
HAL Id: hal-04801683
https://hal.science/hal-04801683v1

Preprint submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SeqROCTM: A Matlab toolbox for the analysis of
Sequence of Random Objects driven by Context Tree

Models
Noslen Hernández, Aline Duarte

To cite this version:
Noslen Hernández, Aline Duarte. SeqROCTM: A Matlab toolbox for the analysis of Sequence of
Random Objects driven by Context Tree Models. 2024. �hal-04801683�

https://hal.science/hal-04801683v1
https://hal.archives-ouvertes.fr

ar
X

iv
:2

00
9.

06
37

1v
3

 [
cs

.A
I]

 2
2

Ju
l 2

02
1

SeqROCTM: A Matlab toolbox for the
analysis of Sequence of Random Objects

driven by Context Tree Models

Noslen Hernández

Department of Statistics, University of São Paulo
and

Aline Duarte ∗

Department of Statistics, University of São Paulo

July 23, 2021

Abstract

In several research problems we deal with probabilistic sequences of inputs (e.g.,
sequence of stimuli) from which an agent generates a corresponding sequence of re-
sponses and it is of interest to model the relation between them. A new class of
stochastic processes, namely sequences of random objects driven by context tree mod-

els, has been introduced to model such relation in the context of auditory statistical
learning. This paper introduces a freely available Matlab toolbox (SeqROCTM) that
implements this new class of stochastic processes and three model selection procedures
to make inference on it. Besides, due to the close relation of the new mathematical
framework with context tree models, the toolbox also implements several existing
model selection algorithms for context tree models.

Keywords: context tree, stochastic process, functional data, neurobiology, context tree
model, statistical learning
Mathematical subject classification: 62M05, 60K99, 68V35, 92-04, 90C99

∗This work is part of University of São Paulo project Mathematics, computation, language and the

brain, FAPESP project Research, Innovation and Dissemination Center for Neuromathematics (grant
2013/07699-0). Author N. Hernández was fully supported by FAPESP fellowship 2016/22053-7.

1

http://arxiv.org/abs/2009.06371v3

1 Introduction

In several research problems we deal with probabilistic sequences of inputs (e.g., sequence

of stimuli) from which an agent generates a corresponding sequence of responses and it is of

interest to model or find some kind of relation between them. This is the case, for example,

of many experiments related to the study of statistical learning in neuroscience. Statisti-

cal learning in this context refers to the ability to extract statistical regularities from the

environment over time (Armstrong et al., 2017; Conway, 2020; Schapiro and Turk-Browne,

2015). In this kind of experiments, humans or animals are exposed to sequences of stimuli

with some statistical regularity and it is conjectured that the brain is able to retrieve/learn

the statistical regularities encoded in the stimuli (von Helmholtz, 1867; Wacongne et al.,

2012; Garrido et al., 2013). The study of this conjecture usually involves data analysis of

some physiological or behavioral responses recorded from participants during the perfor-

mance of a suitable task. Statistical learning is also a widely used term in computer science

but it is not that meaning we are referring to here.

Motivated by an auditory statistical learning problem, a new class of stochastic pro-

cess was introduced in Duarte et al. (2019) to model the relation between the probabilistic

sequence of inputs and the corresponding sequence of responses, namely sequences of ran-

dom objects driven by context tree models. A process in this class has two elements: a

stochastic source generating the sequence of stimuli and a sequence of responses generated

by the agent during the exposure to the stimuli. The source generating the stimuli is as-

sumed to be a context tree model (CTM) taking values in a categorical set (Rissanen, 1983;

Bühlmann and Wyner, 1999; Galves and Löcherbach, 2008). In a context tree model, at

each step, the occurrence of the next symbol is solely determined by a variable-length se-

quence of past symbols, called context. Any stationary stochastic chain can be approximate

by a context tree model, therefore it constitutes a powerful tool to model the probabilistic

structure of sequences of stimuli (Fernández and Galves, 2002; Duarte et al., 2006). The

model also assumes the existence of a family of probability measures on the set of responses

(hereafter called objects) indexed by the contexts characterizing the sequence of stimuli.

This family of measures describes the relation between the source and the responses. More

2

precisely, at each step, a new object of the response sequence is chosen according to the

probability measure associated to the context ending at that step in the sequence of stimuli.

Given some data, statistical model selection methods can be applied to estimate the set

of contexts and, in some cases, the family of probability measures characterizing the dis-

tribution of the response sequence. The theoretical framework introduced in Duarte et al.

(2019) addressed a model selection algorithm for the particular case in which the objects of

the response sequence refer to functions (e.g., electrophysiological data). Nevertheless, the

proposed mathematical framework is general enough to model other kind of objects in the

response sequences such as responses taking values in a categorical set, in the real line or in

R
n. In the same way that context tree models have found applications in several research ar-

eas such as neuroscience, genetics (Busch et al., 2009) and linguistics (Galves et al., 2012),

this new theoretical framework can find applications in research areas beyond neuroscience.

For this reason, its computational implementation is useful.

This paper introduces the SeqROCTM Matlab toolbox, a set of computational tools

for working with sequences of random objects driven by context tree models. In addition

to the statistical software, this article makes other contributions. We formalize two model

selection procedures for sequences of random objects driven by context tree models with

categorical responses. We also formalize and define general conditions for the use of the

Smaller Maximizer Criteria (SMC) to tune model selection algorithms for both context tree

models and sequence of random objects driven by context tree models.

Since the stimuli sequence is generated by context tree model, the SeqROCTM toolbox

also implements several model selection algorithms and tuning procedures for context tree

model. Up to our knowledge, there exist only an R package implementing model selection

for context tree model (Mächler and Bühlmann, 2004).

The paper is organized as follows. Section 2 briefly describes the mathematical concepts

and model selection algorithms included in the SeqROCTM toolbox. Section 3 introduces

the architecture of the software. Sections 4 and 5 present the main functionalities of the

toolbox through illustrative examples motivated by statistical learning problems. Conclu-

sions are given in Section 6.

3

2 Model selection methods for sequence of random

objects driven by context tree models

We begin this section by introducing some notation and formal definitions. Let A be a

finite set. Any string u = (un−m, ..., un−1) ∈ Am, 1 ≤ m ≤ n, is denoted by un−1
n−m and its

length by l(u). Given two strings u and v of elements of A, uv denotes the string of length

l(u) + l(v) obtained by concatenating u and v. The string u is said to be a suffix of v, and

denote by u � v, if there exists a string s satisfying v = su. When v 6= u we say that u is

a proper suffix of v and denote u ≺ v.

Definition 1. A context tree is defined as any set τ ⊂ A∗ = ∪∞m=1A
m satisfying

1. Suffix Property. No string w ∈ τ is a proper suffix of another string s ∈ τ .

2. Irreducibility. No string belonging to τ can be replaced by a proper suffix without

violating the suffix property.

The elements of τ are called contexts. The height and size of τ are defined as l(τ) =

max{l(w) : w ∈ τ} and |τ |, respectively.

In this work we deal with experiments in which an agent is exposed to an stochastic

sequence of stimulus (Xn)n, taking values in A. A key point is that the stochastic sequence

(Xn)n is a context tree model (Rissanen, 1983; Bühlmann and Wyner, 1999). Formally,

consider a stationary ergodic process (Xn)n≥1, Xn ∈ A, and for any string s ∈ A∗ denote

by

p(s) = P
(

X
l(s)
1 = s

)

.

Definition 2. We say (Xn)n is a context tree model with parameters (τ, p) if there exist a

function cτ : A∗ → τ such that

1. for any n ≥ l(τ) and any finite sequence x−1
−n ∈ An such that p(x−1

−n) > 0, it holds

that

P
(

Xn+1 = a|Xn
1 = x−1

−n

)

= p
(

Xn+1 = a|cτ (x
−1
−n)
)

for all a ∈ A.

2. no proper suffix of cτ (x
−1
−n) satisfies condition 2.

4

The function cτ is said a context function.

A sequence of responses (Yn)n with values in some measurable space (F,F) is recorded

while the agent is exposed to the stimuli sequence (e.g., neurophysiology responses such

as electroencephalographic data, behavioral responses, etc.). The relation between the

responses and the stimuli is modeled through a class of stochastic processes called sequence

of random objects driven by context tree model (Duarte et al., 2019).

Definition 3. The bivariate stochastic chain (Xn, Yn)n taking values in A×F is a sequence

of random objects driven by context tree models with parameters (τ, p, q), where q is a family

of probability measures on (F,F), if

1. (Xn)n is a context tree model with parameters (τ, p);

2. conditionally to the sequence (Xn)n, (Yn)n are independent random variables and, for

any n ≥ l(τ), it holds that

P (Yn ∈ J |Xn
1 = xn

1) = q (Yn ∈ J |cτ (x
n
1)) for any F -measurable J.

Given some training data (Xn, Yn)n and, under the assumption that it was generated

by a sequence of random objects driven by context tree models, the statistical problem of

interest is to estimate the parameters τ and q characterizing the response sequence.

To formulate the model selection methods we consider two scenarios. A first scenario

in which the responses Yn belong to a finite set and a second scenario in which Yn takes

values in a functional space. Hereafter we will refer to these two scenarios as categorical

and functional case, respectively.

Before introducing the model selection procedures a few more definitions are needed.

Given a finite string u ∈ A∗ we denote by NX
n (u) the number of occurrences of the string

u in the sequence (X1, ..., Xn−1), that is

NX
n (u) =

n−1
∑

t=l(u)

1{Xt
t−l(u)+1

=u}. (1)

Definition 4. Let L be an integer such that 1 ≤ L ≤ n, an admissible context tree of

maximum height L for the sample (X1, ..., Xn) is any context tree τ satisfying

5

i) w ∈ τ if and only if l(w) ≤ L and NX
n (w) ≥ 1.

ii) Any string v ∈ A∗ with NX
n (v) ≥ 1 is a suffix of some w ∈ τ or has a suffix w ∈ τ .

The set of all admissible context trees of maximal height L is denoted by ΓL(Xn
1).

Definition 5. Let τ be a context tree and fix a finite string s ∈ A∗. A subtree in τ induced

by s is defined as the set τs = {w ∈ τ : s ≺ w}. The set τs is called a terminal subtree if

for all w ∈ τs it holds that w = as for some a ∈ A.

Given two context trees τ1 and τ2, we denote by τ1 � τ2 (resp. ≺) if for any w ∈ τ1

there exists s ∈ τ2 such that w � s (resp. ≺).

The model selection procedure that will be introduced for the functional case and two

out of three procedures developed for the categorical case are inspired by the algorithm

Context (Rissanen, 1983). For this reason, we first describe below a general algorithm

Context procedure, specifying later the difference on each case. In the sequence, we present

a third model selection procedure for the categorical case which is based on BIC.

2.1 General algorithm Context

Given a sample (X1, Y1), ..., (Xn, Yn), fix an integer 1 ≤ L ≤ n and let T L
n (Xn

1) be the

context tree of maximum size in ΓL(X1
n). We shorten this maximal candidate context tree

τ̂ = T L
n (Xn

1) by successively pruning the terminal subtrees according to some statistical

criterion.

For any string u ∈ A∗ such that τ̂u is a terminal subtree, we decide to prune or not τ̂u

verifying a statistical criterion, say stat(u). If stat(u) is satisfied, we prune the subtree

τ̂u in τ̂ ,

τ̂ = (τ̂ \ τ̂u) ∪ {u}. (2)

Otherwise, if stat(u) is not satisfied, we keep τ̂u in τ̂ . At each pruning step, we check a

string s ∈ A∗ which induces a terminal subtree in τ̂ and that has not been checked yet. This

pruning procedure is repeated until all the existing terminal subtrees have been checked

and no more pruning is possible.

6

A pseudo code for the general algorithm Context is given in Algorithm 1.

Algorithm 1: General algorithm Context for sequences of random objects driven

by context tree models

Input: An alphabet A, a sample (x1, y1), ..., (xn, yn) with xk ∈ A, yk ∈ Y for

1 ≤ k ≤ n, a positive integer L.

Output: A context tree τ̂ and a family of distributions q̂ (only in the categorical

case) indexed by the elements of τ̂ .

1 Compute T L
n (xn

1) and initialize τ̂ ← T L
n (xn

1)

2 Flag(s)← “not checked” for all string s such that s ≺ w ∈ τ̂

3 while ∃s ∈ A∗: τ̂s is a terminal subtree and Flag(s) = “not checked” do

4 Compute the statistic criterion stat(s)

5 if stat(s) is satisfied then

6 τ̂ ← (τ̂ \ τ̂s) ∪ {s}

7 else

8 Flag(s)← “checked”

9 end

10 end

11 Compute q̂

12 return τ̂ , q̂

The use of the general algorithm Context for the functional and categorical cases differs

with respect to stat(u).

In the functional case stat(u) implements a two-side goodness of fit test for functional

data (Cuesta-Albertos et al., 2006). For the categorical case, stat(u) implements two

different procedures. The first one compares the conditional log-likelihoods between a

string and its offspring while the second one compares the empirical distributions between

a string and its offspring. The following sections describe the statistical criterion stat(u)

implemented in each case.

7

2.2 Functional case

In this section it is defined the statistic criterion used in the general algorithm Context

(Algorithm 1) for the functional case.

Consider F = L2([0, T]) the set of real-valued square integrable function in the interval

[0, T] and F the Borel σ−algebra on L2([0, T]). Moreover, assume that (X1, Y1), . . . , (Xn, Yn)

is a sample of a sequence of random objects driven by context tree models with parameters

(τ ∗, p∗, q∗), with q∗ a probability measure on (F,F). For any string s ∈ A∗ with l(s) ≤ L,

let In(s) be the set of indexes belonging to {l(s), ..., n} where the string s occurs in the

sample (X1, ..., Xn), that is

In(s) = {l(s) ≤ m ≤ n : Xm
m−l(s)+1 = s}. (3)

By definition, the set In(s) has N
X
n (s) elements. If In(s) = {m1, ..., mNX

n (s)}, we set Y
(s)
k =

Ymk
for each 1 ≤ k ≤ NX

n (s). Thus, Y
(s)
1 , ..., Y

(s)

NX
n (s)

is the subsample of (Y1, ..., Yn) induced

by the string s.

To each element of the terminal subtree τ̂u we associate the subsample of (Y1, ..., Yn)

induced by it. These sets of functions are used to decide whether the subtree is pruned or

not: the stat(u) criterion tests the equality of distribution between the sets of functions

associated to the elements of τ̂u.

To test whether two samples of functions have the same distribution, it is used a pro-

jective method proposed in Cuesta-Albertos et al. (2006). In this method, each function of

both sets is projected in a gaussian direction chosen at random. This produces two new pro-

jected samples of real numbers. Then, the equality of distribution for these new samples is

tested using the Kolmogorov-Smirnov test. The results presented in Cuesta-Albertos et al.

(2006) guarantees that, if the two samples of functions have different distributions then

the set of random directions where the projected samples have the same distribution has

Lebesgue measure equal to zero. This implies that if we reject the null hypothesis of equal-

ity of distributions for two sets of projected samples, then we can also reject it for the

corresponding functional sets.

Formally, for any string u ∈ A∗ such that τ̂u is a terminal subtree, we test the null

8

hypothesis

H
(u)
0 : L

(

Y
(s)
1 , ..., Y

(s)

NX
n (s)

)

= L
(

Y
(v)
1 , ..., Y

(v)

NX
n (v)

)

, ∀ s, v ∈ τ̂u, (4)

using the test statistic

∆n(u) = ∆W
n (u) = max

s,v∈τ̂u
DW

n

(

(Y
(s)
1 , ..., Y

(s)

NX
n (s)

), (Y
(v)
1 , ..., Y

(v)

NX
n (v)

)
)

= max
s,v∈τ̂u

√

NX
n (s)NX

n (v)

NX
n (s) +NX

n (v)
KS(Q̂s,W

n , Q̂v,W
n). (5)

Here W is a realization of a Brownian bridge in the interval [0, T] and KS
(

Q̂s,W
n , Q̂v,W

n

)

is the Kolmogorov-Smirnov distance between the empirical distributions Q̂s,W
n and Q̂v,W

n

of the projections of the samples Y
(s)
1 , ..., Y

(s)

NX
n (s)

and Y
(v)
1 , ..., Y

(v)

NX
n (v)

onto the direction W ,

respectively.

We reject the null hypothesisH
(u)
0 when ∆n(u) > δα, with δα = δα(u) =

√

−1/2 ln(α/2M)

and M =
(

|τ̂u|
2

)

. Observe that for a string u with only one pair of offspring (i.e., |τ̂u| = 2)

the null hypothesis H
(u)
0 is tested with significance level α (because δα becames the (1−α)-

percentile of a KS distribution). On the other hand, for a string u with more than two

offspring, H
(u)
0 is tested with an unknown significance level upper bounded by α. This

is guaranteed because in the definition of δα we applied a terminal subtree correction, by

using α/M instead of α. In this way, H
(u)
0 is tested with significance level at most α for

any string u.

The statistic in equation (5) depends on the a random direction W . For this reason,

to improve the stability of the estimate we test the null hypothesis (4) several times us-

ing different Brownian bridges. We conclude that the sets of functions associated to the

elements of the terminal subtree τ̂u do not have the same distribution, and consequently,

we do not prune the subtree τ̂u, if the number of rejections exceeds a certain threshold.

This threshold is derived according to a binomial distribution with probability of success α.

Formally, fixed a string s ∈ A∗, a significant level α and consider N independent Brownian

bridges W1, . . . ,WN . Compute the test statistics ∆W1
n , . . . ,∆WN

n and define

∆̄n(s) =
N
∑

m=1

1{∆Wm

n > δα}. (6)

9

In this case, stat(u) checks whether ∆̄n(s) < C, where C is the (1 − β)-percentile of a

binomial distribution with parameters N and α. The elucidation for this procedure comes

from the following proposition.

Proposition 1. For any string u ∈ A∗ and integer N ≥ 1, consider the random variables

∆W1
n (u), . . . ,∆WN

n (u) defined in (5) with W1, . . . ,WN independent Brownian bridges in the

interval [0, T]. For any significance level α > 0 define δα(u) =
√

−1/2 ln(α/2Mu) with

Mu =
(

|τu|
2

)

. Under the null hypothesis (4), for any β ∈ (0, 1), it holds that,

P

(

N
∑

m=1

1{∆Wm
n >δα(u)}

> Cβ

)

≤ β.

where Cβ denotes the smallest constant such that P (ξ > Cβ) ≤ β with ξ a random variable

with Binomial distribution of parameters N and α.

2.3 Categorical case

2.3.1 General algorithm Context + Conditional log-likelihood

Given u ∈ A∗ such that NX
n (u) ≥ 1, we denote by NXY

n (u, a) the number of occurrences of

the string u in the sample (X1, ..., Xn) followed by the occurrence of the symbol a in the

sample (Y1, ..., Yn), that is

NXY
n (u, a) =

n−1
∑

t=l(u)

1{Xt
t−l(u)+1

=u;Yt+1=a}. (7)

The maximum conditional likelihood for a sample (X1, Y1),(Xn, Yn) is given by

L(τ,q̂)(Y
n
1 | X

n
1) =

∏

u∈τ

L(u,q̂)(Y
n
1 | X

n
1) (8)

with

L(u,q̂)(Y
n
1 | X

n
1) =

∏

a∈A

q̂(a|u)N
XY
n (u,a), (9)

and q̂(a|u) the maximum likelihood estimator of the conditional probability q(a|u), defined

as

q̂(a|u) =
NXY

n (u, a)

NX
n (u)

=
NXY

n (u, a)
∑

a′∈A NXY
n (u, a′)

. (10)

10

Notice that L(u,q)(X
n
1 |Y

n
1) is the portion of the conditional likelihood L(τ,q)(X

n
1 |Y

n
1) of

the model (τ, p, q) given the data (X, Y)n1 induced by the context u ∈ τ .

Consider the statistic

∆n(u) =
∑

b∈A

∑

a∈A

NXY
n (bu, a) log

q̂(a|bu)

q̂(a|u)
, (11)

and fix a threshold δ > 0. For any string u ∈ A∗ such that τ̂u is a terminal branch, the

function stat(u) verifies whether the following inequality holds

∆n(u) < δ. (12)

If the inequality is satisfied, we prune the subtree τ̂u of τ̂ . Otherwise, we keep τ̂u in τ̂ .

The inequality (12) is equivalent to check whether

∑

b∈A

log(L(bu,q̂)(Y
n
1 | X

n
1))− log(L(u,q̂)(Y

n
1 | X

n
1)) < δ.

Notice that ∆n(u) is the conditional log-likelihood ratio between a model with param-

eters (τ, p, q) and a model with parameters (τ ′, p, q′), where τ ≻ τ ′ and they differ only by

one set of offspring nodes branching from u, that is τ ′ = τ \ τu ∪ {u}.

Remark 1. The idea of comparing the maximum likelihood induced by a node with the

maximum likelihood induced by its offspring was originally used in the algorithm Context

introduced by Rissanen (1983).

Given T L
n = T L

n (Xn
1), set Cw((X, Y)n1) = 0 for all w ∈ T L

n , and, for any u ≺ w ∈ T L
n

define

Cu,n = Cu((X, Y)n1) = max
{

1{∆n(u)≥δ},max
b∈A

Cbu,n)
}

. (13)

The context tree estimator τ̂ δC,n = τ̂ δC((X, Y)n1) obtained with this procedure can be defined

as

τ̂ δC,n = {w � v ∈ T L
n : Cw,n = 0 and Cu,n = 1 for all u ≺ w}. (14)

Notice that once we have Cw,n = 1, for a given w, equation (13) implies that for any

u ≺ w, Cu,n = 1.

11

Remark 2. The consistency of the original algorithm Context was proved in Rissanen

(1983). In this setting (i.e., model selection procedure for context tree model) the statistic

used to identify the contexts is given by

∆X
n (u) =

∑

b∈A

∑

a∈A

NX
n (bua) log

p̂(a|bu)

p̂(a|u)
.

The proof of consistency depends on p̂ through the ergodicity of p and its memory relation

with τ , which in our case q also satisfies. Therefore, the consistency can be easily adapted

for the formulation we are introducing here for sequences of random objects driven by

context tree models.

2.3.2 General algorithm Context + Offspring empirical distributions

In this case, the function stat(u) inside the general algorithm Context compares the

distance between the empirical distribution associate to the string u and the ones associated

to its offspring.

Formally, for any finite string u ∈ A∗, define the statistic

∆̃n(u) = max
b∈A

(

max
a∈A
|q̂(a|u)− q̂(a|bu)|

)

. (15)

For any finite string u ∈ A∗ such that τu is a terminal subtree, the function stat(u)

verifies whether ∆̃n(u) < δ. If the inequality is satisfied the subtree τu is pruned, otherwise

it is kept.

Given T L
n = T L

n (Xn
1), set C̃w((X, Y)n1) = 0 for all w ∈ T L

n , and, for any u ≺ w ∈ T L
n

define

C̃u,n = max{1{∆̃n(u)≥δ}, max
b∈A
{Cbu,n}}. (16)

The context tree estimator τ̂ δ
C̃,n

= τ̂ δ
C̃
((X, Y)n1) obtained with this procedure can be

defined as

τ̂ δ
C̃,n

= {w � v ∈ T L
n : C̃w,n = 0 and C̃u,n = 1 for all u ≺ w}. (17)

where suf(w) refers to the largest suffix of w. Note that, as well as in the classical algorithm

Context, C̃u,n = 1 implies C̃v,n = 1 for all v ≺ u.

12

Remark 3. In Galves and Leonardi (2008) it was proved the strong consistency of the

estimator (17) (with p̂ instead of q̂) for the case of unbounded context tree models. The

proof relies on a mixture property which is always satisfied in the case of finite context tree

models. In particular, is also true for the law of the response sequence (Yn)n since its time

memory depends on the time memory of the associated context tree model.

2.3.3 Bayesian Information Criterion (BIC)

This section describes a model selection procedure for the categorical case using the Bayesian

Information Criterion. Model selection for context tree models via BIC was first ad-

dressed in Csiszár and Talata (2006). We formalize here how the procedure introduced

in Csiszár and Talata (2006) is used in our case.

Given a sample (X, Y)n1 and a constant c > 0, the BIC estimator for sequence of random

objects driven by context tree models is defined as

τ̂ cBIC,n = τ̂ cBIC((X, Y)n1) = argmax
τ∈ΓL

n

{

logL(τ,q̂) − c · df(τ) log(n)
}

. (18)

where df stands for the degree of freedom of the model. Formally, for any admissible

context tree τ , we define, for each w ∈ τ ,

df(w) =
∑

a∈A

1{NXY
n (w,a)≥1} − 1

and df(τ) =
∑

w∈τ df(w).

Csiszár and Talata (2006) showed that (18) can be computed efficiently through the

following inductive procedure. Starting with T L
n , for any w ∈ T L

n , define the quantity

Vw,n = Vw((X, Y)n1) = n−c·df(w)L(w,q̂)((X, Y)n1) and the indicator Xw,n = Xw((X, Y)n1) = 0,

and for any w ≺ u ∈ T L
n define recursively the quantity

Vw,n = max
{

n−c·df(w)L(w,q̂)((X, Y)n1) ,
∏

b∈A

Vbw,n

}

(19)

and the indicator

Xw,n = 1
{

∏

b∈A

Vbw,n > n−c·df(w)L(w,q̂)((X, Y)n1)
}

. (20)

13

The estimate obtained solving (18) can be written as

τ̂ cBIC,n = {w � s ∈ T L
n : Xw,n = 0 and Xu,n = 1 for all u ≺ w}. (21)

Observe that, on the contrary to the algorithm Context, Xw,n = 1 for a given w, does

not imply that Xu,n = 1 for any u ≺ w.

Remark 4. The fact that the recursive procedure above effectively solves the BIC opti-

mization problem and the consistency of the estimator were proved in Csiszár and Talata

(2006) for the case of context tree models (Xn)n. In Csiszár and Talata (2006), the analo-

gous to equation (18) is

τ̂ cBIC(X
n
1) = argmax

τ∈ΓL
n

{

logL(τ,p̂)(X
n
1)− c · df(τ) log(n)

}

,

in which the maximum log-likelihood is computed using the empirical probabilities of the

distribution p, instead of q. Since the distribution p affects these proofs only through the

ergodic theorem and its memory dependency on τ , it is straight forward that all the proofs

can be adapted to the case of the conditional log-likelihood considered in this section, which

depends on q̂ instead of p̂.

2.3.4 Tuning the model selection methods

The threshold δ used in the procedures based on the general algorithm Context and the

penalization constant c involved in the model selection procedure based on BIC are hy-

perparameters whose values must be specified a priori. Small values of δ and c result in

big context trees (big in the sense of its size) and, consequently, overfitted models while

high values of these hyperparameters give rise to context trees of small size and underfitted

models.

To choose the value of the hyperparameters one can use the Smallest Maximizer Cri-

terion (SMC) (Galves et al., 2012). The SMC procedure was introduced in Galves et al.

(2012) to tune the model selection method for context tree models based on BIC. Here we

extend this framework to the case of sequence of random objects driven by context tree

models for tuning the model selection methods proposed in the categorical case.

14

The SMC procedure consists of two steps. In the first step a set of candidate models

is computed, namely the champion trees. In the second step, an optimal model is chosen

within the set of champion trees. The champion trees obtained will depend on the model

selection procedure being tuned and may differs from one procedure to another.

In this section, τ̂ ℓn denote either τ̂ ℓBIC,n, τ̂
ℓ
C,n or τ̂ ℓ

C̃,n
.

Step 1. Compute the champion trees. The champion trees constitute a set of

estimated context trees τ̂ ℓn obtained by varying the value of the hyperparameter ℓ ≥ 0.

When ℓ = 0 we obtain the admissible context tree of maximum size τ̂ 0n = T L
n (the

more complex model). By successively increasing the value of ℓ, we obtain a finite

set of context trees totally ordered with respect to the order ≻, say Cn = {T L
n = τ̂0 ≻

τ̂1 ≻ ... ≻ τ̂K = τroot}. It is not hard to see that there exists a value ℓ = ℓmax such

that for any ℓ ≥ ℓmax the estimated model is the empty tree, τroot = ∅, which refers

to the independent model.

A crucial fact for the consistency of SMC is that the context tree generating the sample

data belongs eventually almost surely to the set of champion trees as n goes to ∞. This is

the content of the theorem below and its proof is a co-factor of Theorem 6 in Galves et al.

(2012) and an extra argument given in Appendix B.

Proposition 2. Assume (X1, Y1), · · · , (Xn, Yn) is a sample of a sequence of random objects

driven by context tree model with parameters (τ ∗, p∗, q∗), with |τ ∗| ≤ L. Consider the

map ℓ ∈ [0,+∞] 7→ τ̂ ℓn ∈ ΓL(X1
n) with τ̂ ℓn denoting either τ̂ ℓC((X, Y)n1), τ̂

ℓ
BIC((X, Y)n1) or

τ̂ ℓ
C̃
((X, Y)n1) and denote by

Cn = {τ̂ ℓn : ℓ ∈ [0,+∞]}. (22)

Then Cn is totally ordered with respect to ≻ and eventually almost surely τ ∗ ∈ Cn as n→∞.

It is well known that the bigger the context tree, the higher its sample likelihood.

When SMC was introduced for tuning the BIC model selection algorithm for context tree

models, Galves et al. (2012) theoretically proved the existence of a change of regime in the

rate in which the sample likelihood increases in the set of champion trees (Theorem 7 in

Galves et al. (2012)). The authors also showed that such changing point in the likelihood

15

function occurs at the true model generating the data. A consequence of the proof of

consistency of SMC is that the change of regime does not depends on the estimation

method used to obtain the champion trees, but only on some properties of the set. For this

reason we state the next theorem in a slightly more general form that stated in Galves et al.

(2012) and in terms of sequences of random objects driven by context tree models.

Theorem 1. Assume (X1, Y1), · · · , (Xn, Yn) is a sample of a sequence of random objects

driven by a context tree model with parameters (τ ∗, p∗, q∗), with |τ ∗| ≤ L. Given a set

Cn ⊂ ΓL(X1
n) satisfying

(i) Cn is totally ordered with respect to ≻ and

(ii) eventually almost surely τ ∗ ∈ Cn as n→∞.

The following holds:

1. For any τ ∈ Cn, with τ ≺ τ ∗, there exists a constant c(τ ∗, τ) > 0 such that

logL(τ∗,q̂) − logL(τ,q̂) ≥ c(τ ∗, τ)n (23)

2. For any τ ≺ τ ′ ∈ Cn, with τ ∗ � τ, there exists a constant c(τ ′, τ) > 0 such that

logL(τ ′,q̂) − logL(τ,q̂) ≤ c(τ ′, τ) logn (24)

Theorem 1 is a co-factor of Theorem 7 in Galves et al. (2012) and its proof is presented

in Appendix C. This theorem provides a criterion to choose the optimal model (and con-

sequently, the optimal ℓ value) among the champion trees. That is to say, the model in Cn

at which the change of regime occurs. This is the scope of the second step of the SMC.

Step 2. Identify the optimal tree. To select an optimal tree τ̂k̂ ∈ Cn we use the

following consequence of Theorem 1. For any τ � τ ′ � τ ∗,

lim
n→∞

logL(τ,q̂) ((X, Y)n1)− logL(τ ′,q̂) ((X, Y)n1)

n
= 0. (25)

This suggest that τ̂k̂ ∈ Cn should be the smallest context tree such that the rescaled

difference between the conditional log-likelihood of τ̂k̂ and τ̂k̂−1 (its successor in the

order ≺) decreases as n increases. This is done by comparing average bootstrapped

conditional log-likelihood using a t-test, as follows.

16

a) Fix two different sample sizes n1 < n2 < n. Obtain B independent bootstrap

resamples of (X1, Y1), ..., (Xn, Yn), of size n2, say

(X∗,Y∗)(b,n2) = {(X∗
1 , Y

∗
1)

b, ..., (X∗
n2
, Y ∗

n2
)b}, b = 1, ..., B.

Similarly, let (X∗,Y∗)(b,n1), b = 1, ..., B be another set of independent bootstrap

samples of size n1 constructed by truncating the sequences (X∗,Y∗)(b,n2) to size

n1.

b) For each τ̂k ∈ Cn, k = K, . . . , 2 and its successor τ̂k−1 ∈ Cn (τ̂k ≺ τ̂k−1) compute

the rescaled log-likelihood differences

Dk
b (nj) =

logL(τ̂k ,q̂k)

(

(X∗, Y ∗)(b,nj)
)

− logL(τ̂k−1,q̂k−1)

(

(X∗, Y ∗)(b,nj)
)

n0.9
j

, (26)

for j = 1, 2 and b = 1, ..., B.

Apply a one-side t-test to compare the mean of the samples

{D
(τ̂k ,τ̂k−1)
b (n1), b = 1, ..., B} and {D

(τ̂k ,τ̂k−1)
b (n2), b = 1, ..., B}.

c) Select as optimal tree τ̂k̂ the smallest champion tree such that the test rejects the

equality of the means in favor of the alternative hypothesis E(D(τ̂k,τ̂k−1)(n1)) <

E(D(τ̂k ,τ̂k−1)(n2)).

Step 2 involves the computation of bootstrap resamples of a sequence of random objects

driven by context tree models. The toolbox implements different bootstrap strategies for

that. Before introducing them, we describe the bootstrap schemes implemented to resample

a context tree model (X1, ..., Xn).

• (Parametric bootstrap) The bootstrap samples are obtained by drawing from a pa-

rameterized distribution (Bühlmann, 2002) in the following way:

(a) Choose a hyperparameter value l ≥ 0 and estimate the model (τ̂ , p̂) using the

data (X1, ..., Xn).

(b) Generate the bootstrap samples by simulating from the approximated distribu-

tion F̂ = F̂(τ̂ ,p̂),

(X∗
1 , ...X

∗
n) ∼ F̂(τ̂ ,p̂).

17

• (Block bootstrap) Split the sample (X1, ..., Xn) into non-overlapping blocks (see Fig-

ure 1a). These blocks are build by using a renewal context of Xn
1 to split the sequence.

A renewal context is a string from which the next symbols can be generated without

knowing further information from the past. A resample is obtained by repeatedly

sampling uniformly a block from the set of blocks and concatenating them. In the

toolbox, the user can specify the renewal context, or it can be computed from the

estimated model (τ̂ , p̂).

A bootstrap resampling (X∗, Y ∗)n1 of the bivariate chain (X, Y)n1 can be obtained with

two different procedures:

• (Parametric bootstrap)

(a) Choose a hyperparameter value ℓ ≥ 0 and estimate (τ̂ , q̂) from (X, Y)n1 .

(b) Obtain a bootstrap resampling (X∗)n1 of the sequence Xn
1 using one of the boot-

strap strategies for context tree models described above. The user can also

choose not to resample the sequence Xn
1 .

(c) Generate a sequence (Y ∗)n1 using the distribution q̂(·|cτ̂((X
∗)n1)).

• (Block bootstrap) Split the sample (X1, Y1), ..., (Yn, Xn) into non-overlapping blocks

using a renewal context (see Figure 1b). In this case, a renewal context is a string

from Xn
1 such that from it is possible to generate both the next symbols of sequence

(Xn)n and its associates responses (Yn)n, without further information from the past.

The bootstrap samples can be obtain by repeatedly sampling uniformly from the set

of blocks and concatenating them.

Remark 5. Bühlmann (2000) proposed a procedure based on Risk functions for tuning

the algorithm Context. The SeqROCTM toolbox implements this tuning procedure for

the particular case of the Final prediction error risk. This procedure is available in the

toolbox for tuning the model selection procedures for context tree models and the model

selection procedures for sequence of random objects driven by context tree models (for the

categorical case).

18

Figure 1: Illustration of a sequence split in blocks using a renewal context w for (a) contex

tree models and (b) sequence of random objects driven by context tree models

3 Software Architecture

The SeqROCTM toolbox have been designed following a modular structure. The toolbox

consists of functions written in Matlab that can be grouped in four modules regarding their

functionalities (see Figure 2). This architecture makes the software easy to update, either

by adding new functionalities or by improving the existing ones.

Figure 2: The software architecture of the Matlab SeqROCTM toolbox.

The module Data Simulation includes routines to simulate sequences of inputs (i.e.,

context tree models), to simulate the response sequence of a sequence of random objects

driven by context tree models and to simulate the bivariate sequence. The module Vi-

19

sualization implements the algorithm described in Mill (2020) to graphically show a tree

structure. This module contains also a routine to print the context tree in the console. The

Tools module implements several functions that can assist the researcher during the exper-

imental design and data analysis. Some of those functions are also invoked by functions in

other modules. Some demos illustrating how to use the toolbox are included in the Demo

module.

The main functions of the toolbox are in the Model Selection module. This module

contains all the model selection procedures and tuning algorithms introduced in Section 2.

Figure 3 presents a close-up of this module.

SeqROCTM

CTM

Functional

Categorical

Algorithm Context + Projective Method

- Algorithm Context + Conditional likelihood

- Algorithm Context + Empirical distributions

- BIC

- SMC

- Risk function

Model Selection

Figure 3: The different algorithms included in the Model Selection module of the Se-

qROCTM toolbox.

The novelty implemented in this toolbox it is illustrated in Figure 3 by the branch

growing from the SeqROCTM node, that is, the mathematical framework to make inference

in the class of sequences of random objects driven by context tree models. Nevertheless,

due to the close relation to model selection in context tree models, we end up including in

the toolbox several existing model selection algorithms for context tree models.

Up to our knowledge, there is only an R-package implementing model selection in con-

text tree models introduced by Mächler and Bühlmann (2004). This package implements

the algorithm Context and a tuning procedure for the algorithm Context based on Risk

functions. Our toolbox also works as an alternative tool for this purpose.

20

All the implementations are self-contained. The only external function the toolbox uses

is the function permn (van der Geest, 2019).

4 Illustrative example: The Goalkeeper game

This section presents the major functionalities of the SeqROCTM toolbox through an

illustrative example.

The Goalkeeper game is a video game developed by the NeuroMat team (https://game.numec.prp.usp.br/)

as a tool to investigate the conjecture that the brain does statistical model selection (Castro,

2006). During the game, the kicker can throw the ball in three directions: left, center or

right. The agent, playing the role of the Goalkeeper in a soccer penalty shootout, has to

defend as much penalties as possible by predicting, at each step, in which direction the

kicker will throw the ball. The kicker’s choices are randomly generated according to a

context tree model. The Goalkeeper game has been used in the experimental protocol of

some neurobiological experiments (Stern et al., 2020).

Here, for simplicity, instead of collecting some data using the game, we will simulate

different participant strategies to generate the responses. We show how the toolbox can

be used to assess the participant strategy from the data. The aim is that the estimated

strategy matches the one used to generate the responses matches.

To generate the sequence of kick directions, we define a context tree model that generates

sequences according to the following rule: after a shot to the left the kicker always send

the ball to the center, after a shot to the right he always send the ball to the left, but after

a shot to the center, if one step back he sent the ball to the center, then he send the ball

to the left. Otherwise, if one step back he sent the ball to the left, then he send the ball to

the right with probability 0.8 and to the center with probability 0.2.

Formally, the directions left, center and right are represented by the symbols 0, 1 and

2, respectively. These symbols will conform the alphabet. When using the toolbox, an

alphabet is always represented by a vector of consecutive positive integers from zero to the

number of elements minus one. A context tree is defined through a cell array of vectors,

each vector representing a context (i.e., a leaf of the tree). The distributions associated

21

https://game.numec.prp.usp.br/

to the contexts are specified by a matrix with the number of rows equals the number of

contexts and the number of columns equals the number of symbols in the alphabet. In this

way, the k-th row contains the distribution associated to the k-th context in the cell array

defining the context tree. The following source code defines these variables according to

the example.

% alphabet of three symbols

A = [0,1,2];

% context tree containing four contexts 0, 2, 01, 11

tau = {0, 2, [0,1], [1,1]};

% distributions associated to each contexts (4x3 matrix)

% e.g., first row indicates the distribution of context 0, that is p(0|0)=0,

p(1|0)=1, p(2|0)=0

p = [0, 1, 0 ; 1, 0, 0; 0, 0.2, 0.8; 1, 0, 0];

% visualize the context tree

draw_contexttree(tau, A);

To generate a sequence of stimuli according to a given context tree model we use the

function generatesampleCTM, which receives as inputs a context tree, the probability dis-

tributions associated to the contexts, an alphabet and the length of the sequence we want to

generate. The code below generates a sequence of inputs of length 300, using the variables

already defined.

% length of the sequence

seq_length = 300;

% sequence of stimuli (context tree model) in a row vector

X = generatesampleCTM(tau, p, A, seq_length);

The variable X contains the sequence of the kicker choices. We will define three different

strategies for the goalkeeper and generate a response sequence for each of them, say Y1,

22

Y2 and Y3. When applying the model selection procedures to the data (X1,Y1), (X2,Y2)

and (X3,Y3), the desired result is to recover the strategy used to simulate the goalkeeper

responses on each case.

The three strategies used to simulate the goalkeeper responses are the following:

• Strategy 1. Every time the goalkeeper see the shot of the kicker to the left, he will

defend the next shot to the center. After a shot to the center, the goalkeeper will

defend to the right. And after a shot to the right, the goalkeeper will defend to the

left. Using the variables already defined, this strategy can be translated as follows:

If Xn = 0, then Yn+1 = 1. If Xn = 1, then Yn+1 = 2. If Xn = 2, then Yn+1 = 0.

• Strategy 2. The goalkeeper learns the relevant pasts (i.e., the contexts) of the se-

quence X and, at each step, he identifies the context associated to the current past

and chooses the direction with grater probability of being generated after that con-

text. This is the strategy that maximizes the probability of matches. This means

that whenever the goalkeeper see a shot to the center preceded by a shot to a left,

he will defend the next shot to the right. On the contrary, if the shot to the center

is preceded by another shot to a center, the goalkeeper will defend the next shot to

the left. Besides, if the kicker shot the ball to the left, the goalkeeper will defend the

next shot to the center and if the kicker shot the ball to the right, the goalkeeper will

defend the next ball to the left. This means that if Xn = 0, then Yn+1 = 1. If Xn = 1

and Xn−1 = 0, then Yn+1 = 2. If Xn = 1 and Xn−1 = 1, then Yn+1 = 0. If Xn = 2,

then Yn+1 = 0.

• Strategy 3. The goalkeeper pays no attention to the temporal dependences encoded

in the kicker strategy, at each step, randomly chooses in an independent and uniform

way left, center or right.

The source code below defines the context tree and the distributions used to simulate

the goalkeeper responses according to the described strategies. To generate the response

sequence, the function generatesampleYSeqROCTM is used.

For the categorical case, which is the case of the current example, the observed sequence

23

of responses must be stored in a row vector. For the functional case, the response sequence

must be specified by a matrix containing on each column a chunk of function (this will be

exemplified later, in the illustrative example presented in Section 4).

% Strategy 1

ctx1 = {0, 1, 2};

q1 = [0 1 0; 0 0 1; 1 0 0];

[X1, Y1] = generatesampleYSeqROCTM(X, ctx1, q1, A);

% Strategy 2

ctx2 = {0, 2, [0,1], [1,1]};

q2 = [0, 1, 0 ; 1, 0, 0; 0, 0, 1; 1, 0, 0];

[X2, Y2] = generatesampleYSeqROCTM(X, ctx2, q2, A);

% strategy 3

ctx3 = {};

q3 = [1/3 ; 1/3; 1/3];

[X3, Y3] = generatesampleYSeqROCTM(X, ctx3, q3, A);

Now that we have some data, i.e., (X1,Y1), (X2,Y2) and (X3,Y3), we will exemplified

how the functions responsible for model selection can be used. For the current example,

we will use the function tune SeqROCTM, which receives as mandatory inputs the data and

the alphabet. There exists a lot of optional name-value pairs arguments, which could be

specified also as input of the function. The following source code shows how to invoke the

tune SeqROCTM function specifying a different estimation method for each data and SMC

as tuning procedure for all the cases.

% some parameters value

c_min = 0;

c_max = 1000; % high enough, such as to obtain the empty tree

max_height = 6;

alpha = 0.05;

24

% tune the SeqROCTM model for each strategy

[~,~, r1] = tune_SeqROCTM(X1, Y1, A, ’TuningMethod’, ’smc’, ...

’EstimationMethod’, ’context_cL’, ...

’MaxTreeHeight’, max_height, ...

’ParameterLowerBound’, c_min, ...

’ParameterUpperBound’, c_max, ...

’Alpha’, alpha);

[~,~, r2] = tune_SeqROCTM(X2, Y2, A, ’TuningMethod’, ’smc’, ...

’MaxTreeHeight’, max_height, ...

’EstimationMethod’, ’context_empD’, ...

’ParameterLowerBound’, c_min, ...

’ParameterUpperBound’, c_max, ...

’Alpha’, alpha);

[~,~, r3] = tune_SeqROCTM(X3, Y3, A, ’TuningMethod’, ’smc’, ...

’MaxTreeHeight’, max_height, ...

’EstimationMethod’, ’bic’, ...

’ParameterLowerBound’, c_min, ...

’ParameterUpperBound’, c_max, ...

’Alpha’, alpha, ...

’BootNsamples’, 200, ...

’BootStrategy’, ’blocks’);

% show the results of the estimation procedures

figure

for i = 1 : 3

subplot(2,3,i)

% get the structure of the corresponding model

eval([’r = r’ num2str(i) ’;’]);

% get the values from the structure r

25

nleaves = cellfun(@(x) size(x,2), r.champions);

ML = r.fvalues;

idtree = r.idxOptTree;

cutoff = r.prmvalues;

% draw the curve

plot(nleaves, ML, ’*--b’)

hold on; plot(nleaves(idtree), ML(idtree), ’ro’);

text(nleaves(idtree)+0.5, ML(idtree), [’\leftarrow C = ’

num2str(cutoff(idtree))], ’FontSize’, 8);

ylabel(’$$\log(L_{(\tau, \hat{q})}(Y_1^n|X_1^n))$$’, ’interpreter’, ’latex’);

xlabel(’$$|\tau|$$’, ’interpreter’, ’latex’);

% draw the choosen context trees

subplot(2,3,3+i)

draw_contexttree(r.champions{idtree}, A, [1 0 0], 3);

end

% Calling the model selection procedure without tuning (using the default

% value of the hyperparameter)

[tau1, q1] = estimate_discreteSeqROCTM(X1, Y1, A, ’MaxTreeHeight’, max_height,

’EstimationMethod’, ’context_empD’);

[tau2, q2] = estimate_discreteSeqROCTM(X2, Y2, A, ’MaxTreeHeight’, max_height,

’EstimationMethod’, ’context_cL’);

[tau3, q3] = estimate_discreteSeqROCTM(X3, Y3, A, ’MaxTreeHeight’, max_height,

’EstimationMethod’, ’bic’);

% show the results in the console

print_tree(tau1);

print_tree(tau2);

print_tree(tau3);

Figure 4 shows the results obtained for each simulated strategy (this Figure is also

generated by the code above). For each goalkeeper strategy it is shown the conditional

26

log-likelihood of each champion tree as a function of its size. The optimal model chosen

using SMC is marked with a red circle and the corresponding context tree is graphically

shown below. The optimal value of the hyperparameters (δ in the first two cases and c

in the third one) is also shown in the plot. For all the strategies, the model estimated

from the data using the tunning procedure matches the context tree used to simulate the

goalkeeper responses.

0 5 10 15
-400

-300

-200

-100

0

100

= 1.4901e-05

0 1 2

0 5 10 15
-400

-300

-200

-100

0

100

= 1.4901e-05

0

01 11

2

0 5 10 15
-330

-325

-320

-315

-310

C = 0.15575

empty

(a) (b) (c)

Figure 4: Result of the tunning procedure for a) strategy 1 b) strategy 2 and c) strategy 3.

The first row shows plots of the logarithm of the conditional likelihood vs. the number of

contexts for each model in the set of champion trees. The red circle indicates the optimal

model chosen using SMC. The second row shows the context tree corresponding to the

optimal model.

The source code also shows how to invoke the function estimate discreteSeqROCTM,

which is responsible for model selection without any tuning procedure. The user can specify

as input a value for the hyperparameter (as it was done for strategy 3). If no value for the

hyperparameter is given as input, a default value is used.

27

5 Illustrative example: Retrieving the structure of

probabilistic sequences from EEG data

Humans are great at learning statistical regularities from sequences of stimuli. Having

learned patterns from the inflow of sensory information, one can predict the upcom-

ing stimuli to improve perception and decision making (Summerfield and de Lange, 2014;

de Lange et al., 2018). Understanding the capacity of the brain to learn statistical regular-

ity from temporal sequences has been the focus of several researches in neuroscience. This

was the focus of the recently published study by Hernández et al. (2021) from which we

extracted the current illustrative example .

Consider a sequence of auditory stimuli generated by a context tree model. This se-

quence is presented to a volunteer while electroencephalographic (EEG) signals are recorded

from his scalp. In this framework, the conjecture that the brain identifies statistical regu-

larities from sequences of stimuli can be rephrased by claiming that the brain identifies the

context tree used to generate the sequence of auditory stimuli. If this is the case, a signa-

ture of the context tree should be encoded in the brain activity. The question is whether

this signature can be identified in the EEG data recorded during the experiment.

The auditory units used as stimulus are either strong beats, weak beats or silent units,

represented by symbols 2, 1 and 0, respectively. The statistical regularity encoded in the

sequences of stimuli can be informally described as follows. Start with the deterministic

sequence

2 1 1 2 1 1 2 1 1 2 1 1 2 . . . ,

then replace each weak beat (symbol 1) by a silent unit (symbol 0) with a small probability,

say 0.2, in an independent way. An example of a sequence produced in this way would be

2 1 1 2 0 1 2 1 1 2 0 0 2

This stochastic sequence constitutes a sample of a context tree model compatible with the

context tree and the family of transition probabilities shown in Figure 5.

To obtain a context tree from the EEG data the statistical model selection procedure

for sequences of random objects driven by context tree models introduced for the functional

28

00 10 20 01 11 21

2

context w p(0|w) p(1|w) p(2|w)

2 0.2 0.8 0

21 0.2 0.8 0

20 0.2 0.8 0

11 0 0 1

10 0 0 1

01 0 0 1

00 0 0 1

Figure 5: Graphical representation of the context tree and the transition probabilities

associated to the contexts.

case is employed. This procedure is applied separately to each participant data. Partici-

pants are not exposed exactly to the same sequence of stimuli, but different realizations of

the same context tree model.

This illustrative example presents a tiny part of a wider experimental protocol intro-

duced in Hernández et al. (2021). The experimental protocol involves 19 participants, two

different context tree models to generate the sequences of stimuli and 18 electrodes in which

the EEG data is recorded. To show how the SeqROCTM was used here, we will consider

only the EEG signals recorded in one electrode for 3 participants.

We start by exemplifying how to generate sequences of stimuli of length 700 using the

context tree model of Figure 5.

% number of volunteers

n_volunteers = 3;

% alphabet and context tree model used to generate the sequence of stimuli

A = [0,1,2];

tau = {[0,0], [1,0], [2,0], [0,1], [1 1], [2,1], 2};

p = [0, 0, 1 ; 0, 0, 1; 0.2, 0.8, 0; 0, 0, 1; 0, 0, 1; 0.2, 0.8, 0; 0.2, 0.8,

0];

% length of the sequences of stimuli

29

seq_length = 700;

% Sequences of stimuli

% matrix X of 3x700 containing on each row a sequence of stimuli

Xdata = zeros(3,700);

for v = 1 : n_volunteers

Xdata(v,:) = generatesampleCTM(tau, p, A, seq_length);

end

In the following, we load the EEG data recorded from a frontal electrode (FP1) for

3 participants as well as the sequences of stimuli the participants were exposed to. This

EEG data is already pre-processed and segmented. The pre-processing details are omitted

because are out of the scope of this article.

% load sequence of stimuli and EEG data for each volunteer

names_volunteer = {’V02’, ’V09’, ’V19’};

X = [];

Y = cell(1,3);

for v = 1 : n_volunteers

% load stimuli data

vname_i = [names_volunteer{v} ’_stimuli’];

x = load(vname_i);

x = x.(vname_i);

X = [X; x];

% load response data

vname_r = [names_volunteer{v} ’_response’];

y = load(vname_r);

30

y = y.(vname_r);

Y{v} = y;

end

% visualize some symbols of the stimuli sequence and its corresponding EEG

% chunks for volunteer V02

figure;

id_cols = 760:768;

for i = 1 : 9

% plot the stimuli

ax = subplot(2, 9, i);

text(0.5, 0.5, num2str(X(1, id_cols(i))), ’FontSize’, 20);

set(ax, ’visible’, ’off’)

% plot the EEG chunk

ax = subplot(2, 9, 9+i);

plot(Y{1}(:, id_cols(i)));

set(ax, ’visible’, ’off’)

xlim([0 115])

end

Figure 6 shows some elements of the sequence of stimuli and the corresponding EEG

chunks for the first volunteer.

2 1 1 2 1 0 2 0 0

Figure 6: Symbols in the sequence of stimuli and their corresponding EEG chunks for

participant V02.

31

We are now ready to invoke the model selection functions. The values of the parameters

required by this function are specified in the source code.

% model selection algorithm on the data of each volunteer

nBM = 1000;

Alpha = 0.05;

Beta = 0.05;

rng(1); tree_v02 = estimate_functionalSeqRoCTM(X(1,:), Y{1}, A, 3, nBM, Alpha,

Beta, 0);

rng(1); tree_v09 = estimate_functionalSeqRoCTM(X(2,:), Y{2}, A, 3, nBM, Alpha,

Beta, 0);

rng(1); tree_v19 = estimate_functionalSeqRoCTM(X(3,:), Y{3}, A, 3, nBM, Alpha,

Beta, 0);

% draw the results

figure

subplot(1,3,1)

draw_contexttree(tree_v02, A, [1 0 0], 3);

subplot(1,3,2)

draw_contexttree(tree_v09, A, [0 1 0], 3);

subplot(1,3,3)

draw_contexttree(tree_v19, A, [0 0 1], 3);

Figure 7 shows the context tree retrieved from the EEG data of each participant.

It can be seen that for one of the participants the retrieved context tree is the same that

the one generating the sequence of stimuli. For the other two participants, the recovered

tree differs from the stimuli tree by one branch. More details about this experiment can

be found in the Discussion section of Hernández et al. (2021).

32

0

01 11 21

2

00 10 20 01 11 21

2

00 10

020 120

1 2

V02 V09 V19

Figure 7: Context tree retrieved for each participant.

6 Conclusions

This paper introduces the Matlab SeqROCTM toolbox aimed to implement model selection

procedures in a new class of stochastic process, namely sequences of random objects driven

by context tree models. This is a new mathematical framework that finds nice applications

in several scientific fields such as neuroscience, linguistic, genetics. The toolbox also imple-

ments different procedures for model selection of context tree models. We have described

the main functionalities of the toolbox and we give examples of how to use it.

Further extensions are planned in order to solve some limitations of the current version,

e.g., greater flexibility when defining the alphabet. For simplicity, in the categorical case

we restrict the finite set in which Yn takes values to the set A, where the associated context

tree model takes value.

7 Acknowledge

The authors thanks professor Antonio Galves from University of São Paulo for the discus-

sions and suggestions that contribute to this article.

33

A Proof of Proposition 1

Proof. Given a string u ∈ A∗, for each a, b ∈ τu, we set

Za,b
i,n = DWi

n

(

(Y
(a)
1 , . . . , Y

(a)
Nn(a)

), (Y
(b)
1 , . . . , Y

(b)
Nn(b)

)
)

.

Assume that the null assumption H
(u)
0 is true. Then the asymptotic properties of the

Kolmogorov-Smirnov statistics implies, for each a, b ∈ τu, with a 6= b and 1 ≤ i ≤ N , that

Za,b
i,n converges in distribution to K = supt∈[0,1] |B(t)| as n → ∞, where B = (B(t) : t ∈

[0, 1]) is a Brownian bridge.

Let cα =
√

−1/2 ln(α/2) be the α−percentile of the Kolmogorov distribution. When

|τu| = 2, let say τu = {a, b}, it holds that P (∆Wi
n (u) > cα) = P (Za,b

i,n > cα) = α as n→∞.

If |τu| > 2, define M =
(

|τu|
2

)

and in this case P (∆Wi
n (u) > cα/M) = P (∪a,b∈τu∈Z

a,b
i,n >

cα/M) = ᾱ ≤ α as n→∞. Therefore, taking δα(u) = cα/M , it holds that

P (∆Wi
n (u) > δα(u)) ≤ α, as n→∞. (27)

In what follows, for each 1 ≤ i ≤ N , we define

Zi,n = 1{∆Wi

n (u) > δα(u)}.

We will show that for any a1, . . . , aN ∈ {0, 1},

lim
n→∞

P (Zi,n = ai, . . . , Zi,N = aN) = ᾱ
∑N

i=1 ai(1− ᾱ)(N−
∑N

i=1 ai) (28)

where ᾱ denotes either α, if |τu| = 2, or P (∪a,b∈τu∈Z
a,b
i,n > cα/M), if |τu| > 2.

Denote G = σ(Y
(as)
k , k ≥ 1, a ∈ A) and notice that conditionally on G, the random

variables Z1,n, . . . , ZN,n are independent for all n ≥ 1. By the Skorohod’s representation

theorem, there is a sequence of random vectors (Z̃1,n, . . . , Z̃N,n)n≥1 and a sequence of random

elements (Ỹ
(as)
k)k≥1,a∈A taking values in L2([0, T]), both sequences defined in the same

probability space (Ω̃, F̃ , P̃) such that

1. for each n, (Z̃1,n, . . . , Z̃N,n) has the same distribution as (Z1,n, . . . , ZN,n),

2. for each k and a ∈ A, the distribution of Ỹ
(as)
k is the same as the distribution of Y

(as)
k .

34

3. if G̃ = σ(Ỹ
(as)
k , k ≥ 1, a ∈ A), then Z̃1,n, . . . , Z̃N,n are conditionally independent given

G̃,

4. for each 1 ≤ i ≤ N , Z̃i,n → K almost surely with respect to P̃ as n→∞.

Item 4 and the Dominate convergence theorem for conditional expectation imply that P̃ -a.s

as n→∞, for each 1 ≤ i ≤ N and ai ∈ {0, 1},

P̃ (Z̃i,n = ai|G̃)→ ᾱai(1− ᾱ)(1−ai).

Therefore, by Item 3 and the Dominate convergence theorem, we have that for any a1, . . . , aN ∈

{0, 1}, as n→∞,

P̃ (∩Ni=1Z̃i,n = ai) = Ẽ

[

N
∏

i=1

P̃ (Z̃i,n = ai|G̃)

]

→ ᾱ
∑N

i=1 ai(1− ᾱ)(N−
∑N

i=1 ai)

The limit in (28) now follows from Item 1.

Finally, Proposition 1 follows from the fact that, given two random variables η̄ and η

with Binomial distribution of parameters (N, ᾱ) and (N,α), respectively. If ᾱ ≤ α, then

P (η̄ > k) ≤ P (η > k).

B Proof of Proposition 2

Proof. For the BIC case the proof is a direct adaptation of Theorem 6 in Galves et al. (2012)

using Remark 4 and the conditional log-likelihoods L(τ̂ ,q̂) ((X, Y)n1) instead of L(τ̂ ,p̂)(X
n
1).

Algorithm Context is strongly consistent either when using conditional log-likelihood

(Rissanen, 1983) or offspring empirical distributions (Galves and Leonardi, 2008) (see Re-

marks 2 and 3) and since the set of champion trees is countable we get the first part of the

proposition. Therefore, it remains to show only the ordering of the champion trees with

respect to ≻ for both cases.

We shall do the proof for the algorithm Context with conditional log-likelihood. The

proof for algorithm Context with offspring distributions its the same (replacing ∆̃n by ∆n).

35

Given 0 < δ1 < δ2, denote by τ i = τ̂ δiC,n for i = 1, 2. If τ 1 = ∅ then for any w with

NX
n (w) ≥ 1 and l(w) ≤ L it holds that ∆(w) < δ1 < δ2 and therefore τ 2 = ∅.

On the other hand, if τ 1 6= ∅, then for any w ∈ τ 1 it is enough to show that either

w ∈ τ 2 or there exists w′ ∈ τ 2 such that w′ ≺ w. By (14), once w ∈ τ 1, for any s ∈ A∗

such that NX
n (s) ≥ 1, l(s) ≤ L and s � w, we have ∆(s) < δ1 < δ2. Therefore, no string

s ≻ w belongs to τ 2, which implies that either w ∈ τ 2 or there exists w′ ∈ τ 2 such that

w′ � w.

C Proof of Theorem 1

The proof is a straight adaptation of Theorem 7 in Galves et al. (2012) for the case of

conditional log-likelihoods.

Proof. To show the (1) consider any τ ∈ Cn satisfying τ ≺ τ∗ and notice that

logL(τ∗,q) − logL(τ,q)

=
∑

w∗∈τ∗

∑

a∈A

NXY
n (w∗, a) log q̂(a|w∗)−

∑

w∈τ

∑

a∈A

NXY
n (w, a) log q̂(a|w)

=
∑

w∈τ

∑

w∗∈τ∗
w≺w∗

∑

a∈A

NXY
n (w∗, a) log q̂(a|w∗))−

∑

w∈τ

∑

a∈A

NXY
n (w, a) log q̂(a|w).

Dividing both sides by n, the ergodic theorem implies that NXY
n (w∗, a)/n → q(w∗, a),

therefore, as n→∞, the right hand side of equation above, converges to

∑

w∈τ

∑

w∗∈τ∗

w≺w∗

∑

a∈A

q(w∗, a) log q(a|w∗)−
∑

w∈τ

∑

a∈A

q(w, a) log q(a|w). (29)

Now, Jensen’s inequality implies that

q(w)
∑

w∗∈τ∗
w≺w∗

q(w∗)

q(w)

(

q(a|w∗) log q(a|w∗)
)

≥ q(wa) log q(a|w), a ∈ A, (30)

and the equality only holds if q(a|w) = q(a|w∗) for each a ∈ A and τ ∈ w ≺ w∗ ∈ τ ∗, which

is a contradiction with the minimality of τ ∗. Therefore there exists at least one symbol

a ∈ A such that the strict inequality holds. Thus, applying inequality (30) in the left term

of (29) we conclude that must be strict positive.

36

To prove (2), observe that

logL(τ ′,q) − logL(τ,q)

=
∑

w′∈τ ′

∑

a∈A

NXY
n (w′, a) log q̂(a|w′)−

∑

w∈τ

∑

a∈A

NXY
n (w, a) log q̂(a|w)

≤
∑

w′∈τ ′

∑

a∈A

NXY
n (w′, a) log q̂(a|w′)−

∑

w∈τ

∑

a∈A

NXY
n (w, a) log q∗(a|w)

=
∑

w∈τ

∑

w′∈τ
w≺w′

∑

a∈A

NXY
n (w′, a) log

(q̂(a|w′)

q∗(a|w)

)

=
∑

w∈τ

∑

w′∈τ
w≺w′

NX
n (w′)D

(

q̂(·|w′) ‖ q∗(·|w)
)

were D(ν ‖ µ) =
∑

a∈A ν(a) log(ν(a)/µ(a)) is the Kullback-Leibler divergence between two

probabilities measures ν and µ with support in same alphabet A.

Now, applying successively Lemmas 6.3 and 6.2 of Csiszár and Talata (2006), we can

upper bound the last expression above by

∑

w∈τ

∑

w′∈τ
w≺w′

NX
n (w′)

∑

a∈A

(q̂(a|w′)− q∗(a|w))2

q∗(a|w)
≤
∑

w∈τ

∑

w′∈τ
w≺w′

NX
n (w′)|A|

1

q∗min

c log n

NX
n (w′)

.

with q∗min = minw∈τ∗,a∈A{q
∗(a|w) > 0}.

SUPPLEMENTARY MATERIAL

SeqROCTM toolbox: A Matlab Toolbox for the analysis of Sequences of random bb-

jects driven by context tree models. The toolbox implements model selection meth-

ods for both sequences of random objects driven by context tree models and context

tree models. It includes several others algorithms like: simulation of these kind of

stochastic processes, tuning of model selection procedures, distances and dissimilar-

ity measures for context tree models, complexity measures for context tree models,

visualization of the tree structure, among others. It is written purely in Matlab lan-

guage and it is self-cointained. The toolbox also contains all the examples and data

used in the present paper as well as other demos. The toolbox is freely available at

https://github.com/noslenh/SeqROCTM-Matlab-Toolbox.

37

https://github.com/noslenh/SeqROCTM-Matlab-Toolbox

References

Armstrong, B. C., Frost, R., and Christiansen, M. H., The long road of statistical learning

research: past, present and future. IPhilosophical Transactions of the Royal Society B:

Biological Sciences, 372(1711), 2017.

Bühlmann, P. and Wyner, A. J., Variable length markov chains. The Annals of Statistics,

27(2):480–513, 1999.

Bühlmann, P., Model selection for variable length markov chains and tuning the context

algorithm. Annals of the Institute of Statistical Mathematics, 52:287–315, 2000.

Bühlmann, P., Sieve bootstrap with variable-length markov chains for stationary categorical

time series. Journal of the American Statistical Association, 97(458):443–471, 2002.

Busch, J. R., Ferrari, P. A., Flesia, A. G., Fraiman, R., Grynberg, S. P., and Leonardi, F.,

Testing statistical hypothesis on random trees and applications to the protein classifica-

tion problem. The Annals of Applied Statistics, 3(2):542–563, 2009.

Castro, B. D. Processos estocásticos conduzidos por cadeias com memória de alcance

variável e o jogo do goleiro, 2006.

Conway, C. M., How does the brain learn environmental structure? ten core principles for

understanding the neurocognitive mechanisms of statistical learning. Neuroscience and

Biobehavioral Reviews, 112:279 – 299, 2020.

Csiszár, I. and Talata, Z., Context tree estimation for not necessarily finite memory pro-

cesses, via bic and mdl. IEEE Transactions on Information Theory, 52(3):1007–1016, 3

2006.

Cuesta-Albertos, J. A., Fraiman, R., and Ransford, T., Random projections and goodness-

of-fit tests in infinite-dimensional spaces. Bulletin of the Brazilian Mathematical Society,

New Series, 37(4):477–501, 2006.

Lange, F. P.de , Heilbron, M., and Kok, P., How Do Expectations Shape Perception?

Trends in Cognitive Sciences, 22(9):764–779, September 2018.

38

Duarte, D., Galves, A., and Garcia, N. L., Markov approximation and consistent estimation

of unbounded probabilistic suffix trees. Bulletin of the Brazilian Mathematical Society,

37(4):581–592, Dec 2006.

Duarte, A., Fraiman, R., Galves, A., Ost, G., and Vargas, C. D., Retrieving a context tree

from eeg data. Mathematics, 7(5), 2019.

Fernández, R. and Galves, A., Markov approximations of chains of infinite order. Bulletin

of the Brazilian Mathematical Society, 33(3):295–306, Nov 2002.

Galves, A. and Leonardi, F., Exponential inequalities for empirical unbounded context

trees. In and Out of Equilibrium 2, 2008.

Galves, A. and Löcherbach, E., Stochastic chains with memory of variable length. TICSP

Series, 38:117–133, 2008.

Galves, A., Galves, C., Garćı a, J. E., Garcia, N. L., and Leonardi, F., Context tree selection

and linguistic rhythm retrieval from written texts. Ann. Appl. Stat., 6(1):186–209, 2012.

Garrido, M. I., Sahani, M., and Dolan, R. J., Outlier responses reflect sensitivity to statis-

tical structure in the human brain. PLOS Computational Biology, 9(3), 2013.

Hernández, N., Duarte, A., Ost, G., Fraiman, R., Galves, A., and Vargas, C. D., Retrieving

the structure of probabilistic sequences of auditory stimuli from eeg data. Scientific

Reports, 11(3520), 2021.

Mächler, M. and Bühlmann, P., Variable length markov chains: Methodology, computing,

and software. Journal of Computational and Graphical Statistics, 13(2):435–455, 2004.

Mill, B., Drawing presentable trees. Python Magazine, https://llimllib.github.io/pymag-

trees/, 2020.

Rissanen, J., A universal data compression system. IEEE Trans. Inf. Theor., 29(5):656–

664, 1983.

39

Schapiro, A. and Turk-Browne, N. Statistical learning. In Toga, A. W., editor, Brain

Mapping, pages 501 – 506. Academic Press, Waltham, 2015.

Stern, R. B., d’Alencar, M. S., Uscapi, Y. L., Gubitoso, M. D., Roque, A. C., Helene, A. F.,

and Piemonte, M. E. P., Goalkeeper game: A new assessment tool for prediction of gait

performance under complex condition in people with parkinson’s disease. 50(12), 2020.

Summerfield, C. and Lange, F. P.de , Expectation in perceptual decision making: neural

and computational mechanisms. Nature Reviews Neuroscience, 15(11):745–756, Novem-

ber 2014.

Geest, J.van der , Permutations with repetition, all or a subset. MATLAB Central File

Exchange, 2019.

Helmholtz, H.von . Handbuch der physiologischen Optik, volume III. Leopold Voss, 1867.

translated by The Optical Society of America in 1924 from the third germand edition,

1910, Treatise on physiological optics, Vol. III.

Wacongne, C., Changeux, J., and Dehaene, S., A neuronal model of predictive coding

accounting for the mismatch negativity. The Journal of Neuroscience, 32(11):3665–3678,

2012.

40

	1 Introduction
	2 Model selection methods for sequence of random objects driven by context tree models
	2.1 General algorithm Context
	2.2 Functional case
	2.3 Categorical case
	2.3.1 General algorithm Context + Conditional log-likelihood
	2.3.2 General algorithm Context + Offspring empirical distributions
	2.3.3 Bayesian Information Criterion (BIC)
	2.3.4 Tuning the model selection methods

	3 Software Architecture
	4 Illustrative example: The Goalkeeper game
	5 Illustrative example: Retrieving the structure of probabilistic sequences from EEG data
	6 Conclusions
	7 Acknowledge
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proof of Theorem 1

