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Enumeration of weighted quadrant walks:
criteria for algebraicity and D-finiteness

THOMAS DREYFUS, ANDREW ELVEY PRICE, AND KILIAN RASCHEL

Abstract. In the field of enumeration of weighted walks confined to the quarter plane,
it is known that the generating functions behave very differently depending on the chosen
step set; in practice, the techniques used in the literature depend on the complexity of
the counting series. In this paper we introduce a unified approach based on the theory
of elliptic functions, which allows us to have a common proof of the characterisation of
the algebraicity and D-finiteness of the generating functions.

1. Introduction and main results

Walks in the positive quadrant. In this paper we consider weighted walks in the quarter
plane and their associated generating functions, and provide necessary and sufficient
conditions for the latter series to be D-finite (i.e., solution of a linear differential equation
with polynomial coefficients) or even algebraic (solution of a polynomial equation). A
small step walk (or path) in the quarter plane N2 = {0, 1, 2, . . .}2 is a sequence of points
P0, P1, . . . , Pn, each Pk lying in the quarter plane, the steps Pk+1−Pk belonging to a given
finite step set S ⊂ {0,±1}2. See Figure 1 for an illustration. Such objects are very natural
in both combinatorics and probability theory: they are interesting in themselves, and also
because they are strongly related to other discrete structures [7, 10].

To each step (i, j) ∈ {0,±1}2 we assign a weight di,j ⩾ 0, which can be seen as the
probability that the walk goes in the direction (i, j). With a renormalisation we can
assume that

∑
di,j = 1. The model is called unweighted if all non-zero di,j have the same

values. The weight of a given (finite length) path is defined as the product of the weights
of its component steps. For any (i, j) ∈ N2 and any n ⩾ 0, we let

(1) P
(
P0

n−→ (i, j)
)

be the probability that the walk started at P0 (often taken as the origin (0, 0)) is at some
generic position (i, j) after the n-th step, with all intermediate points Pk remaining in the
cone. In other words, the probability in (1) is the sum of the weights of all paths reaching
the position (i, j) from the initial position (0, 0) after n steps. More specifically, we will
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Figure 1. A walk of length n = 10, 000 started at P0 = (0, 0) with jumps
in S = {±1}2 and uniform transition probabilities di,j = 1

4

turn our attention to the generating (or counting) function

(2) Q(x, y, t) =
∑

i,j,n⩾0

P
(
P0

n−→ (i, j)
)
xiyjtn.

Classification of quadrant walk models. There is a large literature on (mostly
unweighted) walks in the quarter plane, focusing on various probabilistic and combinatorial
aspects. To summarise, two main questions have attracted the attention of the
mathematical community: first, finding an exact expression for the probability (1), or
equivalently for the series (2). The second question is to characterise the algebraic nature
of the series (2), according to the classes of functions

{rational} ⊂ {algebraic} ⊂ {D-finite} ⊂ {D-algebraic}.

The first question, which is combinatorial in nature, should not overshadow the second.
Understanding the nature of Q(x, y, t) has implications for the asymptotic behaviour of
the coefficients (see, for example, reference [6]), and also allows us to gain insight into
the complexity of these lattice path problems (to illustrate this fact, let us recall that
unconstrained walks are associated with rational generating functions, while walks confined
to a half-plane admit algebraic counting functions [8]). This is the second question we
will consider in the present work. To be precise, the function Q(x, y, t) is said to be D-
finite (resp. D-algebraic, or differentially algebraic) if it satisfies a linear (resp. algebraic)
differential equation with polynomial coefficients in C(x, y, t), in each of its three variables
x, y, t. A function is said to be differentially transcendental if it is not D-algebraic.

Throughout this paper, in some results we will assume that a certain group of
transformations (simply related to the weights) is finite or infinite; this group will be
properly introduced in Section 2. This group was introduced in [16] in a probabilistic
context, and used in a crucial way for combinatorial purposes in the seminar paper [7].
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Figure 2. Four examples of finite group models taken from [21]. From
left to right, a model with a group of order 4, 6, 8 and 10. They should be
normalised to satisfy the property that

∑
(i,j)∈S di,j = 1. The paper [21]

actually contains infinite families of finite group examples. For example, the
third example defines a group model of order 8 if and only if the associated
weights di,j satisfy d1,0d−1,0 = d1,−1d−1,1 ̸= 0. In the examples above, the
weights are taken to be rational numbers; note that non-rational weights
are also allowed.

Intuitively, finite group models are those to which a generalisation of the well-known
reflection principle applies. Finite group models of order 4, 6 and 8 are fully characterised
in [21]; see Figure 2 for some examples. Moreover, it is proved in [18, Rem. 5.1] that the
order of the group cannot exceed 12 (see also [19]). What is still missing is a complete
description of the parameters that lead to a group of order 10 and 12. There is, however,
a characterisation of the finiteness of the group in terms of the existence of a certain
invariant, see [18, Lem. 2.4].

Main results. Our first and main result is the following; it provides further progress in
the classification of lattice walks in the quarter plane.

Theorem 1. The following are equivalent.
(i) The group is finite.
(ii) The series Q(x, y, t) satisfies a (non-trivial) linear differential equation with

coefficients in C(x, y, t), in the variable x.
(iii) The series Q(x, y, t) satisfies a linear differential equation with coefficients in

C(x, y, t), in the variable y.
(iv) The series Q(x, y, t) satisfies a linear differential equation with coefficients in

C(x, y, t), in the variable t.

Throughout this paper, although we will often omit the term non-trivial, it is implicitly
assumed that all differential equations are non-trivial, i.e., non-zero.

Note that x and y play a symmetric role so the equivalence between (ii) and (iii) is
not so surprising. On the other hand, the equivalence between the t behavior and the
other variables behavior is at first sight much more surprising. Proofs of the equivalence
of the first three conditions of Theorem 1 have already appeared in the literature for fixed
values of t. More specifically, if the assumption (i) on the finiteness of the group holds,
the properties (ii) and (iii) are obtained in [14, Thm 4.1]. On the other hand, if the group
is infinite, it is shown in [22] that the series Q(x, y, t) does not satisfy any linear equation
in x or in y, further assuming that the step sets are unweighted. The previous result is
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extended to the weighted case in [15, Thm 8.7]. Compared to the present work, the main
difference is that in the previous references all results are obtained with a fixed value of t.
The main novelty of our work is precisely to be able to deal with this variable t, see (iv),
which is very important from a combinatorial point of view. On the other hand, the result
of [15] holds not only for the quarter plane, but for any cone obtained as the union of an
odd number of quadrants.

Theorem 1 will be obtained as a consequence of two further results, namely Theorems 2
and 3.

Theorem 2. Assume the group of the walk is finite. Then Q(x, y, t) in (2) satisfies a
linear differential equation with coefficients in C(x, y, t) in each of its variables.

Theorem 2 is proved in Section 5. In the unweighted case it is known [7, Sec. 3] that
there are exactly 23 relevant small step quadrant walk models with finite group. Theorem 2
is proved in [7] for 22 of these 23 models. For the remaining model, known as Gessel’s walk,
Theorem 2 is proved in [5] (note that Gessel’s model is the unweighted variant of the third
example in Figure 2). See [4] for closely related results. A weaker version of Theorem 2,
when t is fixed in the unit interval (0, 1), is proved in [17]. Back to the weighted case,
a weaker version of Theorem 2 is given in [14, Thm 4.1]. It is proved that if the group
is finite, then for any fixed t ∈ (0, 1), Q(x, y, t) satisfies a linear differential equation in
C(x, y) in each of the two variables x and y. In this sense, our Theorem 2 is a refinement
of [14, Thm 4.1], including the last time variable t. As we could mention above, there is
no exhaustive description of the parameters di,j that leads to a finite group. In this sense,
Theorem 2 holds independently of an explicit description of the model, the finite group
hypothesis is sufficient.

Our next result shows that in the infinite group case the generating function does not
satisfy any differential equation.

Theorem 3. Assume that the group is infinite. Then Q(x, y, t) does not satisfy any (non-
trivial) linear differential equation with coefficients in C(x, y, t), in any of its variables.

The proof of non-D finiteness in x and y is inspired by the one used in [22]. On the other
hand, the non-D finiteness in the variable t is more subtle and requires a careful study of
the rationality of the periods naturally associated with the model. See Section 6 for more
details.

In the next result we give a refinement of Theorem 2 under the additional assumption
that the orbit-sum is zero. By definition, denoting the group by G and the signature of a
given element g ∈ G by sign(g), the orbit-sum of the function (x, y) 7→ xy is the quantity

(3) O(x, y) =
∑
g∈G

sign(g)g(xy).

For example, the orbit-sum is zero for the last two models in Figure 2, and non-zero for
the first two models.

Theorem 4. Assume that the group of the walk is finite. Then Q(x, y, t) is algebraic over
C(x, y, t) if and only if O(x, y) = 0.
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Note that by Theorem 1 when the group is infinite, the series Q(x, y, t) is transcendental.
Theorem 4 will be shown in Section 4. In the unweighted case, Theorem 4 follows from
[7, 5, 3]. See also [17]. In the weighted case, a weak variant of Theorem 4 (for fixed t) is
proved in [14, Thm 4.1]. In principle, Tutte’s invariants methodology developed in [3] in
the unweighted case also applies to weighted models, and should lead to algebraic results
in three variables; however, to our knowledge this has not been worked out.

In order to present our last main result (Theorem 10), we need to comment on general
techniques to approach Theorems 2 and 4. Looking at the literature, the techniques
used are mostly quite different in the D-finite case (Theorem 2) and the algebraic case
(Theorem 4). For example, in the D-finite case, the reference [7] uses explicit expressions
for the generating function as positive parts of rational functions (see [7, Prop. 8], see also
[9]), from which the D-finiteness follows from general theoretical arguments. On the other
hand, again in [7], explicit algebraic expressions are obtained from a subtle half-orbit-sum
technique (see [7, Sec. 6]). Similarly, Tutte’s invariant method of [3] applies only in the
zero-orbit-sum case, while the techniques of [4] leading to hypergeometric expressions for
Q(x, y, t) apply only in the D-finite case; and so on.

Remarkably, our techniques for proving Theorems 2 and 4 are similar and rely on a two-
step approach. First, we will use classical results [16, 23, 14, 11] which give expressions
for the generating functions Q(x, y, t) in terms of elliptic functions (after lifting to the
complex plane). Second, we will use a single technical result about elliptic functions, given
as Theorem 10. Although it is a little too technical to be presented in this introduction,
we can give the intuitive idea. Theorem 10 can be interpreted as a refinement of one of the
most classical statements in elliptic function theory, which asserts that any elliptic function
is determined by its poles and the principal parts at its poles, up to some additive constant.
More specifically, we will show that controlling the arithmetic nature (i.e., algebraicity or
D-finiteness) of the poles and principal parts of a given elliptic function yields a global
control of the arithmetic nature of the function itself.

It is worth mentioning that there is a result similar to Theorem 1 for D-algebraicity, see
[11, Thm 1.1], [12, Thm 2], and [18, Thm 3.8] for more details. It is proved in [11, 12, 18]
that the following are equivalent:

• There exists a decoupling function.
• The series Q(x, y, t) satisfies an algebraic differential equation with coefficients in
C(x, y, t), in the variable x.

• The series Q(x, y, t) satisfies an algebraic differential equation with coefficients in
C(x, y, t), in the variable y.

• The series Q(x, y, t) satisfies an algebraic differential equation with coefficients in
C(x, y, t), in the variable t.

2. Preliminary results on the kernel curve and generating functions

Functional equation. In this section we recall some well-known facts about the
generating function counting weighted walks in the quarter plane. We follow the
presentation of [13]; for more details and precise references we refer to [13, 11].
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Let K = Q(di,j) be the field generated by the weights di,j . The kernel of the walk is the
bivariate polynomial defined by K(x, y, t) := xy(1 − tS(x, y)), where S(x, y) denotes the
jump polynomial

(4) S(x, y) =
∑

−1⩽i,j⩽1

di,jx
iyj =

A−1(x)

y
+A0(x) +A1(x)y =

B−1(y)

x
+B0(y) +B1(y)x,

with Ai(x) ∈ x−1K[x] and Bi(y) ∈ y−1K[y]. The kernel plays an important role in the
so-called kernel method. Define further the sectional generating functions

(5) F 1(x, t) := K(x, 0, t)Q(x, 0, t) and F 2(y, t) := K(0, y, t)Q(0, y, t).

As first proved in [7] in the unweighted framework, and then used e.g. in [14] in the weighted
case, the following functional equation holds:

Lemma 5. The generating function Q(x, y, t) satisfies the functional equation

(6) K(x, y, t)Q(x, y, t) = F 1(x, t) + F 2(y, t)−K(0, 0, t)Q(0, 0, t) + xy.

Kernel curve. By definition, the kernel curve Et is the complex affine algebraic curve
defined by

Et =
{
(x, y) ∈ C× C | K(x, y, t) = 0

}
.

We shall consider a compactification of this curve. We let P1(C) be the complex projective
line, that is the quotient of (C× C) \ {(0, 0)} by the equivalence relation

(x0, x1) ∼ (x′0, x
′
1) ⇐⇒ ∃λ ∈ C∗, (x′0, x

′
1) = λ(x0, x1).

The equivalence class of (x0, x1) ∈ (C× C) \ {(0, 0)} is denoted by [x0 : x1] ∈ P1(C). The
map x 7→ [x : 1] embeds C inside P1(C). It is not surjective: its image is P1(C) \ {[1 : 0]};
the missing point [1 : 0] is usually denoted by ∞. Now, we embed Et inside P1(C)×P1(C)
via (x, y) 7→ ([x : 1], [y : 1]).

The kernel curve Et is the closure of this embedding of Et. In other words, Et is the
algebraic curve defined by

Et = {([x0 : x1], [y0 : y1]) ∈ P1(C)× P1(C) | K(x0, x1, y0, y1, t) = 0},

where K(x0, x1, y0, y1, t) is the following degree-two homogeneous polynomial

K(x0, x1, y0, y1, t) = x21y
2
1K

(
x0
x1
,
y0
y1
, t

)
= x0x1y0y1 − t

∑
0⩽i,j⩽2

di−1,j−1x
i
0x

2−i
1 yj0y

2−j
1 .

To simplify our notation, we will denote by K(x, y, t) the polynomial K(x0, x1, y0, y1, t).
We have basically three different options:

• The kernel curve is degenerate, in the sense of [11, Def. 2.2], and in this case the
generating series is algebraic over C(x, y, t), see [11, Lem. 2.4].

• The kernel curve has genus zero and either the generating series is algebraic over
C(x, y, t), or is differentially transcendental in all its variables, see [11, Lem. 2.6].

• Et is an elliptic curve.
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So we only need to focus on the situation where Et is an elliptic curve. Necessary and
sufficient conditions on di,j to ensure that Et is an elliptic curve are given in [11, Prop. 2.5].

In this situation, see [11, Prop. 2.5], A1(x), A−1(x), B1(y), B−1(y) are not identically
zero.

Group of the walk. For a fixed value of x, consider the two roots y−, y+ of y 7→ K(x, y, t).
Then, (x, y±) ∈ Et. We consider the involutive function

ι1 : Et → Et

that sends (x, y−) to (x, y+). Similarly, we define ι2 that permutes the x-roots. Let us
finally define

σ = ι2 ◦ ι1.
Let G be the group generated by the involutions ι1 and ι2, and let Gt be the specialization
of this group for a fixed value of 0 < t < 1.

In the unweighted case, the algebraic nature of the generating series depends on whether
σ has finite or infinite order, as implied by a combination of several works [25, 7, 5, 22].
More precisely, G is finite if and only if the generating series is D-finite, i.e., it satisfies
a non-trivial linear differential equation with coefficients in C(x, y, t) in each of its three
variables. Also note that if G is infinite, then Gt can be either finite or infinite.

As in Section 1, see (3), we define the orbit-sum O(x, y) =
∑

g∈G sign(g)g(xy), where in
the above, sign(g) = 1 (resp. −1) if the number of elements ι1, ι2 used to write g is even
(resp. odd).

Parametrization. The elliptic curve Et is biholomorphic to C/
(
ω1(t)Z+ω2(t)Z

)
for some

lattice ω1(t)Z+ ω2(t)Z of C via the
(
ω1(t)Z+ ω2(t)Z

)
-periodic holomorphic map

Λ : C → Et

ω 7→
(
x(ω, t), y(ω, t)

)
,

where x and y are rational functions of ℘ and its derivative ∂ω℘, and ℘ is the Weierstrass
function associated with the lattice ω1(t)Z+ ω2(t)Z:

℘(ω, t) =
1

ω2
+

∑
(ℓ1,ℓ2)∈Z2\{(0,0)}

(
1(

ω + ℓ1ω1(t) + ℓ2ω2(t)
)2 − 1(

ℓ1ω1(t) + ℓ2ω2(t)
)2
)
.

The maps ι1, ι2 and σ may be lifted to the ω-plane C. We denote these lifts by ι̃1, ι̃2 and
σ̃, respectively. So we have the commutative diagrams

Et
ιk // Et

C

Λ

OO

ι̃k

// C

Λ

OO Et
σ // Et

C

Λ

OO

σ̃
// C

Λ

OO

The lifted maps are of the form

ι̃1(ω) = −ω, ι̃2(ω) = −ω + ω3 and σ̃(ω) = ω + ω3,

for some ω3(t) ∈ (0, ω2(t)). We now give explicit expressions for the periods
ω1(t), ω2(t), ω3(t) and the coordinates x(ω, t), y(ω, t). For [x0 : x1] in P1(C), we
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denote by ∆1([x0 : x1], t) the discriminant of the degree-two homogeneous polynomial
y 7→ K(x0, x1, y, 1, t). Let us write

∆1([x0 : x1], t) =

4∑
i=0

αi(t)x
i
0x

4−i
1 .

The discriminant ∆1([x0 : x1], t) admits four distinct continuous real roots a1(t), . . . , a4(t).
They are numbered so that the cycle of P1(R) from −1 to ∞ and from −∞ to −1 crosses
them in the order a1(t), . . . , a4(t). One of them, say a(t), is different from [1 : 0] for all
t ∈ (0, 1). Since the discriminant has coefficients in K(t), we deduce that a(t) (and the
other ai(t) as well) are algebraic over C(t).

Similarly, we denote by b(t) a continuous real root of ∆2([y0 : y1], t), the discriminant
x 7→ K(x, 1, y0, y1, t), that is not [1 : 0]. For similar reasons, b(t) is algebraic over C(t).

Proposition 6. For i = 1, 2, let us set Di(⋆, t) := ∆i([⋆ : 1], t). An explicit expression for
the periods is given by the elliptic integrals

ω1(t) = i

∫ a4(t)

a3(t)

dx√
|D1(x, t)|

∈ iR>0 and ω2(t) =

∫ a1(t)

a4(t)

dx√
D1(x, t)

∈ R>0.

An explicit expression of the map Λ(ω, t) = (x(ω, t), y(ω, t)) is given by

• x(ω, t) =
[
a(t) +

D′
1(a(t),t)

℘(ω,t)− 1
6
D′′

1 (a(t),t)
: 1
]
;

• y(ω, t) =
[
b(t) +

D′
2(b(t),t)

℘(ω−ω3(t)/2,t)− 1
6
D′′

2 (b(t),t)
: 1
]
.

An explicit expression of ω3(t) is given by

ω3(t) =

∫ a1(t)

x±(b1(t),t)

dx√
D1(x, t)

∈ (0, ω2(t)),

and x±(y, t) are the two roots of K(x±(y, t), y, t) = 0.

Analytic continuation of the generating functions. Let us now focus on the analytic
continuation of the generating functions F 1 and F 2 introduced in (5). Let us fix t ∈ (0, 1).
The generating function Q(x, y, t) converges for |x|, |y| < 1. The projection of this set
inside P1(C) × P1(C) has a non-empty intersection with the kernel curve Et. In virtue
of (6), we then find for |x|, |y| < 1 and (x, y) ∈ Et,

F 1(x, t) + F 2(y, t)−K(0, 0, t)Q(0, 0, t) + xy = 0.

Since the series F 1(x, t) and F 2(y, t) converge for |x| and |y| < 1 respectively, we can
continue F 1(x, t) for (x, y) ∈ Et and |y| < 1 with the formula:

F 1(x, t) = −F 2(y, t) +K(0, 0, t)Q(0, 0, t)− xy.

We continue F 2(y, t) for (x, y) ∈ Et and |x| < 1 similarly.

Lemma 7 (Lemma 27 in [11]). There exists a connected set O ⊂ C such that

(i) Λ(O) = {(x, y) ∈ Et : |x| < 1 or |y| < 1};
(ii) σ̃−1(O) ∩ O is non-empty;
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(iii)
⋃
ℓ∈Z

σ̃ℓ(O) = C.

Furthermore, there exist functions ω 7→ rx(ω, t) and ω 7→ ry(ω, t) which are meromorphic
on the connected domain O and such that

(7)

{
rx(ω, t) = F 1(x(ω, t), t) = K(x(ω, t), 0, t)Q(x(ω, t), 0, t),

ry(ω, t) = F 2(y(ω, t), t) = K(0, y(ω, t), t)Q(0, y(ω, t), t).

With (ii) and (iii) of Lemma 7, we extend rx(ω, t) and ry(ω, t) as meromorphic functions
on C, where they satisfy the equations

rx(ω + ω3(t), t) = rx(ω, t) + bx(ω, t),(8)

rx(ω + ω1(t), t) = rx(ω, t),(9)

ry(ω + ω3(t), t) = ry(ω, t) + by(ω, t),(10)

ry(ω + ω1(t), t) = ry(ω, t),

rx(ω, t) + ry(ω, t) = K(0, 0, t)Q(0, 0, t)− x(ω, t)y(ω, t),(11)

where

(12) bx(ω, t) = y(−ω, t)
(
x(ω, t)−x(ω+ω3(t), t)

)
and by(ω, t) = x(ω, t)

(
y(ω, t)−y(−ω, t)

)
.

3. Algebraic nature of elliptic functions depending on a parameter

In elliptic functions theory, it is well known that any elliptic function is determined by
its poles and the principal parts at its poles, up to some additive constant, see e.g. [20,
Thm 3.14.4]. In this section, we will prove a refinement of this result, see Theorem 10 below.
More specifically, we will show that controlling the arithmetic nature (i.e., algebraicity, D-
finiteness or differential algebraicity) of the poles and principal parts of a given elliptic
function yields a global control of the arithmetic nature of the function itself. Theorem 10
is not only interesting in itself, it is also, as we shall see, perfectly adapted to the setting
of random walks in the quadrant, in the sense that one single statement will capture
various situations occurring in the theory (algebraic, D-finite and D-algebraic generating
functions).

Let P be the field of germs of meromorphic Puiseux series at a given point (ω0, t0) ∈
C× (0, 1). Let

x := C(x(ω, t), t).
Let k be an algebraically closed field and R be a ring such that

x ⊂ k ⊂ R ⊂ P.

The associated constant fields are denoted by xt, kt and Rt:

xt = C(t), kt = {a ∈ k : ∂ω(a) = 0} and Rt = {a ∈ R : ∂ω(a) = 0}.

The aim of this article is to determine whether certain functions lie in R in the following
situations:

• The algebraic case: k = R = x;
• The D-finite case: k = x, R is the ring of functions that are solutions to linear ∂ω

and ∂t-differential equations with coefficients in x;
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• The D-algebraic case: k = R is the field of functions that are solutions to algebraic
∂ω and ∂t-differential equations with coefficients in x.

The purpose of defining k separately from R is that some functions we will be considering
will sometimes involve ratios, so to prove that the ratio lies in R it will be sufficient to
prove that the numerator and denominator both lie in k (or that the numerator lies in R

while the denominator lies in k).
Let (℘)t∈(0,1) be a family of Weierstrass functions. The function ℘ depends on two

variables (ω, t); let g2, g3 be the invariants (which depend upon t). Let us now specify the
t-dependency of these functions.

Assumption 8. ℘ ∈ k and g2, g3 ∈ kt.

Lemma 9. Let k ⩾ 0. Then ∂kω℘ ∈ k. Moreover, if ℘(a(t), t) ∈ kt for some quantity a(t),
then ∂kω℘(a(t), t) ∈ kt.

Proof. The first item follows from Assumption 8 together with the classical differential
equation satisfied by ℘:

(13) (∂ω℘)
2 = 4℘3 − g2℘− g3.

We prove the second statement by induction, the case k = 0 is trivial and the case k = 1

following from Assumption 8 and (13). For the inductive step, we take the kth derivative
of both sides of (13) and rearrange the result so as to express ∂k+1

ω ℘(a(t), t) as a rational
function of g2, g3 and the lower order derivatives ∂jω℘(a(t), t), 0 ⩽ j ⩽ k. This implies that
if these lower order derivatives belong to kt, then so does ∂k+1

ω ℘(a(t), t). □

Lemma 9 suggests to introduce the set Xt of functions b : (0, 1) → C, defined by

(14) Xt :=
{
b(t) : ℘(b(t), t) ∈ kt ∪ {∞}

}
.

Recall that a meromorphic function admits a Laurent series expansion
∑∞

ℓ=ν aℓ(ω− a)ℓ

at any given point a ∈ C. By definition, its principal part at a is the rational function∑−1
ℓ=ν aℓ(ω − a)ℓ (with the convention that the sum is 0 if ν ⩾ 0). The coefficients of the

principal part at a are the complex numbers aν , . . . , a−1. Given a meromorphic function on
C, the coefficients of its principal parts are the collection of all coefficients of the principal
parts at its poles. If this function is elliptic, the coefficients of its principal parts form a
finite set.

The following theorem is one of our main technical results.

Theorem 10. For t ∈ (0, 1), let ω 7→ f(ω, t) be a meromorphic function on C. Let us
assume that Assumption 8 holds, and that:

(i) For all t ∈ (0, 1), ω 7→ f(ω, t) ∈ C(℘, ∂ω℘);
(ii) The poles of ω 7→ f(ω, t) belong to Xt;
(iii) The coefficients of the principal parts of ω 7→ f(ω, t) belong to Rt;
(iv) There exists a(t) ∈ Xt such that f(a(t), t) ∈ Rt.

Then f(ω, t) ∈ R.
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Proof. Let us begin with the case where for all t ∈ (0, 1), f(ω, t) is an even function of ω.
Any even elliptic function being a rational function of the Weierstrass function ℘ with the
same periods (see, e.g., [2, p. 44]), we have a decomposition of the form

(15) f(ω, t) = c(t) +

n∞∑
i=1

ai,∞(t)℘(ω, t)i +
∑
j

nj∑
i=1

ai,j(t)(
℘(ω, t)− ℘(bj(t), t)

)i ,
where

• c(t), ai,∞(t), ai,j(t) are functions that do not depend upon ω;
• bj(t) ∈ Xt \ {∞} are the poles of ω 7→ f(ω, t);
• the sum

∑
j is finite.

We first prove that for all 1 ⩽ i ⩽ n∞, ai,∞(t) ∈ Rt. To that purpose, write the series
expansion of the ℘-Weierstrass function at ω = 0:

(16) ℘(ω, t) =
1

ω2
+

∞∑
k=2

fk(t)ω
k.

If n∞ = 0 there is nothing to prove. Assume that n∞ ̸= 0. Plugging (16) in the identity
(15), we obtain that f(ω, t) is equivalent to an∞,∞(t)ω−2n∞ as ω goes to 0. Therefore,
using our assumption (iii), it implies that an∞,∞(t) is in Rt.

We now look at cases 1 ⩽ i < n∞. It is well known that the coefficients fk(t) in (16)
are all polynomials with rational coefficients in the invariants g2 and g3, see for instance
the proof of Theorem 3.16.2 in [20]. Accordingly, using Lemma 9, all fk(t) belong to kt.
This shows that for 1 ⩽ i < n∞, the coefficient of ω−2i in the series expansion of f(ω, t)
in (15) at ω = 0 has the form ai,∞(t) + fi,∞, where fi,∞ ∈ kt(ai+1,∞(t), . . . , an∞,∞(t)).
By condition (iii), we know that the previous coefficients all lie in Rt, so it follows by a
decreasing induction that for all 1 ⩽ i ⩽ n∞, ai,∞(t) ∈ Rt.

We now prove that for all j and all 1 ⩽ i ⩽ nj , ai,j(t) ∈ Rt. The reasoning is very
similar to the previous case (j = ∞), though it has some particularities, which lead us to
present the argument in detail.

For a fixed j, let ℓ ⩾ 1 be minimal such that ∂ℓω℘(bj(t), t) is not identically zero (by
classical properties of Weierstrass functions, ℓ ∈ {1, 2}), so that we may write

(17)
1(

℘(ω, t)− ℘(bj(t), t)
)i = ℓi∑

k=1

cj,k(t)

(ω − bj(t))k
+O(1),

where the cj,k(t) are such that

cj,k(t) ∈ Q
(
∂ω℘(bj(t), t), . . . , ∂

ℓi
ω ℘(bj(t), t)

)
⊂ Rt.

The order of the pole of f(ω, t) at bj(t) is ℓnj , see (15), so a one-term asymptotic expansion
(17) gives the dominant term in the principal part of f at bj(t). As a consequence, if i = nj
in (15), the coefficients of the principal parts of ω 7→ f(ω, t) being in Rt (Assumption (iii)
of Theorem 10), and since by Lemma 9, ∂kω℘(bj(t), t) ∈ kt, we deduce that anj ,j ∈ Rt.

If now 1 ⩽ i < nj , one needs to go further and to look at the complete expansion (17).
The coefficient of the term (ω − bj(t))

−ℓi in the Laurent expansion of f(ω, t) admits the
form cj,ℓi(t) + fi,j , where fi,j ∈ kt(ai+1,j(t), . . . , anj ,j(t)). By a decreasing induction, we
deduce that for all 1 ⩽ i ⩽ nj , ai,j(t) ∈ Rt.
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Recall that by condition (iv), there is some function a(t) ∈ Xt such that f(a(t), t) ∈ Rt.
If a(t) happens to be a pole of ω 7→ ℘(ω, t), substituting ω = a(t) into (15) then yields
a1,∞(t) = · · · = an∞,∞(t) = 0 and c(t) ∈ Rt. When a(t) is not a pole, then ℘(a(t), t) ∈ kt

and substituting ω = a(t) into (15) gives

c(t) +

n∞∑
i=1

ai,∞(t)℘(a(t), t)i +
∑
j

nj∑
i=1

ai,j(t)(
℘(a(t), t)− ℘(bj(t), t)

)i ∈ Rt.

Moreover, every term in this expression apart from c(t) belongs to the ring Rt, so we must
have c(t) ∈ Rt. In both cases, we have proved that c(t) ∈ Rt.

Summing up, we have shown that every term in the right-hand side of (15) belongs to
Rt(℘(ω, t)). Since ℘(ω, t) ∈ k ⊂ R by Assumption 8, we find that f(ω, t) belongs to R.
This concludes the proof in the even case.

We now consider the case where ω 7→ f(ω, t) is odd for all t ∈ (0, 1). Then the function
∂ω℘(ω, t)

−1f(ω, t) is even and may be written in the same form as (15), so that we have

f(ω, t) =

n∞∑
i=0

ai,∞(t)∂ω℘(ω, t)℘(ω, t)
i +
∑
j

nj∑
i=1

ai,j(t)∂ω℘(ω, t)(
℘(ω, t)− ℘(bj(t), t)

)i ,
where the i = 0 term in the first sum above replaces the c(t) term occurring in (15). Similar
computations as in the even case give that f(ω, t) belongs to R.

We finally consider the general case. For any integer n,
(
℘(ω, t)−℘(a(t), t)

)n ∈ k. Then,
f(ω, t) ∈ R if and only if f(ω, t)

(
℘(ω, t)− ℘(a(t), t)

)n ∈ R. So without loss of generality,
we may reduce to the case where f(a(t), t) = f(−a(t), t) = 0.

Classically, we write
f(ω, t) = f+(ω, t) + f−(ω, t),

where f+(ω, t) = f(ω,t)+f(−ω,t)
2 is even and f−(ω, t) = f(ω,t)−f(−ω,t)

2 is odd. Given that
conditions (i)–(iii) hold for f(ω, t), they hold as well for f(−ω, t), and therefore for f+(ω, t)
and f−(ω, t). With f(±a(t), t) = 0, we find f±(a(t), t) = 0. Then our condition (iv) also
holds. From the even and odd cases of this theorem, we deduce that f±(ω, t) ∈ R, so
f(ω, t) = f+(ω, t) + f−(ω, t) ∈ R, as required. This completes the proof. □

4. Algebraic case and transformation theory of elliptic functions

The main objective of this section is to prove Theorem 4. This result states that, under
the assumption that the group of the walk is finite, Q(x, y, t) is algebraic over C(x, y, t) if
and only if the orbit-sum O(x, y) defined in (3) is identically zero.

4.1. Strategy of proof. It will be convenient to write the orbit-sum directly as a function
of ω and t, for any ω ∈ C and t ∈ (0, 1):

(18) Ox(ω, t) = O
(
x(ω, t), y(ω, t)

)
.

Obviously, the hypothesis on the orbit-sum implies that Ox(ω, t) = 0. Note that [14,
Thm 4.1] proves that for t0 ∈ (0, 1) fixed, Q(x, y, t0) is algebraic over C(x, y) if and only if
Ox(ω, t0) is identically zero. Hence, ifQ(x, y, t) is algebraic over C(x, y, t) then Ox(ω, t) = 0

for all t ∈ (0, 1). The following lemma proves that the formal orbit-sum O(x, y) in (3) is
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zero as well, proving the “if part” in Theorem 4. In the remaining of Section 4, we will
thus concentrate on the “only if” part.

Lemma 11. Assume that for all t ∈ (0, 1), the orbit-sum O(x, y) vanishes on Et. Then
O(x, y) is identically zero on C2.

Proof. Let us fix t ∈ (0, 1) and x ∈ C. Let y±(x, t) be such that K(x, y±(x, t), t) = 0. Note
that the roots y±(x, t) depend on t. We may restrict (0, 1) to an interval U , and without
loss of generality reduce to the case where for such x fixed, y±(x, t) depends continuously
upon t ∈ U . In particular, {y+(x, t)|t ∈ U} admits an infinite number of values. We now
use the fact that y 7→ O(x, y) is a rational function. Since for all t ∈ U , O(x, y+(x, t)) = 0

we deduce that y 7→ O(x, y) has an infinite number of roots, it is therefore 0. Since x is
arbitrary, we deduce that O(x, y) is zero. □

Recall that the period ω1 is purely imaginary, while ω2 and ω3 are positive real numbers,
see Section 2. Moreover, we consider the transformation σ̃ from Section 2 satisfying
σ̃(ω) = ω + ω3. Since the group is finite, there exists a non-zero ℓ ∈ N such that σ̃ℓ

leaves invariant the lattice Λ = ω1Z + ω2Z. Hence ℓω3 ∈ Λ, so there exists a positive
number k such that

(19)
ω3

ω2
=
k

ℓ
.

We may further assume that k and ℓ are coprime.
Let us iterate (8) and (10) to deduce that

rx(ω + ℓω3(t), t) = rx(ω, t) +Ox(ω, t),(20)

ry(ω + ℓω3(t), t) = ry(ω, t) +Oy(ω, t),

where

(21) Ox(ω, t) =

ℓ−1∑
j=0

bx(ω + jω3(t), t) and Oy(ω, t) =

ℓ−1∑
j=0

by(ω + jω3(t), t)

are the orbit-sum (18) and its y-analogue. It is shown in the proof of [14, Thm 4.1] that
Ox(ω, t) = −Oy(ω, t), so the orbit-sums Ox and Oy are simultaneously zero or non-zero.

In this section we prove that if the orbit-sum is zero, then Q(x, y, t) is algebraic over
C(x, y, t). It suffices to show that if for all t ∈ (0, 1), Ox(ω, t) = Oy(ω, t) = 0 then Q(x, y, t)

is algebraic over C(x, y, t). Using (6), it suffices to show that F 1 and F 2 (defined in (5))
are algebraic over C(x, t) and C(y, t), respectively (since K(0, 0, t)Q(0, 0, t) = F 1(0, t) =

F 2(0, t)). We will only prove the result for F 1(x, t), as the other case would be derived
similarly, by symmetry.

For j, k ∈ N and non-zero, let ℘(j,k)(ω, t) be the Weierstrass function with periods
(jω1(t), kω2(t)), with invariants denoted by g(j,k)2 and g(j,k)3 .

Assume that for all t ∈ (0, 1), Ox(ω, t) = Oy(ω, t) = 0. By (20), the analytic
continuation rx(ω, t) of F 1(x(ω, t), t) is (ω1(t), kω2(t))-elliptic, with ℓω3 = kω2. We want
to apply Theorem 10 with k = R = x and f = rx.

One key point (which is independent of the orbit-sum being zero and will be true in
the D-finite case presented in Section 5 as well) is to prove that Assumption 8 is satisfied,
namely:
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Theorem 12. Assume that the group of the walk is finite. Then ℘(1,k) is algebraic over x
and g(1,k)2 , g

(1,k)
3 are algebraic over C(t).

4.2. Preliminary results on transformed Weierstrass functions. Theorem 12 will
be obtained as a direct consequence of Lemmas 20 and 21 below. In order to prove these
lemmas, we will first prove several intermediate results, and will show successively that
g
(1,1)
2 , g

(1,1)
3 ∈ C(t) (see Lemma 13), ℘(1,1)(ω, t) ∈ x (Lemma 14), g(k,k)2 , g

(k,k)
3 ∈ C(t)

(Lemma 16) and finally ℘(k,k)(ω, t) ∈ x (Lemma 18). It is worth mentioning that while
some of the forthcoming lemmas are specific to our context, some others are very general
statements on elliptic functions. Note that in Section 4.2 we do not make the assumption
that the orbit-sum is 0 (nor that the group is finite), so we will be able to reuse these
results in Section 5.

Lemma 13. The invariants g(1,1)2 and g(1,1)3 are algebraic over C(t).

Proof. See [14, (2.7) and (2.8)]. □

Lemma 14. The elliptic functions ℘(1,1)(ω, t) and ∂ω℘(1,1)(ω, t) are algebraic over x.

Proof. By Proposition 6, there exists a rational function f with coefficients in C(t) such
that ℘(1,1)(ω, t) = f(x(ω, t)), so ℘(1,1) is algebraic over x. By Lemma 13 and Equation (13),
it follows that ∂ω℘(1,1)(ω, t) is algebraic over x. □

Lemma 15. For any function h(ω, t) algebraic over x, the same holds for ∂ωh(ω, t).

Proof. Assume h is non-constant in ω, otherwise the statement is clear. Let P (h, x, t) be
a non-zero polynomial satisfying P

(
h(ω, t), x(ω, t), t

)
= 0, of minimal degree in its first

variable. Taking the derivative with respect to ω yields

∂ωh(ω, t)Ph

(
h(ω, t), x(ω, t), t

)
+ ∂ωx(ω, t)Px

(
h(ω, t), x(ω, t), t

)
= 0,

with the notation P⋆ = ∂⋆P . By minimality of P , Ph is non-zero. Hence, ∂ωh(ω,t)
∂ωx(ω,t)

is a
rational function of h(ω, t), x(ω, t) and t, so it is algebraic over x. Applying this result
to the specific case h = ℘(1,1), we obtain that ∂ω℘(1,1)(ω,t)

∂ωx(ω,t)
is algebraic over x. Along with

Lemma 14, this shows that ∂ωx(ω, t) is algebraic over x, and so ∂ωh(ω, t) itself is algebraic
over x. □

Lemma 16. We have k4g(k,k)2 = g
(1,1)
2 and k6g

(k,k)
3 = g

(1,1)
3 . The invariants g(k,k)2 and

g
(k,k)
3 are thus algebraic over C(t) by Lemma 13.

Proof. Let Λ be the lattice ω1Z+ ω2Z. We have

g
(k,k)
2 = 60

∑
λ∈kΛ\{(0,0)}

1

λ4
= 60

∑
λ∈Λ\{(0,0)}

1

(kλ)4
=
g
(1,1)
2

k4
.

The proof for g(k,k)3 is similar. □

We will use the following classical lemma several times.

Lemma 17. For any integers j1, j2 ⩾ 1 and any λ ∈ Q \ {0}, the function ω 7→
℘(j1,j2)(λω, t) is algebraic over C

(
g
(j1,j2)
2 , g

(j1,j2)
3 , ℘(j1,j2)(ω, t)

)
.
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Let us first recall three identities satisfied by the Weierstrass elliptic function, namely,
a second order differential equation [20, (3.16.3)], the addition formula [20, (3.17.9)] and
the duplication formula [20, (3.17.10)]:

∂2ω℘(ω) = 6℘2(ω)− g2
2
,(22)

℘(mω) + ℘(nω) + ℘((m+ n)ω) =
1

4

(
∂ω℘(mω)− ∂ω℘(nω)

℘(mω)− ℘(nω)

)2

,(23)

℘(2ω) + 2℘(ω) =
1

4

(
∂2ω℘(ω)

∂ω℘(ω)

)2

.(24)

Proof of Lemma 17. The formula (24) implies that ℘(j1,j2)(2ω, t) is algebraically related
to ℘(j1,j2)(ω, t) over the field C

(
∂ω℘

(j1,j2)(ω, t), ∂2ω℘
(j1,j2)(ω, t)

)
. Using the differential

equations (13) and (22) satisfied by ℘(j1,j2), we obtain that the first and second derivatives
of ℘(j1,j2)(ω, t) are algebraically related to ℘(j1,j2)(ω, t) over C(g(j1,j2)2 , g

(j1,j2)
3 ). As a

consequence, Lemma 17 is proved for λ = 2.
We now prove by induction that for all integers m ⩾ 1, ℘(j1,j2)(mω, t) is algebraically

related to ℘(j1,j2)(ω, t) over C
(
g
(j1,j2)
2 , g

(j1,j2)
3

)
. To that purpose, use the addition formula

(23) with n = 1 to deduce that if ℘(j1,j2)(mω, t) with m > 1 is algebraically related to
℘(j1,j2)(ω, t) over C

(
g
(j1,j2)
2 , g

(j1,j2)
3

)
, the same holds for ℘(j1,j2)((m + 1)ω, t). Note that

℘(j1,j2)(−mω, t) = ℘(j1,j2)(mω, t) so that the result is proved for all λ ∈ Z.
Finally, for m,n ̸= 0, the above result with ω,m replaced by mω

n , n implies that
℘(j1,j2)(mω, t) is algebraically related to ℘(j1,j2)(mn ω, t) over C

(
g
(j1,j2)
2 , g

(j1,j2)
3

)
. Hence, since

algebraic dependency is a transitive relation, for all m,n ̸= 0, ℘(j1,j2)(mn ω, t) is algebraically
related to ℘(j1,j2)(ω, t) over C

(
g
(j1,j2)
2 , g

(j1,j2)
3

)
. The proof is complete. □

Lemma 18. The elliptic functions ℘(k,k)(ω, t) and ∂ω℘(k,k)(ω, t) are algebraic over x.

Proof. Using a reasoning similar as in Lemma 16, we obtain that

℘(k,k)(kω, t) =
1

k2
℘(1,1)(ω, t).

By Lemma 14, ℘(k,k)(kω, t) is algebraic over x. It then follows from Lemma 17 that the
function ℘(k,k)(ω, t) is algebraic over x. Finally, since ∂ω℘(k,k)(ω, t) is algebraic over the
field C

(
g
(k,k)
2 , g

(k,k)
3 , ℘(k,k)(ω, t)

)
, the result for ∂ω℘(k,k)(ω, t) follows from Lemma 16. □

Proving the algebraicity of ℘(1,k) happens to be more delicate. We first need to show
the algebraicity of values of ℘(k,k) at rational multiples of ω1 and ω2.

Lemma 19. For all λ ∈ Q ∩ (0, k), the quantities ℘(k,k)(λω1(t), t) and ∂ω℘(k,k)(λω1(t), t)

are algebraic over C(t). A similar statement holds when ω1 is replaced by ω2.

Proof. The proof when ω1 is replaced by ω2 is similar, so we will focus on ω1. Since
∂ω℘

(k,k)(kω1(t)/2, t) = 0, it follows from the differential equation satisfied by ℘(k,k) that
℘(k,k)(kω1(t)/2, t) is algebraic over C(g(k,k)2 , g

(k,k)
3 ), and hence over C(t) by Lemma 16.

Let λ ∈ Q ∩ (0, k). By Lemma 17 the function x 7→ ℘(k,k)(xλω1(t), t) is algebraic over

(25) C
(
g
(k,k)
2 , g

(k,k)
3 , ℘(k,k)(xkω1(t)/2, t)

)
.
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Hence, there exists some non-trivial polynomial Px with coefficients in (25) satisfying

(26) Px

(
℘(k,k)(xλω1(t), t)

)
= 0

for all x. We multiply Px by an appropriate power of x − 1, so that at least one of its
coefficients does not vanish at x = 1 and none of them has a pole at x = 1. At x = 1,
the relation (26) reduces to a non-trivial polynomial of ℘(k,k)(λω1(t), t) with coefficients in
C
(
t, g

(k,k)
2 , g

(k,k)
3 , ℘(k,k)(kω1(t)/2, t)

)
. Since g(k,k)2 , g(k,k)3 and ℘(k,k)(kω1(t)/2, t) are algebraic

over C(t), this implies that ℘(k,k)(λω1(t), t) is also algebraic over C(t). This proves the
lemma for ℘(k,k)(λω1(t), t). Finally, the result follows as ∂ω℘(k,k)(λω1(t), t) is algebraic
over the field

C
(
g
(k,k)
2 , g

(k,k)
3 , ℘(k,k)(λω1(t), t)

)
. □

Lemma 20. The elliptic functions ℘(1,k)(ω, t) and ∂ω℘(1,k)(ω, t) are algebraic over x.

Proof. Let us recall the classical identity

(27)
k−1∑
ℓ=0

℘(k,k)(ω + ℓω1(t), t) = ℘(1,k)(ω, t) +
k−1∑
ℓ=1

℘(k,k)(ℓω1(t), t),

which is obtained as follows. Both sides are (ω1(t), kω2(t))-periodic with only potential
poles at ω1(t)Z + kω2(t)Z. The expansion at ω = 0 of both sides is ω−2 + O(ω), proving
that the difference

d(ω) :=
k−1∑
ℓ=0

℘(k,k)(ω + ℓω1(t), t)− ℘(1,k)(ω, t)−
k−1∑
ℓ=1

℘(k,k)(ℓω1(t), t)

has no pole at ω = 0. Hence, d(ω) is an (ω1(t), kω2(t))-periodic function with no poles,
so it is constant. Moreover, expanding one term further at ω = 0 shows that d(0) = 0,
so d(ω) = 0 for all ω. This proves (27). We note that (27) can alternatively be deduced
directly from the definition of ℘.

We now use the addition formula (23) of the Weierstrass function

℘(k,k)(ω, t) + ℘(k,k)(ℓω1(t), t) + ℘(k,k)(ω + ℓω1(t), t)

=
1

4

(
∂ω℘

(k,k)(ω, t)− ∂ω℘
(k,k)(ℓω1(t), t)

℘(k,k)(ω, t)− ℘(k,k)(ℓω1(t), t)

)2

,

which shows that the sum
∑k−1

ℓ=0 ℘
(k,k)(ω + ℓω1(t), t) belongs to

Q
(
℘(k,k)(ω, t), ℘(k,k)(ℓω1(t), t), ∂ω℘

(k,k)(ω, t), ∂ω℘
(k,k)(ℓω1(t), t)

)
0<ℓ<k

.

By Lemmas 18 and 19, this sum is algebraic over x. Furthermore, by Lemma 19 again,∑k−1
ℓ=1 ℘

(k,k)(ℓω1(t), t) is algebraic over x. Using (27), this allows us to conclude that
℘(1,k)(ω, t) is algebraic over x. Finally, by Lemma 15, ∂ω℘(1,k) is also algebraic over x. □

Lemma 21. The invariants g(1,k)2 and g(1,k)3 are algebraic over C(t).
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Proof. Combining Lemmas 15 and 20, ∂2ω℘(1,k) is algebraic over x. Hence, the differential

equation ∂2ω℘
(1,k) = 6(℘(1,k))2 − g

(1,k)
2
2 , along with Lemma 20 again implies that g(1,k)2 is

algebraic over x. Finally, using the differential equation

(∂ω℘
(1,k)(ω, t))2 = 4℘(1,k)(ω, t)3 − g

(1,k)
2 ℘(1,k)(ω, t)− g

(1,k)
3 ,

we deduce that g(1,k)3 is algebraic over x too. □

The proof of Theorem 12 is complete.

4.3. A proof of Theorem 4. In this part, we check the assumptions (i), (ii), (iii) and (iv)
of Theorem 10, with k = R = x and f(ω, t) = rx(ω, t), where we recall that rx(ω, t) is
the meromorphic continuation of K(x(ω, t), 0, t)Q(x(ω, t), 0, t), see (7). We do it in two
separate lemmas: while the first one (Lemma 23) is specific to the algebraic case considered
in this section, the second one (Lemma 24) will be used and applied exactly in the same
way in the D-finite case analyzed in Section 5.

Before these two lemmas, we prove a general result about principal parts.

Lemma 22. Let k = x and kt = C(t) and recall the definition (14) of Xt in terms of kt.
For any function h(ω, t) ∈ k, and any b(t) ∈ Xt, the function h(ω, t) expands as a series
around ω = b(t), and all coefficients lie in kt. In particular the principal parts of h(ω, t)
lie in kt.

Proof. If b(t) is not a pole of h(ω, t), then it suffices to prove that ∂jωh(b(t), t) ∈ kt for
all j. Since b(t) ∈ Xt, then ℘(b(t), t) ∈ kt ∪ {∞} and with Proposition 6 we deduce that
x(b(t), t) ∈ kt, so h(b(t), t) ∈ kt. With Lemma 15, for all j, ∂jωh(ω, t) is algebraic over x.
Hence, we deduce that ∂jωh(b(t), t) ∈ kt = kt for all j.

If now b(t) is a pole of h(ω, t), we can use the same reasoning to show that the lemma
holds for 1/h(ω, t), which implies that it also holds for h(ω, t). This proves our claim, which
in particular proves that the coefficients of the principal parts of h(ω, t) lie in kt. □

Lemma 23. Let k = x and kt = C(t). The following holds:
(i) For all t ∈ (0, 1), ω 7→ rx(ω, t) ∈ C

(
℘(1,k), ∂ω℘

(1,k)
)
.

Lemma 24. Under the same notation of Lemma 23, the following holds:
(ii) The poles bj(t) of ω 7→ rx(ω, t) belong to Xt.
(iii) The coefficients of the principal parts of ω 7→ rx(ω, t) are in kt.
(iv) There exists a(t) ∈ Xt such that rx(a(t), t) ∈ kt.

To simplify our notation, we will sometimes remove the t-dependency and for instance
write x(ω) instead of x(ω, t).

Proof of Lemma 23. Condition (i) is equivalent to the statement that rx(ω) has ω1 and
kω2 as periods. Indeed, the fact that ω1 is a period follows from the definition, see (9),
while the fact that kω2 is a period follows from (20), since we are in the case where the
orbit-sum Ox is zero. □

Proof of Lemma 24. We start with proving Condition (ii). We will heavily rely on a result
derived in [11, Sec. 2.6], asserting that all poles bj of ω 7→ rx(ω) are of the form bj = b+ℓω3,
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for some ℓ ∈ Z and some pole b of either x(ω) or bx(ω) = y(−ω)(x(ω) − x(ω + ω3)), see
(12). This follows from the meromorphic continuation procedure (8). We may reformulate
this result by saying that the poles of rx are to be found among the points bj = b + ℓω3,
for some ℓ ∈ Z and b pole of x(ω) or y(−ω).

Given the definition (14) of Xt, Condition (ii) will follow from proving that for any b

pole of x(ω) or y(−ω) and any ℓ ∈ Z, ℘(1,k)(b+ℓω3) is either infinite or algebraic over C(t).
The strategy of proof is as follows: we shall first prove the statement for the Weierstrass
function ℘(1,1), then for ℘(1,k).

If b is a pole of x(ω), then using the uniformization (Proposition 6), we reach the
conclusion that ℘(1,1)(b) is algebraic over C(t). If now b is a pole of y(−ω), it follows from
the equation K(x(ω), y(−ω)) = 0 that either b is a pole of x(ω) or x(b) is algebraic over
C(t). The uniformization formula implies that ℘(1,1)(b) is algebraic or infinite. Using now
the addition formula (23) for ℘(1,1), we deduce that ℘(1,1)(b+ ℓω3) is algebraic as well, or
infinite. Indeed, recall that in the finite group case ω3 is a rational multiple of ω2, hence
Lemma 19 yields that, if finite, ℘(1,1)(ℓω3) and ∂ω℘

(1,1)(ℓω3) are algebraic functions of t.
Using finally Lemma 20, we immediately conclude that ℘(1,k)(b+ ℓω3) is either infinite or
algebraic over C(t).

We now prove Condition (iii). We start by analysing x(ω)y(ω) around a pole b(t) of
rx(ω, t), as this will relate to a principal part of rx due to (11). By Lemma 22, the
coefficients of the principal parts of x(ω)y(ω) (at poles b(t)) lie in kt. We now consider the
poles of rx belonging to the domain O (see Lemma 7 for a proper definition of O). In O,
the function rx is defined in the following way. Since the series K(x, 0)Q(x, 0) converges
absolutely when |x| < 1 and 0 < t < 1, and since rx(ω) is the meromorphic continuation of
K(x(ω), 0)Q(x(ω), 0), the function rx(ω) has no pole when |x(ω)| < 1 and ω ∈ O. In the
region |y(ω)| < 1 and ω ∈ O, the functions rx(ω) and −x(ω)y(ω) have the same poles and
the same principal parts at these poles, as rx(ω) + ry(ω) + x(ω)y(ω)−K(0, 0)Q(0, 0) = 0

(see (11)). As a partial conclusion, the coefficients of the principal parts of ω 7→ rx(ω) at
any pole inside O are algebraic.

Let us now use the fact that the union of all translated domains O + ℓω3, ℓ ∈ Z covers
the full complex plane, as stated in Lemma 7. Moreover, the following equation holds:
rx(ω + ω3) = rx(ω) + bx(ω), see (8). Accordingly, the poles of rx come from exactly two
sources: first, all points which are poles of bx translated by ℓω3 are potential poles of
rx; second, the ℓω3-translations of the primordial poles of rx in the region O represent
potential poles of rx as well. The coefficients of the principal parts being unaffected by the
translations described by the dynamic (8), the proof is complete.

Finally, we show that Condition (iv) holds. Similarly to [11, Lem. 3.11], consider a root
ω0 = ω0(t) of y(ω0) = 0. Let us show that we may take the value a(t) = ω0. Since ℘(1,k) is
algebraic over x, see Lemma 20, we deduce that either ω0 is a pole of ℘(1,k), or ℘(1,k)(ω0)

is algebraic over C(t). So it remains to consider the case where ℘(1,k)(ω0) is algebraic over
C(t).

In the proof of [11, Lem. 3.11], it is shown that rx(ω0) + x(ω0)y(ω0) = 0. Now, by
Proposition 6 and the algebraicity of ℘(1,1)(ω0) over C(t), we deduce that x(ω0)y(ω0) is
algebraic over C(t). Then rx(ω0) is algebraic over C(t). This concludes the proof. □
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We are now ready to prove the main result of the section.

Proof of Theorem 4. Recall from the very beginning of Section 4 that we have already
proved that the algebraicity property of Q(x, y, t) implies the zero orbit-sum condition. It
remains to prove the converse statement. To do so, assume that Ox(ω, t) = Oy(ω, t) = 0

for all t ∈ (0, 1). By (6), it suffices to show that K(x, 0, t)Q(x, 0, t) and K(0, y, t)Q(0, y, t)

are algebraic over C(x, t) and C(y, t) respectively. Let us consider K(x, 0, t)Q(x, 0, t), the
proof for K(0, y, t)Q(0, y, t) is similar. We have seen that K(x, 0, t)Q(x, 0, t) admits an
analytic continuation rx(ω, t) that is (ω(t), kω2(t))-periodic. By Theorem 12, Lemma 23
and Lemma 24, we may apply Theorem 10 with k = R = x and f(ω, t) = rx(ω, t),
and deduce that rx(ω, t) is algebraic over x. Then K(x, 0, t)Q(x, 0, t) is algebraic over
C(x, t). □

5. D-finite case: a detour via Weierstrass zeta functions

The main result in this section is Theorem 2, which says the following: Assume that
the group of the walk is finite. Then Q(x, y, t) satisfies a (non-trivial) linear differential
equation coefficients in C(x, y, t) in each of its variables.

5.1. Strategy of the proof. The first point is that it is sufficient to prove Theorem 2
for the specialization Q(x, 0, t), by similar arguments as in Section 4 (using standard
manipulations on the functional equation (6)). To that purpose, we shall prove a
factorization of the generating function Q(x, 0, t) as follows:

(28) K(x, 0, t)Q(x, 0, t) = F1(x, t)F2(x, t) + F3(x, t),

and we will successively show that F1, F2 and F3 are D-finite functions in both variables
x and t (concluding thanks to the ring structure of D-finite functions).

To prove (28), our starting point is the lifting rx(ω, t) of Q(x, 0, t) as introduced in (7),
which we will prove to satisfy the following decomposition:

(29) rx(ω, t) = Ox(ω, t)ϕ(ω, t) + ψ(ω, t),

where
• Ox(ω, t) is the orbit-sum (21);
• ϕ(ω, t) = ω1(t)

2iπ ζ(ω, t)−
ω
iπ ζ(

ω1(t)
2 , t), with ζ the negative of an anti-derivative of the

Weierstrass function with periods (ω1(t), kω2(t)), i.e., ∂ωζ(ω, t) = −℘(1,k)(ω, t);
• ψ(ω, t) is a certain (ω1(t), kω2(t))-periodic function.

This decomposition is obtained in [14, Sec. 4] (see also [23, Sec. 9] for unweighted quadrant
walks), based on ideas of [16].

In the zero orbit-sum case (Section 4), the function rx(ω, t) = ψ(ω, t) is (ω1(t), kω2(t))-
elliptic by (29); see also (20) and recall that we have ω3/ω2 = k/ℓ, see (19). This strong
periodicity property is no longer satisfied in the non-zero orbit-sum case.

Equation (29) immediately entails the identity (28), where for instance (with obvious
notation) F1(x(ω, t), t) = Ox(ω, t), and thus F1 is a pullback of the orbit-sum.

It is crucial to remark that the role and the complexity of the three functions appearing
in (28) is very different. Indeed, the function F1 is a simple, explicit function, and we will
easily prove in Lemma 28 that it is algebraic and therefore D-finite. The function F2 is also
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explicit but contained some more difficulties, as it implies the (intrinsically transcendental)
zeta Weierstrass function; it will be proved to be D-finite in Lemma 29 (as a function of
x(ω, t) and t). On the other hand, we only have an implicit control on the function F3,
through the poles of the elliptic function ψ in (29). Using precise informations on the poles
of various functions as well as Theorem 10, we shall obtain that F3 is D-finite up to some
additive constant, see Lemma 31.

5.2. Preliminary results on D-finiteness. We start with two classical results, which
will be repeatedly used in Section 5.

Lemma 25. Let (k, ∂) be a differential field and let (R, ∂) be a differential ring extension
of (k, ∂). Then f ∈ R satisfies a linear ∂-equation with coefficients in k if and only if the
dimension of the k-vector space Vectk(∂

nf)n∈N is finite.

Lemma 26. Let (k, ∂) be a differential field and let (k, ∂) be its algebraic closure. Let
(R, ∂) be a differential ring extension of (k, ∂). If f ∈ R satisfies a linear ∂-equation with
coefficients in k, then it satisfies a linear ∂-equation with coefficients in k.

Proof. Lemma 25 admits an elementary proof. Lemma 26 is classical, but let us give a short
proof. As for Lemma 26, assume that f ∈ R satisfies a linear ∂-equation with coefficients
in k. Let L be a finite field extension of k that contains the coefficients of the differential
equation. By Lemma 25, the dimension of the vector space VectL(∂

nf)n∈N is finite. Since
L|k is finite too, the dimension Vectk(∂

nf)n∈N is finite and by Lemma 25, f satisfies a
linear ∂-equation in coefficients in k. □

5.3. D-finiteness and pullbacks. Recall that the generating function K(x, 0, t)Q(x, 0, t)

admits a meromorphic lifting rx(ω, t) on the ω-complex plane, see (7). Let us first see how
the D-finiteness of an (x, t)-function is related to the D-finiteness of the associated lifted
(ω, t)-function.

Proposition 27. Let f(ω, t) be a function such that for all t ∈ (0, 1), ω 7→ f(ω, t) is
meromorphic on C. In addition, let a(t) ∈ C(t) and ω(t) be such that x(ω(t), t) = a(t).
Assume that ∂ωf ∈ x and that t 7→ f(ω(t), t) is D-finite over C(t). Then any differentiable
function F (x, t) satisfying f(ω, t) = F (x(ω, t), t) on some neighbourhood is D-finite in its
two variables over C(x, t).

Proof. Differentiating the identity relating f and F , one finds

(30) ∂ωf(ω, t) = ∂ωx(ω, t)∂xF (x(ω, t), t).

By Lemma 15 (resp. by assumption), the function ∂ωx(ω, t) (resp. ∂ωf(ω, t)) belongs to
x. Equation (30) allows us to obtain that ∂xF (x, t) is algebraic over C(x, t). Since any
algebraic function is D-finite, see [24, Prop. 2.3], we reach the conclusion that F (x, t)
satisfies a linear differential equation in its first variable.

We now look at the t-variable. Fix a non-critical point (xc, tc) within the neighbourhood
where F (x, t) is defined and consider the expansion

∂xF (x, t) =
∞∑
j=0

∞∑
k=0

(x− xc)
k(t− tc)

jai,j
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around this point. Following the discussion preceding [24, Thm 2.7], we consider the
function

F̃ (x, t) :=
(
(x− xc)∂xF (x, t)

)
⋆

(
− log(1− (x− xc))

1− (t− tc)

)
=

∞∑
j=0

∞∑
k=1

(x− xc)
k+1

k + 1
(t− tc)

jai,j ,

where ⋆ denotes the Hadamard product with respect to expansions around (xc, tc). Since
the Hadamard product of D-finite functions is D-finite, see [24, Thm 2.7], the function
F̃ (x, t) is D-finite (in both variables). Moreover, due to the expansion, ∂xF̃ (x, t) =

∂xF (x, t), that is F (x, t) = F̃ (x, t) + A(t) for some function A(t) not depending on x.
So it suffices to show that A(t) is D-finite.

We now consider a function F1(x, t) defined in a connected region containing x = a(t)

and satisfying F1(x(ω, t), t) = f(ω, t) for ω in a connected region containing ω = ω(t).
By the meromorphicity of f , the function F1(x, t)−A(t) and F̃ (x, t) = F (x, t)−A(t) are
sheets of the same multi-valued function. This implies that F1(x, t) − A(t) is D-finite in
both variables as it satisfies the same linear differential equations as F̃ (x, t). Since D-finite
functions of algebraic functions are necessarily D-finite, see [24, Prop 2.3], this implies that
F1(a(t), t) − A(t) is D-finite in t. Moreover, F1(a(t), t) = f(ω(t), t), which is D-finite in
t by assumption, so A(t) is also D-finite. Hence F (x, t) = F̃ (x, t) + A(t) is D-finite as
claimed. □

5.4. D-finiteness of the functions F1, F2 and F3. In this part, we show crucial
preliminary results to the proof of Theorem 2.

Lemma 28. The function Ox defined in (18) belongs to x.

Proof. Clearly with (18) we have Ox ∈ C(x(ω, t), y(ω, t), t). We conclude with the fact
that y(ω, t) ∈ x, due to the polynomial equation K(x(ω, t), y(ω, t), t) = 0. □

Let us now consider the pullback of the function ϕ appearing in (29). Write ϕ(ω, t) =
F2(x(ω, t), t), with

(31) F2(x, t) =
ω1(t)

2iπ
G(x, t)− H(x, t)

iπ
ζ
(ω1(t)

2 , t
)
.

We have the following result:

Lemma 29. The function F2(x, t) satisfies a linear differential equation with coefficients
in C(x, t) in each of its variables.

Before embarking into the proof of Lemma 29, we show the following properties of the
Weierstrass zeta function:

Lemma 30. Let ζ and ℘ denote, respectively, the Weierstrass ζ-function and ℘-function
with periods (ω1(t), kω2(t)). We have ∂ωζ ∈ x and for a(t) ∈ Xt, see (14), the functions
a(t) and ζ(a(t), t) are both D-finite with respect to t.

Proof. We have ∂ωζ(ω, t) = −℘(ω, t), which belongs to x by Theorem 12. We now consider
the t-derivation. Let us see ζ and ℘ as functions of the invariants

g2 := g
(1,k)
2 and g3 := g

(1,k)
3
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corresponding to the elliptic curve with periods (ω1, kω2). By [1, (18.6.19-22)], one has

(g32 − 27g23)∂g2℘ = ℘′
(
−9

2
g3ζ +

1

4
g22ω

)
− 9g3℘

2 +
g22
2
℘+

3

2
g2g3,

(g32 − 27g23)∂g3℘ = ℘′
(
3g2ζ −

9

2
g3ω

)
+ 6g2℘

2 − 9g3℘− g22,

(g32 − 27g23)∂g2ζ =
1

2
ζ

(
9g3℘+

1

2
g22

)
− 1

2
ω

(
1

2
g2℘+

3

4
g3

)
+

9

4
g3∂ω℘,

(g32 − 27g23)∂g3ζ = −3ζ

(
g2℘+

3

2
g3

)
+

1

2
ω

(
9g3℘+

1

2
g22

)
+

3

2
g2∂ω℘,

which may be each rewritten as an equation of the form,

∂gjy = ajζ + bjω + cj , j = 2, 3,

where aj , bj and cj are algebraic over x and y = ζ or ℘. Substituting the equations with
y = ζ, into ∂tζ = (∂tg2)∂g2ζ + (∂tg3)∂g3ζ, yields

(32) ∂tζ = (∂tg2)a2ζ + (∂tg2)b2ω + (∂tg2)c2 + (∂tg3)a3ζ + (∂tg3)b3ω + (∂tg3)c3.

Note that ∂tgj is algebraic in t, as the derivative of an algebraic function (Lemma 13), so
we have ∂tζ(ω, t) ∈ x+ xζ(ω, t) + xω. By the same analysis, ∂t℘(ω, t) ∈ x+ xζ(ω, t) + xω.

Now assume a(t) ∈ Xt, and introduce

Λt = kt + ktζ(a(t), t) + kta(t),

where kt denotes the field of algebraic functions in t (see Section 3). Setting ω = a(t)

above yields
∂tζ(a(t), t), ∂t℘(a(t), t) ∈ Λt.

We will now show that Λt is closed under differentiation by t. Note that kt is closed under
differentiation by t and that Λt is closed under multiplication by elements of kt, so it
suffices to show that a′(t) ∈ Λt and d

dtζ(a(t), t) ∈ Λt. First, recall that by the definition of
Xt, along with Lemma 20, we have ℘(a(t), t) ∈ kt, so its derivative with respect to t also
lies in kt, that is

∂ω℘(a(t), t)a
′(t) + ∂t℘(a(t), t) ∈ kt.

Combining this with ∂t℘(a(t), t) ∈ kt ⊂ Λt and ∂ω℘(a(t), t) ∈ kt (from Lemma 20) yields
a′(t) ∈ Λt. Finally,

d

dt
ζ(a(t), t) = −℘(a(t), t)a′(t) + ∂tζ(a(t), t) ∈ Λt.

Hence Λt is closed under differentiation with respect to t. Since Λt has dimension (at most)
3 as a vector space over kt, this implies that any element f(t) ∈ Λt satisfies a non-trivial
linear differential equation of order at most 3 with coefficients in kt. By Lemma 26, this
implies that f(t) is D-finite. In particular, a(t) and ζ(a(t), t) are both D-finite in t. □

Proof of Lemma 29. First, we observe that it is enough to prove that each of G(x, t)
and H(x, t) in (31) have the above-mentioned property. Indeed, ω1(t) is D-finite by [3,
Lem. 6.10] and so is ζ(ω1(t)

2 , t) by Lemma 30; recall that D-finite functions are stable by
addition and multiplication.
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In order to prove that G(x, t) satisfies a linear differential equation with coefficients
in C(x, t) in each of its variables, we shall apply Proposition 27 with a(t) = x(ω1(t)

2 , t),
which is algebraic by Lemma 19 and Proposition 6. The result then directly follows from
Lemma 30.

We move to the function H(x, t), applying once again Proposition 27. The function
∂ωH(x(ω, t), t) = ∂ωω = 1 is obviously in x. Moreover, choosing a(t) = x(0, t), which by
Proposition 6 is algebraic, we find H(a(t), t) = 0. The proof is complete. □

From what precedes, F1(x, t)F2(x, t) is D-finite, hence Q(x, 0, t) is D-finite if and only
if K(x, 0, t)Q(x, 0, t)− F1(x, t)F2(x, t) is D-finite. So by (28) and (29), it suffices to show
that the pullback of ψ, namely F3, is D-finite. This is exactly what the following result
aims to achieve, up to an additive constant.

Lemma 31. Let F3(x, t) be the pullback of ψ appearing in (29) and let x0 ∈ P1(C) such
that K(x0, 0, t) = 0 (noting that K(x0, 0, t) does not depend on t). Then F3(x, t)−F3(x0, t)

is D-finite.

As in the algebraic case, we will prove the above statement using Theorem 10; we thus
need to have a control on the poles and principal parts of ψ. Lemma 24 already contains
precise properties of the poles and principal parts of rx, and we now move to the function
Oxϕ. To that purpose, we first consider Ox and ϕ separately. Let us recall that the set Xt

has been defined above Theorem 10, see (14).

Lemma 32. Let f = Ox or f = ϕ.
(i) For all t ∈ (0, 1), the poles bj(t) of ω 7→ f(ω, t) belong to Xt.
(ii) The coefficients of the expansion of ω 7→ f(ω, t) around any pole b(t) of Ox or ϕ

are D-finite.

Proof. The poles of ϕ form the lattice ω1(t)Z + kω2(t)Z, while the poles of Ox are of the
form b+ℓω3, with b a pole of bx(ω, t). As we can see in the proof of Lemma 24, b+ℓω3 ∈ Xt.
In both cases, this shows the first point (i).

For the second point, Ox ∈ x, so the result for f = Ox follows from Lemma 22. Consider
now ϕ. By Lemma 30, each pole b(t) is D-finite, so by the definition of ϕ, it suffices to
prove the same result for ζ(ω, t). Note that ∂ωζ(ω, t) = −℘(k,1)(ω, t). By Lemma 22,
the coefficients of the expansion of ℘(k,1)(ω, t) around ω = b(t) are algebraic, so the
same holds for the non-constant coefficients of ζ(ω, t). For the constant coefficients, if
b(t) is not a pole of ζ(ω, t) then ζ(b(t), t) is D-finite by Lemma 30. If b(t) is a pole of
ζ(ω, t), then b(t) = mω1(t) + knω2(t) for some integers m,n and the constant coefficient
is 2mζ(ω1(t)/2, t) + 2knζ(kωt(t)/2, t), which is D-finite. □

Lemma 33. The coefficients of the principal parts of ω 7→ Ox(ω, t)ϕ(ω, t) are D-finite.

Proof. This follows immediately from Lemma 32 (ii). □

Proof of Lemma 31. The poles of ψ(ω, t) = rx(ω, t) − Ox(ω, t)ϕ(ω, t) belong to Xt by
Lemma 32. The principal parts of rx(ω, t) are algebraic (and in particular D-finite). By
Lemma 33, the same holds for the principal parts of ω 7→ Ox(ω, t)ϕ(ω, t), and hence the
principal parts of ψ are D-finite and its poles are algebraic.
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Consider now a complex number ω0 with y(ω0, t) = 0 and x(ω0, t) = x0. Then
ψ(ω, t) − ψ(ω0, t) vanishes at ω0. Following the proof of Theorem 10, the function ψ

admits a decomposition

ψ(ω, t) = ψ(ω0, t) +
∑
i

fi(t)ψi(ω, t),

where ψi ∈ x and fi are D-finite. So F3(x, t)− F3(x0, t) admits a decomposition into sum
and product of D-finite elements, so is D-finite. □

5.5. Conclusion: proof of Theorem 2.

Proof. Let us write

rx(ω, t)− ψ(ω0, t) = ψ(ω, t)− ψ(ω0, t) +Ox(ω, t)ϕ(ω, t).

From what precedes K(x, 0, t)Q(x, 0, t) − ψ(ω0, t) = K(x, 0, t)Q(x, 0, t) − F3(x0, t) is D-
finite. Then K(x0, 0, t)Q(x0, 0, t) − F3(x0, t) is D-finite. We have seen in Lemma 24 that
rx(ω0, t) = K(x0, 0, t)Q(x0, 0, t) is algebraic (and therefore D-finite). Then F3(x0, t) is D-
finite. Since both F3(x0, t) and K(x, 0, t)Q(x, 0, t) − F3(x0, t) are D-finite, we deduce the
D-finiteness of K(x, 0, t)Q(x, 0, t). Hence Q(x, 0, t) is D-finite. Similarly, the D-finiteness
of Q(0, y, t) follows. We conclude with the functional equation (6). □

6. Infinite group case

It remains to treat the infinite group case, and to provide the proof of Theorem 3.

Proof. Recall from [15, Lem. 8.16] that some ε > 0 necessarily exists such that for t ∈ (0, ε),
Q(x, 0, t) /∈ C(x) and Q(0, y, t) /∈ C(y). More generally, Theorem 8.7 in that article shows
that Q(x, y, t) is D-finite in x (or y) for all fixed t ∈ (0, 1) if and only if the group is
finite. Recall from Section 2 that if the kernel curve is degenerate (resp. has genus 0),
the generating function is algebraic (resp. algebraic or differentially transcendental) in its
three variables. So let us assume that the kernel defines an elliptic curve.

By [11, Thm 1.1], the series is ∂x-algebraic if and only if it is ∂y-algebraic, if and only
if it is ∂t-algebraic. Then, when the series is ∂x-transcendental, it is ∂y-transcendental
and ∂t-transcendental. Hence it is not D-finite in each of its variables. Similarly, when
the series is ∂y-transcendental (resp. ∂t-transcendental), it is not D-finite in each of its
variables. So Theorem 3 holds when the series is differentially transcendental in one of its
variables.

So we can focus on the situation where the series is differentially algebraic in each of its
variables. By (6), it suffices to show that Q(x, 0, t) and Q(0, y, t) are not D-finite in each
of their variables. Let us focus on Q(x, 0, t), the proof for Q(0, y, t) being similar.

Let us begin by the non-D-finiteness in x. The strategy is heavily inspired by the one
used in [22]. For any value of 0 < t < 1, the function Q(x, 0, t) admits a meromorphic
continuation, see (7). Using [18, Prop. 3.9], the continuation of K(x, 0, t)Q(x, 0, t) admits
the form

rx(ω, t) = f(x(ω, t), t) + g(ω, t),

where f ∈ C(x, t) is a rational function (called decoupling function) and g is σ-invariant,
meaning ω3-periodic. Since rx(ω, t) and f(x(ω, t), t) are ω1(t)-periodic, the same holds for
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g(ω, t) proving that it is elliptic with the periods ω1(t), ω3(t). Let F (x, 0, t) be the pullback
of g(ω, t). To the contrary, assume that we have a D-finite relation

(33)
n∑

i=0

bi(x, t)∂
i
xF (x, 0, t) = 0, bi ∈ C[x, t], bn ̸= 0.

Fix t0 ∈ (0, ε) such that the group is infinite and (t − t0) does not divide bn(x, t). Recall
that for all 0 < t0 < ε, Q(x, 0, t0) /∈ C(x) so ω 7→ g(ω, t0) is not constant. Then g(ω, t0)

admits at least one pole and since it is ω3(t0)-periodic and ω2(t0)/ω3(t0) /∈ Q it admits an
infinite number of poles modulo ω2(t0)Z. The pullback F (x, 0, t0) is a multivalued function
in x and the set of the projection of the poles forms an infinite set. By the Cauchy-Lipschitz
theorem, the poles of F must be located at the zeros of bn(x, t0). Since there are an infinite
number of such poles, we find that (t− t0) divides bn(x, t0). A contradiction.

Consider the t-holonomy. To the contrary, assume that we have a D-finite relation

(34)
n∑

i=0

bi(x, t)∂
i
tF (x, 0, t) = 0, bi ∈ C[x, t], bn ̸= 0.

Again we fix t0 ∈ (0, ε) in the t-plane such that (t − t0) does not divide bn(x, t), and
the group is infinite for this value of t (that is ω3(t0)/ω2(t0) /∈ Q). We repeat the above
reasoning to deduce that F (x, 0, t0) is a multivalued function in x and the projection of the
poles form an infinite set. Moreover, due to the meromorphicity of g(ω, t), the differential
equation (34) holds on every sheet of F (x, 0, t).

Since (t − t0) does not divide bn(x, t), we may choose one pole xc ∈ C such that
bn(xc, t0) ̸= 0, and we may analyse F (xc, 0, t) for t in the vicinity of t0. Again by the
Cauchy-Lipschitz theorem, if t 7→ F (xc, 0, t) is meromorphic, then the poles of F (xc, 0, t)
must be located at the zeros of bn(xc, t). Since bn(xc, t0) ̸= 0, we deduce that t 7→ F (xc, 0, t)

is not meromorphic and therefore F (xc, 0, t) = ∞ for all t. Letting ω = b(t) denote the
corresponding pole of g(ω, t), this implies that x(b(t), t) is constant, that is, it doesn’t
depend on t. Similarly x(b(t) + kω3(t), t) is constant for infinitely many integers k, which
implies that x(b(t) + kω3(t) + jω2(t), t) is also constant for any integer j.

Now, if ω3(t)
ω2(t)

is not constant, we can choose t1 near t0 such that

ω3(t1)

ω2(t1)
=
j

k
∈ Q.

The function x(b(t) + mkω3(t) − mjω2(t), t) is constant for infinitely many integers m,
and these functions are all equal at t = t1, hence these functions are all equal to the same
constant. Consider three such values m1,m2,m3 and consider t2 ̸= t1 so that ω3(t2)

ω2(t2)
̸= j

k

but such that t2 is sufficiently close to t1 such that the distinct values z1, z2, z3 defined
by zi = b(t2) +mikω3(t2)−mijω2(t2) all lie in the same fundamental domain of x(ω, t2).
Then the results above imply that x(z1, t2) = x(z2, t2) = x(z3, t2) = x(b(t1), t1), but
this contradicts the fact that x(ω, t2) takes every value exactly twice in each fundamental
domain.

Finally, if ω3(t)
ω2(t)

is constant, then it is irrational as we have assumed that the group is
infinite. Now for any α ∈ R, we can choose a sequence (j1, k1), (j2, k2), . . . of pairs of
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integers such that knω3(t)− jnω2(t) → αω2(t) as n→ ∞. Then

x(b(t) + knω3(t)− jnω2(t), t) → x(b(t) + αω2(t), t)

for each fixed t. Hence, x(b(t) + αω2(t), t) does not depend on t, so it only depends on α.
Hence, for t1 sufficiently close to t0, we have

x(b(t0) + αω2(t0), t0)− x(b(t1) + αω2(t1), t1) = 0,

for α ∈ R. Since this is a meromorphic function of α, it must be 0 for any α ∈ C, that is

x(b(t0) + αω2(t0), t0) = x(b(t1) + αω2(t1), t1).

However, this implies that the two sides of this expression, as functions of α, have the
same minimal ratio of periods ω1(t0)/ω2(t0) = ω1(t1)/ω2(t1). Since this applies for all t1
sufficiently close to t0, the ratio ω1(t)/ω2(t) must not depend on t. This is a contradiction,
however, as ω1(t)/ω2(t) → 0 as t→ 0. Indeed, using [3, Eq. (6.5)] one has

ω1(t)

ω2(t)
= i

K(
√
1− k)

K(
√
k)

and k → 1 as t→ 0, see [22, Eq. (7.26)]. On the other hand, since the kernel is an elliptic
curve, ω1(t) ̸= 0, contradicting the fact that ω1(t)/ω2(t) must not depend on t. □
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