fi, ρ, ρuα, ρE at time t + ∆t are available as well as the values of ρ and T at time t. The209

procedure is then repeated till the final time.210

While recent advances in LB method for compressible flows indeed led to the improvement of the solution in211

terms of the correct jumps relations recovery across the shock waves, notably in recent works [13] and [14], the212

stabilisation of the method for the applications where flow discontinuities are observed remains a challenge. In what213

follows, the aim is to define an appropriate framework to apply LBM to fully compressible flows with strong shock214

waves. Firstly, a LBM collision model with better stability properties is recalled to be an alternative for the areas of215

the solution where more dissipation is required. Secondly, an appropriate detection technique of these critical areas216

is defined aiming to restore the stability in the zones of strong discontinuities while not degrading the accuracy in217

the smooth regions. Hence, the proposed novel stabilisation method for LBM is based on the detection-a posteriori218

correction idea rather than traditional shock-sensor techniques.219

3. An a posteriori limited LBM-MOOD algorithm220

3.1. The MOOD philosophy221

The Multi-dimensional Optimal Order Detection [19–22] approach has been chosen to accommodate for both222

the collision models where it is necessary. Originally proposed for the finite volume schemes, this paradigm can be223

ultimately used for any numerical scheme where certain problematic areas of the solution require a change of the224

scheme to fix, for instance, spurious numerical phenomena.225

The MOOD technique is based on the a posteriori detection and correction of the ”troubled” cells of the solution226

by using an appropriate scheme order. The algorithm first runs one iteration of the solution by using the ”best”227

available scheme, usually the more accurate one prone to instability. The obtained solution is then analysed by the set228

of physical and numerical admissibility criteria. If one of them fails, the troubled cells are recomputed by using the229

next ”best” numerical scheme. Then the obtained solution is again analyzed, with, possibly some new troubled cells230

to be corrected. This approach is almost fail-free thanks to the availability of the ”worst case scenario” scheme which231

is usually a first-order accurate numerical scheme carrying good stability and robustness properties.232
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3.2. Admissibility criteria233

The detection of problematic parts of the solution is needed due to the possible presence of non-physical oscilla-234

tions caused by Gibbs phenomena. Hence, an extra dissipation might be required in those parts of the domain. The235

process of such a detection results in marking the troubled (problematic/bad) cells and applying a more dissipative236

scheme for these cells. The detection criteria are twofold.237

The first one, the Physical Admissibility Detection (PAD), is based on the physics involved into the system of PDEs238

solved. For Euler or Navier-Stokes equations, we test the solution for the positivity of density ρ and internal energy e.239

Notice that this is sufficient to ensure the numerical state to remain in the admissible set.240

The second part, the Numerical Admissibility Detection (NAD) is meant to detect the spurious oscillations or other241

numerical issues. The base of NAD is the Discrete Maximum Principle (DMP) for cell k which can be represented in242

the form of two inequalities as243

min
k∈S

(αn
k) − ∆ ≤ αn+1

k ≤ max
k∈S

(αn
k) + ∆, (24)

where S is a set containing the current cell k and its neighbors, α is the tested variable (we test density, velocity and244

pressure variables) and parameter ∆ is a small number meant to regulate the admissibility of small undershoots and245

overshoots in order to have a higher accuracy with smooth extrema. This parameter is computed as246

∆ = max
(
ϵ0, ϵ

(
max
k∈S

(αn
k) −min

k∈S
(αn

k)
))
, (25)

where we set ϵ0=10−4 which plays the role of an absolute small number and ϵ=10−3. The parameter ∆ can be in-247

terpreted as an option to allow an appearance of new extremes smaller than one thousandth of the local jump at the248

current time step n in the immediate neighbourhood of current cell k.249

3.3. Re-computation/Correction250

Any cell which has not passed one of the admissibility criteria is flagged as troubled/bad and its index is stored251

in set B. Moreover, once a bad cell is flagged, in fact the vicinity of this cell is possibly also troubled. Therefore the252

direct neighbors of a bad cells are also flagged and recomputed. Obviously more neighbors could be considered hence253

increasing the dissipation if needed. The numerical section will present some tests where this neighborhood vary. In254

general, only the direct neighbors of a bad cell are added to B.255

3.4. LBMOOD algorithm for compressible flows256

The resulting LBMOOD algorithm for compressible flows requires nothing than adding two extra steps inside the257

time loop of hybrid LB algorithm. That is, once the solution of total energy at time t + ∆t has been computed in step258

5 of Subsection 2.5, the following steps are added.259

6. Run the solution through the MOOD PAD and NAD criteria. Obtain the matrix B of cells to be corrected.260
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Description/Stage Input Output Equation

Equilibrium update ρ , u, T f eq
i (A.1)

Force Update ρ , u, T Fi(t, x) (A.7)

Non-equilibrium update f eq
i , Fi(t, x) f neq

i (A.3)

Collision f eq
i , f neq

i , Fi(t, x) f coll
i (t + ∆t, x) (13)

Streaming f coll
i (t, x − ci∆t) fi(t + ∆t, x) (12)

Macroscopic variables update fi ρ , u (16)

FV Energy coupling ρ , u, T T (23)

MOOD detection ρ , u, T B (24)

Table 1: General LBMOOD structure and main stages.

7. Recompute the solution for the cells in B following the steps 1-5 of Subsection 2.5 by using the LB scheme261

with collision model as per (20).262

Thus, one time iteration of LBMOOD method consists in steps 1-7. The general structure of the method with263

references to necessary equations are summarised in Table 1.264

4. Numerical tests265

In this section we present the numerical experiments and evidences assessing that the a posteriori limited LB-266

MOOD scheme is a viable option to maintain accuracy, robustness and ensure important physics constraints like267

positivity for inviscid gas-dynamics. The following 2D schemes are tested:268

LBM the classical D2Q9 LBM scheme with collision according to (13).269

LBM0 the dissipative D2Q9 LBM scheme with collision model as per (20).270

LBMOOD the a posteriori blended scheme with these two methods.271

The methodology of testing relies on a first series of 1D tests:272

• Advection of a 1D profiles. These simulations test the ability to advect or maintain stationary profiles.273

• Sod and modified Sod 1D shock tubes. These classical shock tubes challenge the Essentially Non Oscillatory274

character of the schemes and their ability to capture shocks and rarefaction waves without spurious oscillations.275

Each of the previous 1D tests have an analytical solution, allowing error computation and visual comparisons. Mesh276

convergence studies will be presented to assess that the properties of the LBMOOD scheme is relatively independent277

from the number of cells. In a second series of test, classical 2D benchmarks are simulated, namely278
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• Entropy spot and isentropic vortex. These test the Accuracy and experimental orders of convergence because279

smooth exact solutions can be derived.280

• Cylindrical Sod shock tube. This is an explosion like problem which generates a radial solution presenting281

cylindrical separated simple waves (rarefaction, contact and shock).282

• 2D Riemann problems. Several 4 state configurations are simulated to assess the ability of the scheme to capture283

complex flow structures for which we can only compare to reference solutions.284

4.1. 1D tests285

The initial data (domain, density, velocity component u and pressure, and final time) are gathered in Table 2 for286

all 1D tests. γ is set to 7.5. Initial time is set to t0 = 0. The boundary conditions are set to wall type. Exact solutions287

can be analytically computed and are superimposed on the numerical results, see [36] for details. Only the density288

variable is plotted.289

1D contact discontinuity. The first test is a simple contact discontinuity in advection which should not generate290

any spurious secondary waves. We plot the numerical density for 400 (left panel) and 800 (middle panel) cells in291

figure 2 when LBM0, LBM and LBMOOD schemes are used. The right-most panel presents the mesh convergence292

for LBMOOD scheme for N = 50 × 2k cells and k = 0, 1, 2, 3, 4. The dissipative LBM0 scheme produces smooth293

solutions (green symbols) while LBM generates spurious numerical oscillations (blue symbols). LBMOOD reduces294

their amplitude without entirely damping all of them. For LBMOOD scheme, when a bad cell is detected, then

Figure 2: Contact discontinuity problem — Numerical density for LBM0, LBM and LBMOOD schemes with 400 (left) and 800 (middle) cells.

The right panels present the mesh convergence for LBMOOD scheme for 5 successively refined meshes.

295

this only cell is recomputed with LBM0 scheme, restricting as such the dissipation. However we could spread the296

dissipation locally and correct also its closest neighbors. As such 3, 5 or 8 cells could be affected by the correction.297

Figure 3 presents a zoom on the numerical results when such neighborhood increase is applied. The results do not298

improve when a large neighborhood is to be considered. Because the cost increases with larger neighbor, it does not299

justify such an increase in neighborhood size. For now on, only the detected cell will be recomputed with LBM0300

scheme.301
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Figure 3: Contact discontinuity problem — Numerical density for LBMOOD scheme with 400 (left) and 800 (right) cells —- Comparison of

different correction neighborhoods with increasing spreading.

Problem ρL uL pL ρR uR pR tfinal Ω xddc(t0)

Sod 1D 1.0 0.0 1.0 0.125 0.0 0.1 0.2 [0,1] 0.5

Contact 1D 2.0 1.0 1.0 1.0 1.0 1.0 0.25 [-1,1.5] 0.5

Sod2 1D 1.0 0.0 1.0 0.125 0.0 0.01 0.2 [0,1] 0.5

Table 2: Initial left and right states for the density ρ, velocity u and the pressure p for the 1D problems. The discontinuity is located at position xddc

at initial time t0 = 0. The final simulation times tfinal are also given.

1D planar Sod shock tubes. Then we run the 1D classical planar Sod shock tube and a modified version (Sod2) to302

assess the ability of the methods to capture 1D simple waves accurately. In Figures 4 we compare the results of the303

LBM0, LBM and LBMOOD schemes when 400 or 800 cells are employed (left and right panels). The results for Sod304

problem are plotted on top panels, while those for Sod2 are displayed on bottom ones. We observe that LBM0 scheme305

results are more diffused, LBM ones are more accurate but present overshoots in the vicinity of the shock wave.306

LBMOOD produces numerical solutions which are a good compromise between these two inappropriate behaviors.307

Namely the oscillations have been almost entirely damped without sacrificing the accuracy anywhere else. On the308

right panels of figure 4 we present the mesh convergence of LBMOOD scheme results when the mesh is successively309

refined by a factor 2, that is with N = 50× 2k cells and k = 0, 1, 2, 3, 4. Clearly, when the mesh is refined, the solution310

tends towards the exact solution without spurious behaviors. Next, in figure 5, one presents in red the bad cells which311

are detected by LBMOOD scheme using 50 (left), 100 (middle) and 200 (right) cells as a function of position and312

time iteration. At first glance we observe that a small amount of cells need extra dissipation. The red bad cells are313

updated with the robust LBM0 scheme while the blue ones rely on the accurate LBM. From these figures we can314

observe that the troubled cells mainly follow the displacement of the discontinuities: head of the rarefaction, contact315

and shock waves. The contact displacement seems to generate spurious numerical effects which require dissipation,316

hence the relative large number of troubled red cells in this area. However this region in between the contact and317

shock is essentially constant which minor spurious waves. Therefore the correction has no bad (nor good) effect on318

the numerical solution because LBM0 and LBM, both can capture constant states. At last, in table 3, we gather the319
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Figure 4: Sod (top line) and Sod2 (bottom line) 1D problems — Numerical density for LBM0 (green), LBM (blue) and LBMOOD (purple) schemes

with 400 (left panels) and 800 (middle panels) cells. The right-most panels present the mesh convergence for LBMOOD scheme for 5 successively

refined meshes.

Figure 5: Sod (top line) and Sod2 (bottom line) 1D problems solved by LBMOOD scheme using 50 (left), 100 (middle) and 200 (right) cells —

Bad cells (red) detected by as a function of position (horizontal) and iteration number (vertical) — Red/bad cells are updated with LBM0 scheme,

while blue/good ones with LBM.
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percentage of troubled cells detected by LBMOOD scheme over an entire simulation P. This percentage of troubled320

cells for the entire simulation is computed as P =
100
NtNc

Nt∑
n=0

Nn
b , where Nc is the number of cells, Nt ∈ N

∗ the number321

of time iterations, and, for each time step tn > 0, Nn
b is the amount of troubled cells. This percentage is computed322

for all 1D simulations presented in this section and graphically represented also in figure 6. It is obvious that the323

percentage of bad cells tends to negligible amount when the mesh gets refined. As such it is clear that the extra-cost324

brought by MOOD approach becomes smaller and smaller.

Value of P. % of troubled cells integrated over the simulation

Problems 50× 50 100× 100 200× 200 400× 400 800× 800

Contact 25.03% 16.72% 7.08% 2.42% 1.58%

Sod 16.80% 12.14% 8.84% 6.48% 4.26%

Sod2 21.13% 12.43% 7.01% 4.51% 3.02%

Table 3: Percentage of troubled cells for the 1D test cases when 50 × 50 up to 800 × 800 cells are employed.
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Figure 6: Curves from the data in Table 3 — Percentage of troubled cells for the 1D test cases when 50 × 50 up to 800 × 800 cells are employed.

4.2. 2D tests326

In this section 2D test cases are simulated, and, LBMOOD is set up to employ the lattice neighborhood for the327

correction.328

4.2.1. Entropy spot329

The linear properties of our approach are further investigated through the transport of an inviscid entropy spot. A330

Gaussian spot of density is superimposed to a uniform velocity mean flow at constant pressure:331

ρ = [1 + 10−3e−r2
], p = 0, uα = (u1, u2) = (2, 2), (26)
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where r is the relative radius r2 = [(x − xc)2 + (y − yc)2], where (xc, yc) = (5, 5) are the coordinates of the spot center.332

The computational domain is Ω = [−5 : 15] × [−5 : 15] and covered with 200 × 200 cells. Periodic boundary333

conditions are considered and the final time is set to tfinal = 1 so that the spot has traveled across the domain and is334

back to its original location, so that errors with respect to the exact solution can be computed. In Table 4 we report335

these errors and the corresponding rates of convergence. From these data it is clear that LBM0 and LBM produce336

2nd order converging numerical solutions: LBM being two times more accurate than LBM0. Importantly, LBMOOD337

produces exactly the same results than LBM because no bad cell is detected. And this was expected for a smooth338

solution.

LBM0 LBM LBMOOD

N × N L2 error order L2 error order L2 error order % bad cells

50 2.24× 10−5 — 1.22× 10−5 — 1.22× 10−5 — 0

100 0.68× 10−5 1.7 0.33× 10−5 1.9 0.33× 10−5 1.9 0

150 0.33× 10−5 1.9 0.14× 10−5 2.0 0.14× 10−5 2.0 0

200 0.19× 10−5 1.8 0.09× 10−5 1.6 0.09× 10−5 1.6 0

Expected → 1 2 2 0%

Table 4: L2 errors and experimental convergence rate for the entropy spot problem for LBM0, LBM and LBMOOD schemes — The percentage of

bad cells is an average for all time steps.

339

In figure 7 we plot the numerical density for the LBM0, LBM, and LBMOOD schemes. The top panels present340

the colored density in 2D, then the bottom ones display the 1D density as a function of the radius r for all cells. The341

exact solution is under the the numerical solutions. The three schemes can capture this smooth entropy spot, and can342

not be discriminated with this test case.343

4.2.2. Isentropic vortex in motion344

Next a slightly more complex problem is simulated. The isentropic vortex problem was initially introduced in 2D345

space in [18] to test the accuracy of numerical methods since the exact analytical solution is smooth and is not trivial,346

i.e all variables do evolve simultaneously. We consider the computational domainΩ = [0, 10]× [0, 10] and an ambient347

flow characterized by ρ∞ = 1.0, u1,∞ = 1.0, u2,∞ = 1.0, p∞ = 1.0, with a normalized ambient temperature T ∗∞ = 1.0348

computed with the perfect gas equation of state and γ = 7/5. A vortex is centered at (xvortex, yvortex) = (5, 5) and349

supplemented to the ambient gas at the initial time t = 0 with the following conditions u1 = u1,∞+δu1, u2 = u2,∞+δu2,350

T ∗ = T ∗∞ + δT
∗ where351

δu1 = −y′
β

2π
exp

(
1 − r2

2

)
, δu2 = x′

β

2π
exp

(
1 − r2

2

)
, δT ∗ = −

(γ − 1)β
8γπ2 exp

(
1 − r2

)
,
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Figure 7: Entropy spot problem — 200 × 200 cells — LBM0 (left), LBM (middle) and LBMOOD (right) schemes — Top panels: density (color).

Bottom panels: density as a function of radius r.

with r =
√

x′2 + y′2 and x′ = x − xvortex, y′ = y − yvortex. The vortex strength is given by β = 5.0 and the initial density352

follows the relation353

ρ = ρ∞

(
T ∗

T ∗∞

) 1
γ−1

=

(
1 −

(γ − 1)β
8γπ2 exp

(
1 − r2

)) 1
γ−1

. (27)

Periodic boundary conditions are prescribed everywhere. At final time tfinal = 10 the vortex is back to its original354

position. In Table 5 we report the errors and the corresponding rates of convergence.

LBM0 LBM LBMOOD

N × N L2 error order L2 error order L2 error order % bad cells

50 3.19× 10−4 - 1.53× 10−4 1.53× 10−4 0

100 3.23× 10−4 - 0.49× 10−4 1.6 0.49× 10−4 1.6 0

150 3.22× 10−4 - 0.24× 10−4 1.8 0.24× 10−4 1.8 0

200 3.17× 10−4 - 0.14× 10−4 1.9 0.14× 10−4 1.9 0

Expected → 1 2 2 0%

Table 5: L2 errors and convergence rate for the isentropic vortex problem for LBM0, LBM and LBMOOD schemes — The percentage of bad cells

is an average for all time steps.

355

Next, in figure 8 we plot the density for the LBM0, LBM, and LBMOOD schemes in 2D (top panels) and 1D as a356

function of the radius r (bottom panels). From these results we can observe that the LBM0 scheme can not maintain357

the vortex shape while LBM can. Accordingly LBMOOD maintains the shape because the number of bad cells is358
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close to 0, consequently LBMOOD results are extremely close to LBM ones. This test verifies that a smooth solution359

is not spoiled by MOOD procedure.

Figure 8: Vortex problem — 200 × 200 cells — LBM0 (left), LBM (middle) and LBMOOD (right) schemes — Top panels: density (color and

azimuth). Bottom panels: density as a function of radius r.

360

4.2.3. 2D Sod problem361

The 2D Sod problem, also called ’Explosion problem’ consists in the same initial data of Sod 1D where the Left362

state is inside a disk of radius r = 0.5, and the Right one outside. The computational domain is Ω = [−1, 1] × [−1, 1]363

and the final time is set to tfinal = 0.15. The exact solution is radial, made of a converging rarefaction wave and364

diverging contact and shock waves. In-between these waves, because of the cylindrical geometry, the state is not365

constant anymore. In figure 9 we compare LBM0, LBM and LBMOOD scheme results. We plot the numerical366

density as a function of cell center radius for all cells when a 200 × 200 mesh is employed. As expected LBM0367

scheme is overly diffusive especially at the rarefaction wave and some lack of symmetry is observed. Next, LBM368

scheme results in the middle panel presents some overshoots (close to the shock and the head of the rarefaction)/ but369

is visibly more accurate especially on the rarefaction wave. Then, the results of LBMOOD scheme are a rather good370

compromise between these two previous solutions: the dissipation is not too excessive and the oscillations have been371

reduced. In figure 10 the top panels display the 2D density in colors for meshes of size N × N with N = 50, 100 and372

200 for LBMOOD scheme. As the mesh is refined the solution is more accurate as expected, the waves are sharply373

captured. More interestingly, on bottom panels of figure 10 we plot the troubled cells in red and the untouched ones374

in blue for the last time iteration. The troubled cells have been updated by LBM0 scheme and the good ones updated375

with LBM. We can observe that the troubled cells are mainly located at the cylindrical discontinuities (shock, contact,376
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Figure 9: Sod problem in 2D — Numerical density for all 200×200 cells as a function of cell radius — LBM0 (left), LBM (middle) and LBMOOD

(right).

head/tail of rarefaction), along with some spurious cells which requires more dissipation according to our detection377

criteria.378

4.2.4. 2D Riemann problems379

The 2D Riemann problems have been chosen in order to address complex 2D flow structures resulting from inter-380

actions between discontinuities. They demonstrate the ability of the LBMOOD method to handle such calculations381

without using additional stabilisation tools.382

These 2D 4-state Riemann problems are described and simulated in [37] for instance. They consist of four quadrants383

with constant fluid states meeting at a quadruple point. The computational domain is Ω = [0, 1]× [0, 1], the quadruple384

point is located at (0.5, 0.5) and generally a mesh made of 400×400 cells is employed. The states Uk = (ρk, uk, vk, pk),385

k = 1, 2, 3, 4 are located as
U2 U1

U3 U4

. We focus on three specific configurations labeled 3, 4 and 12 in [37] from386

which the reference solutions are borrowed.387

These test cases are used to observe (i) the comparison of the solutions obtained by LBMOOD vs LBM0, (ii) the388

convergence of the results calculated by using LBMOOD, and, (iii) the effect of the number of corrected neighbours389

on the obtained solution by LBMOOD. Notice that LBM scheme fails for such test cases.390

Configuration 3. This configuration is relatively complex due to the presence of small scaled vortices. It is initialised391

with ρ1 = 1.5, ρ2 = ρ4 = 0.5323, ρ3 = 0.138, p1 = 1.5, p2 = p4 = 0.3, p3 = 0.029 and u2 = u3 = v3 = v4 = 1.206 and392

u1 = v1 = v2 = u3 = 0. The time step is set as dt/dx = 0.13 and the final time is set to 0.3. For this test LBMOOD393

corrects 3 neighbors. LBM0 and LBMOOD scheme results are plotted in figure 11 where we see the complex flow394

patterns. The ability to sharply capture such small scale structures is an important feature of LB methods because they395

occur in more complex flows, e.g. turbulent flows. LBM0 scheme produces a diffused solution, while LBMOOD is396

able to visibly reduce the dissipation, leading to a more accurate numerical solution on the same mesh. Hence, the397
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Figure 10: Sod problem in 2D — LBMOOD scheme — Top panels: Numerical density — Bottom panels: Bad cells in red — 50 × 50 (left),

100 × 100 (middle) and 200 × 200 (right) cells.
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mix LBM0-LBM that MOOD is operating via the detection procedure makes the LBMOOD scheme robust, and, at398

the same time more accurate than LBM0.399

Figure 11: Riemann problem configuration 3 — Numerical density — 400× 400 cells — LBM0 (middle) and LBMOOD (right) numerical density

— Reference solution (left) from [37].

Next in figure 12 we present a mesh convergence study for LBMOOD scheme using N × N cells with N = 100400

(left), 200 (middle) and 300 (right). The solution for 400 × 400 is displayed on figure 11-right panel. LBMOOD401

produces more accurate results as the mesh gets refined without spurious features as expected. We have observed

Figure 12: Riemann problem configuration 3 — Numerical density — LBMOOD scheme — N × N cells with N = 100 (left), 200 (middle) and

300 (right).

402

that the larger the neighborhood, the more diffused the solution becomes (we have simulated with 8 neighbors, not403

shown here). As already mentioned, this fact does not justify the use of too large a neighborhood for the correction in404

LBMOOD405

Configuration 4. This configuration involves relatively weak discontinuities and is initialised as ρ1 = ρ3 = 1.1,406

ρ2 = ρ4 = 0.5065, p1 = p3 = 1.1, p2 = p4 = 0.35, and u1 = v1 = v2 = u4 = 0, u2 = u3 = v4 = 0.8939 The time step is407
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set as dt/dx = 0.19 and the final time is set to 0.25.408

The comparison of the final solutions is proposed in figure 13. Both schemes, LBM0 and LBMOOD, are capable409

of producing the solutions with, however, a more dissipative result by LBM0. This drawback is visibly improved410

on LBMOOD solution. Only lattice neighbors are corrected by LBMOOD for this configuration. We observe the411

convergence of the results (see figure 14 by varying the number of points in computational domain from 100 × 100 to412

300 × 300. The numerical solution gets more accurate with finer mesh, and, seems to converge towards the reference413

solution.414

Furthermore, the solution computed by LBMOOD with only immediate corrected neighbours is sharper in comparison415

to 3, 5 or 8 neighbours, see figure 15. This is an expected result, and, such an increase of corrected neighbours can be416

used in order to dissipate more, for instance in presence of stronger discontinuities.417

Figure 13: Riemann problem configuration 4 — Numerical density — 400× 400 cells — LBM0 (middle) and LBMOOD (right) numerical density

— Reference solution (left) from [37].

Figure 14: Riemann problem configuration 4 — Numerical density — LBMOOD scheme — N × N cells with N = 100 (left), 200 (middle) and

300 (right).
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Figure 15: Riemann problem configuration 4 — Numerical density — LBMOOD scheme for 400 × 400 cells — Increase the number of neighbor

cells corrected to 3 (left), 5 (middle) or 8 (right).

Configuration 12. This configuration involves smaller scaled vortices, and, thus, can be considered as a more chal-418

lenging test case. Initial data are ρ2 = ρ4 = 1, ρ1 = 0.5313 and ρ3 = 0.8, p2 = p3 = p4 = 1, p1 = 0.4, and419

u1 = v1 = v2 = u3 = v3 = u4 = 0, v4 = u2 = 0.7276 The time step is set as dt/dx = 0.19 and the final time is set to420

0.25.421

The comparison of the final solutions is proposed in figure 16. Both schemes, LBM0 and LBMOOD, are capable422

of producing the solutions with, however, a dissipative result by LBM0. This drawback of the solution is improved423

by LBMOOD when only one neighbor is corrected. However, some instabilities are present in the solution of LB-424

MOOD. Fortunately this situation can be improved by increasing number of corrected cells as can be seen in figure 17.425

Choosing the number of neighbors to be corrected in LBMOOD is a parameter to be fixed by the user. At last we426

present in figure 18 the bad cells at last time iteration for different sizes of corrected neighborhood, from 1 (lattice427

neighbors) to 8. As expected the smallest neighborhood has less damped the solution during the simulation, hence428

more bad cells remain. Conversely, using larger and larger neighborhood forces LBMOOD to damp the spurious429

oscillations, producing a smoother solution, and, consequently reducing the number of remaining bad cells at the end430

of the simulation.431

5. Discussion and food for thought432

Although the previous numerical section has validated our proof of concept of coupling MOOD with LB method433

for compressible inviscid flows, more benefits can already be anticipated.434

More advanced models of PDEs. LBMOOD scheme is directly usable with more complex or different systems of435

PDEs involving source terms, non-conservative products, involutions, etc. For instance, compressible or incompress-436

ible Navier-Stokes, multi-phase flows, detonation models, for which LB methods are already employed. Obviously437

with such different models, different physical processes are to be expected. Therefore the PAD/NAD criteria from438
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Figure 16: Riemann problem configuration 12 — Numerical density — 400×400 cells — LBM0 (middle) and LBMOOD (right) numerical density

— Reference solution (left) from [37].

Figure 17: Riemann problem configuration 12 — Numerical density — LBMOOD scheme for 400× 400 cells — Increase the number of neighbor

cells corrected to 3 (left), 5 (middle) or 8 (right).

Figure 18: Riemann problem configuration 12 — Bad cells — LBMOOD scheme for 400× 400 cells and, from left to right, 1, 3, 5 and 8 corrected

neighbors.
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MOOD (see section 3.2) must be appropriately adapted, see [22] for examples of detection criteria for complex mod-439

els of PDEs.440

More advanced ’parachute’ LB method. The parachute scheme being the last scheme to be tried on troubled cells, it441

must fulfill the detection criteria by construction. In this paper the toy model of compressible fluid flows is relatively442

simple, making LBM0 a valid parachute scheme. However LBM0 may not always be such a parachute if more443

complex systems of PDEs are to be solved. In this case, especially if the PAD/NAD criteria have been modified,444

the parachute scheme may require some adaptation. Some work is indeed mandatory to design provably robust LB445

methods for each model of PDEs.446

More advanced cascade of LB methods. Yet another possible evolution would be to test a few LB schemes in the so-447

called MOOD cascade [21, 22], see figure 19. In this article our simple cascade was composed by LBM and LBM0448

schemes. Let us define the function θ(x) =
(
1 − ∆t

x

)
, which is the coefficient in front of f neq in (13). LBM corresponds449

to setting θ(τ) =
(
1 − ∆t

τ

)
≡ θ while LBM0 to θ(∆t) = 0. However one could add few intermediate values of θ in450

between these extremes values. For instance by reducing θ by the same factor δ > 1, say 2, or 5. Hence θν+1 =
θν

δ
,451

where 0 ≤ ν is the index numbering the LB schemes. Obviously, limν→+∞ θν −→ 0, and, numerically with only few452

iterations, θν rapidly drops to 0, leading to employing LBM0 scheme. Doing so, a troubled cell could be re-computed453

with an intermediate scheme between LBM and LBM0. Because only few cells require to be recomputed, the extra454

CPU time spent dropping in the cascade should not be extremely large2. With more advanced 3D models, when455

refining the mesh is no more feasible, this slight gain in terms of accuracy may become important.
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Figure 19: Left: Advanced cascade of LB methods that could be employed within a MOOD approach. Right: the cascade used in this paper to

produce the numerical results.

456

2This approach mimics the use of MOOD within a Finite Volume framework [20–22].
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More advanced implementation and codes. LBMOOD has no limitation when it comes to multiple dimensions, mean-457

ing that the extension to 3D is theoretically trivial. One difficulty is however the efficient massive parallelisation of458

LBMOOD. Because we can not anticipate how many troubled cells are detected and recomputed, then the computing459

load between processors is difficult to be maintained balanced. However, as already mentioned and seen in the numer-460

ical results, few troubled situations are generally detected. Therefore the expensive stage is the computation of LBM461

solution (and the first detection). This stage can be parallelised in the classical way because the same operations are462

made for each and every cell. Next, if troubled cells are detected, it becomes more complex to produce a balanced463

parallel code. One expects however that the recomputation involves so few cells that the parallelisation efficiency is464

maintained. At last, as already mentioned in section 2.4, tackling total energy equation by the extension of the lattice465

quadrature rules is not an issue for MOOD.466

6. Conclusions and perspectives467

This paper has presented a proof of concept of the hydridization of two Lattice-Boltzmann schemes by means468

of the a posteriori MOOD paradigm to solve the compressible fluid flows in its inviscid limit. A second-order LB469

method prone to instability is coupled with a more robust one within MOOD to produce a robust yet-accurate hybrid470

LB scheme in 1D and 2D. The MOOD paradigm detects a candidate solution produced by the accurate LBM scheme.471

If troubled cells are detected, they are further recomputed with LBM0 in a robust way. The detection criteria are472

physically and numerically based.473

This hybrid LB scheme has been validated on a set of classical test cases involving smooth and discontinuous solutions.474

On these test cases the hybrid LB scheme is as accurate than the LBM scheme when this later is usable, but, more475

important is as robust than LBM0 on difficult situations involving shock waves for instance.476

In the latest section we have discussed some lines of evolution for this LBMOOD method. Our future studies will477

focus on applying it to detonation models and to implement/validate the 3D version which does not present any478

theoretical difficulty.479
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[27] S. Marié, D. Ricot, P. Sagaut, Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational544

aeroacoustics, Journal of Computational Physics 228 (4) (2009) 1056–1070.545

[28] G. Farag, S. Zhao, G. Chiavassa, P. Boivin, Consistency study of lattice-Boltzmann schemes macroscopic limit, Physics of Fluids 33 (3)546

(2021) 031701.547

[29] D. d. Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, Multiple–relaxation–time lattice Boltzmann models in three dimensions,548

Phil. Trans. R. Soc. Lond. A 360 (2002) 437–451.549

[30] O. Malaspinas, B. Chopard, J. Latt, General regularized boundary condition for multi-speed lattice Boltzmann models, Computers & Fluids550

49 (1) (2011) 29–35.551

[31] J. Jacob, O. Malaspinas, P. Sagaut, A new hybrid recursive regularised bhatnagar–gross–krook collision model for lattice Boltzmann method-552

based large eddy simulation, Journal of Turbulence (2018) 1–26.553

[32] Y. Feng, P. Sagaut, W. Tao, A three dimensional lattice model for thermal compressible flow on standard lattices, Journal of Computational554

Physics 303 (2015) 514–529.555

[33] G. Wissocq, C. Coreixas, J.-F. Boussuge, Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods, Phys.556

Rev. E 102 (2020) 053305. doi:10.1103/PhysRevE.102.053305.557

URL https://link.aps.org/doi/10.1103/PhysRevE.102.053305558

[34] O. Malaspinas, Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization, arXiv preprint559

arXiv:1505.06900 (2015).560

[35] G. Wissocq, S. Taileb, S. Zhao, P. Boivin, A hybrid lattice Boltzmann method for gaseous detonations, Journal of Computational Physics 494561

(2023) 112525. doi:https://doi.org/10.1016/j.jcp.2023.112525.562

URL https://www.sciencedirect.com/science/article/pii/S0021999123006204563

[36] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd Edition, Springer, 1999.564

[37] A. Kurganov, E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numerical565

Methods for Partial Differential Equations 18 (5) (2002) 584–608. doi:10.1002/num.10025.566

URL http://dx.doi.org/10.1002/num.10025567

Appendix A. Unified density-based model with recursive regularised collision operator568

The LBM part of this work is based on the unified density-based model of [10] with a recursive regularised569

collision operator. This model, which can be considered as an extension of previous pressure-based and density-based570

28



models, is presented below. The equilibrium distribution for D2Q9 reads,571

f eq
i = ωiρ

1 +
ωi − δ0i

ωi
(Θ − 1) +

ci,αuα
c2

s
+

(ci,αci,β − δαβc2
s)uαuβ

2c4
s

+
ci,y(c2

i,x − c2
s)u2

xuy

2c6
s

+
ci,x(c2

i,y − c2
s)uxu2

y

2c6
s

 , (A.1)

where Θ = T/Tre f , cs =
√

RTre f and ωi are Gaussian weights of the lattice. Tre f is an arbitrary reference572

temperature linked to the mesh size ∆x and time ∆t through the following equation,573

√
RTre f =

1
√

3

∆x
∆t
. (A.2)

The recursive regularisation allows to compute the off-equilibrium distribution functions,574

f neq
i = ωi

 (ci,αci,β − δαβc2
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2c4
s

aneq,(2)
αβ +
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2c6
s
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 , (A.3)

where575

aneq,(2)
αβ = ᾱ

neq,(2)
αβ −

δαβ

D
āγγ, āneq,(2)

αβ =
∑

i

(ci,αci,β − c2
sδαβ)( fi − f eq

i +
∆t
2

Fi) (A.4)
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xxy = 2uxaneq,(2)

xy + uyaneq,(2)
xx , (A.5)

aneq,(3)
xyy = uxaneq,(2)

yy + 2uyaneq,(2)
xy . (A.6)

The correction term is576

FE
i =

ωi

2c4
s
(ci,αci,β − c2

sδαβ)a
F,(2)
αβ , (A.7)

where for D2Q9 lattice we have577

aF,(2)
αβ = c2

sδαβ(ρ
∂uγ
∂γ
−
∂(ρ(1 − Θ))
∂t

) + c2
s(uα
∂(ρ(1 − Θ))
∂β

+ uβ
∂(ρ(1 − Θ))
∂α

) −
∂(ρu3

α)
∂α3 δαβ. (A.8)

The first-order upwind scheme is adopted to discretise the spatial derivatives in (A.8), except for the velocity578

divergence where the second-order centered finite difference scheme is used, and, the time derivative where a temporal579

upwind scheme is employed.580

Appendix B. Lattice Boltzmann fluxes581

The expressions for the LB mass and momentum fluxes are proposed below with the ± notations standing for582

x± = x ± ∆x and y± = y ± ∆y.583
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