
HAL Id: hal-04801674
https://hal.science/hal-04801674v1

Preprint submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brownian rod-like particles suspension in
non-homogeneous system: flow-microstructure coupling

Hamza Issa, Giovanniantonio Natale, Gilles Ausias, Julien Férec

To cite this version:
Hamza Issa, Giovanniantonio Natale, Gilles Ausias, Julien Férec. Brownian rod-like particles suspen-
sion in non-homogeneous system: flow-microstructure coupling. 2024. �hal-04801674�

https://hal.science/hal-04801674v1
https://hal.archives-ouvertes.fr


Brownian rod-like particles suspension in non-homogeneous system:
flow-microstructure coupling

Hamza Issa
Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France

Department of Chemical and Petroleum Engineering, Schulich School of Engineering,
University of Calgary, 2500 University Drive NW, T2N 1N4, Canada

Giovanniantonio Natale
Department of Chemical and Petroleum Engineering, Schulich School of Engineering,

University of Calgary, 2500 University Dr. NW, T2N 1N4, Canada∗

Gilles Ausias
Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France

Julien Férec
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This study investigates the microstructure and rheological response of Brownian rod suspensions
considering both spatial and orientational fluctuations in simple shear, Poiseuille and Couette flows.
Focusing on rod-fluid interactions and concentration gradients, we account here for the effects of the
rods concentration-orientation coupling. Numerical simulations, based on a kinetic macro-model
previously derived [1], are used to analyze these results. In simple shear flow, the presence of the
rods do not impact the flow, and translational diffusion does not modify the rheological properties of
the suspensions. In Poiseuille flow, the rods cause a flattening of the velocity profile and the two-way
coupling enhances the cross-streamlines migration toward the walls. The two-way coupling between
the flow field and the rods control their orientation, migration behavior, and rheological properties.
In Couette flow, rod-fluid coupling results in outward flow near the fixed cylinder. The translational
diffusion plays a crucial role as higher translational Peclet numbers lead to pronounced migration of
rods towards the channel walls and increased alignment in the flow direction. This coupling effect
also affects the velocity profile in Couette flow. Our findings provide valuable insights into the
complex behavior of suspended Brownian rods in different flow conditions.

I. INTRODUCTION

In material engineering, predicting and controlling the local configuration state of particle suspensions (i.e., spatial
and orientational distribution) is critical to design advanced manufacturing processes [2–4]. Modelling of such processes
in the case of colloidal suspensions is a difficult undertaking. It requires resolving particle-particle interactions, thermal
fluctuations, and long-range many-body hydrodynamic interactions that lead to complex suspension microstructures
and rheological responses [5, 6]. Researchers have theoretically and numerically studied the evolution of the orientation
of anisometric particles homogeneously suspended during flow. In what follows, we organize the findings based on
linear and non-linear flows.

In linear flows, Jeffery [7] derived the equation of motion for a single isolated, inertialess, ellipsoidal, non-Brownian
particle in a Newtonian fluid. When a dilute slender fiber suspension is subjected to constant shear flow, particles
orient in the flow direction and spent most of their time aligned in this latter direction [8, 9]. For many Brownian
particles, a statistical description is required. Doi and Edwards [10] obtained a Fokker-Planck equation for Brownian
rigid rods, where the orientation convective flux is provided by the Jeffrey’s result. Dhont and Briels [11] derived
the Doi-Edwards framework from first principles explicitly accounting for the rod dynamical correlations. Férec et
al. [12], and later, Natale et al. [13] developed a new set of constitutive equations accounting for a linear and non-linear
lubrication interaction, respectively, between rods dispersed in a Newtonian matrix. Natale et al. [13] showed that
the non-linear lubrication interaction was sufficient to predict the shear-thinning behavior of attractive Brownian
rod suspensions. Hinch and Leal [14] revealed the intricate interplay between shear flow alignment and Brownian
disorientations in a dilute suspension of axisymmetric particles. The rheological behavior exhibits oscillatory features
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tied to particle rotation and a fading memory effect due to Brownian diffusion. Hijazi and Zoaeter [15] used Brownian
dynamics simulations to study rod-like particles in a dilute flowing solution. Their results demonstrated the impact
of the hydrodynamic shear rate and rotational Brownian diffusion on the average orientations, with the maximum
orientation angle exhibiting a strong dependence on the flow conditions. Leahy et al. [16] examined the effect of
shear flow on the rotational diffusion of a single axisymmetric particle. Their study provided new insights into the
time-dependent rheological properties of suspensions containing non-spherical Brownian particles. They found two
distinct diffusive time scales in the rheology that scale separately with aspect ratio. The study highlights the complex
interplay between shear-induced rotations and diffusion, revealing the importance of particle shape and orientation
dynamics in determining the behavior and properties of such suspensions. Palanisamy and den Otter [17] developed
an efficient Brownian dynamics simulation method for rigid colloids in linear flow fields based on the grand mobility
matrix. This study on suspensions of non-spherical Brownian particles revealed that the rheological properties in
continuous shear flow are influenced by two distinct diffusive time scales, which depend on the particle aspect ratio.

In non-linear flows, Schiek and Shaqfeh [18] studied theoretically the cross-streamline migration of slender Brownian
rods in plane Poiseuille flow. It provides insights into the occurrence of migration and the distribution patterns of
particles on scales comparable to the particle length within the channel, where rods migrate away from the center of
the channel and towards the channel walls. Nitsche and Hinch [19] investigated the shear-induced lateral migration of
Brownian rigid rods in parabolic channel flow and quantitatively confirmed the accumulation of rods at the channel
walls. Xie et al. [20] used experimental techniques to study the shear-induced alignment of low aspect ratio gold
nanorods in Newtonian fluids. Their observations highlight the alignment phenomenon and numerical simulations
support the understanding of the nanorods behavior, including the impact of Brownian motion even at high Peclet
numbers. Numerical simulations show that the rods flipping between extreme orientations of the Jeffery’s orbits and
that the effect of the Brownian motion on the gold nanorods cannot be ignored even at large Péclet number. Kumar
and Natale [21] investigated the settling dynamics of two spheres in a suspension of Brownian rods using numerical
simulations. They found that the presence of Brownian rods introduces non-Newtonian contributions, resulting in
repulsive interactions between the settling spheres that depend on the Peclet number and the distance between their
centers.

Fokker-Planck-like equations in multiple dimensions are computationally expensive to solve. The creation of an
equivalent kinetic macro-model is a tactic used to make the numerical solution of complex physics problems more
accessible. Macro models have been used extensively in the literature to forecast particle concentration or orientation.
To describe fiber orientation in suspensions containing short rigid fibers, Advani and Tucker [22] used a set of even-
order moments of the probability distribution function. In concentrated, monomodal, spherical suspensions, Phillips
et al. [23] proposed a constitutive equation for computing particle concentration and velocity fields. Shapley et
al. [24] compared the predictions of various particle migration models to laser Doppler velocimetry measurements. At
moderate bulk particle concentrations, the models accurately predict the macroscopic shear rate and concentration
profiles, but at high concentrations, they start to diverge. Without considering the correlation between the two,
these models are either used to predict the orientation or the concentration. Férec et al. [25] examined the Folgar-
Tucker-Lipscomb model without any closure approximation. They discussed the accuracy of commonly used closure
approximations. As per extant literature, the Invariant-based optimal fitting (IBOF) proposed by Chung et al. [26]
stands out as the most precise closure approximation available. Saintillan and Shelley [27] developed a kinetic model
and discussed the stability and non-linear dynamics of a suspension of self-propelled rod-like particles. For an active
suspension, Weady et al. [28] restated and coarse-grained a continuum kinetic model. Although the translational
diffusion is anisotropic and depends on the particle’s orientation, these two models assume it as a constant. Issa et
al. [1] derived a new kinetic macro-model based on moments of the probability distribution function to investigate the
flow of Brownian particle suspensions taking into account the anisotropic translational diffusion. The rod migrations
across the flow streamlines were caused by Brownian translational Peclet numbers but particle-induced stresses were
neglected.

Many studies have studied the two-way coupling, which refers to the mutual influence between the fluid flow and the
suspended particles, In a series of influential papers [29–31], Batchelor and coworkers established that microstructural
asymmetry, not just distortion, is required to produce non–Newtonian rheology. They established expressions for
the average suspension stress in dilute colloidal dispersion, as well as the non-equilibrium Smoluchowski framework
that governs the evolution of a flowing microstructure under the influence of thermodynamic and hydrodynamic
forces. Several studies have confirmed that particles alter the flow pattern of suspensions. Bagnold [32] reported
the appearance of normal stresses during shear flow on flow-induced non-Newtonian rheology of suspensions of non-
colloidal spherical particles. He proposed that non-Newtonian rheology was caused by the presence of a particle
microstructure and shear-flow-induced changes in its shape. The existence of a shear-induced structure in concentrated
non-colloidal suspensions was conclusively suggested by several studies after this innovative work [33, 34]. Mezi et
al. [35] developed a numerical simulation for 2D planar flows for fiber suspension with a Newtonian and a power-
law suspending fluids. Then, they extended this model to examine a 2D axisymmetric capillary die swell for fiber
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suspensions, which occurs in 3D printing extrusion processes [36]. The particle extra stress flattens the velocity profile
but has little effect on the distribution of fiber orientation in the suspension during flow. Yasuda et al. [37] measured
the velocity profile of short fibers in a Newtonian matrix flow inside a channel with a rectangular cross-section. They
observed that the velocity profile becomes flatter as the fiber volume fraction increases. Mazahir et al. [38, 39] used
slow orientation kinetics such as the reduced strain closure model [40] to conduct coupled transient simulations to
predict fiber orientation in a center-gated disc. They discovered that the numerical data of the coupling effect is
very small when compared to experimental data measured in the shell, transition, and core layers, but there is an
improvement in the frontal flow region. A two-way coupled direct simulation technique is proposed by Moosaie and
Manhart [41] for the numerical solution of Brownian rod suspension flows in complex geometries. They observed that,
in the case of channel flow, the bulk velocity in the channel decreases by the effect of extra stress generated by the
rods. Krochak et al. [42] examined the effect of two-way coupling between the flow field and the orientation state
of rigid fiber suspensions flowing through a tapered channel with an orientation distribution function that evolves
according to a Fokker-Planck-type equation. When the two-way coupling was taken into account, it was demonstrated
that the suspension aligned much more quickly, and the orientation anisotropy profiles differed significantly.

We end this section by reporting a sentence that has puzzled generations of rheologists and soft-matter physicists
and motivated us to explore the effects of an anisotropic translational diffusion tensor. In the renowned book ’The
Theory of Polymer Dynamics’, Doi and Edwards [10] pointed out in chapter 8 that ”..., a concentration gradient of
rodlike polymer can induce an anisotropy in the orientational distribution. However, the reverse is not true: in a
homogeneous system (in which the positional distribution is uniform), the translation-rotation coupling has no effect:
if the system is homogeneous, it will remain homogeneous even if the orientational distribution is not isotropic.” We
will show in the following that this statement is only valid in the case of simple shear flow. Therefore, the objective of
this work is to investigate the effect of flow/Brownian rod microstructure coupling in non-homogeneous systems while
considering the evolution of the particle concentration and orientation. The study employs a kinetic macro-model
derived in a previous work [1] and examines particle suspensions in a planar infinite channel and couette flow between
two cylinders during transient studies. The article is organized as follows: Section II focuses on the flow problem and
theoretical modeling for Brownian rod suspensions. Finally, Section III presents the numerical results, including the
effect of particle extra stresses, the effect of translational diffusion, and the effect of both initial concentration and
orientation gradients, before the conclusion.

II. GOVERNING EQUATIONS

Let’s consider a suspension of Brownian rod-like particles of length L, circular cross-section of diameter D, and an
aspect ratio ar = L/D. The particles are assumed to be rigid, monodisperse, neutrally buoyant, and immersed in a
Newtonian fluid. The rod suspension is supposed to be diluted in a volume of interest V . Hence the mean number of
rods per unit volume n verified that nL3 << 1. The fluid is presumed to be isothermal and incompressible. Below
are presented the equations that describe the flow problem and the kinetic macro-model of the suspending rods.
Subsequently, these equations are written in dimensionless form for further analysis and simplification.

A. Flow problem

The problem is governed by the continuity and Cauchy momentum equations in the limit of creeping flow (low
Reynolds number)

∇x · u = 0, (1)

∇xP − η0∇2
xu = ∇x ·Σ. (2)

In the above equations, ∇x and ∇2
x are the gradient and Laplacian operators in the spatial space, respectively. u is

the velocity vector of the suspension, P denotes the pressure, η0 is the Newtonian dynamic viscosity of the suspending
fluid and Σ represents the particle extra stress tensor. Indeed, the presence of particles in a Newtonian medium
develops extra stress contributions, which are obtained by configurational averages of force dipoles exerted by the
particle on the fluid. In a dilute regime, the particle extra stress tensor arises from two contributions [27]

Σ = ΣB + ΣF . (3)
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The first contribution is because particles are Brownian

ΣB = kBT (3A2 −A2 : δδ), (4)

where kB and T are the Boltzmann constant and the absolute temperature, respectively, and δ is the identity tensor.
The second contribution comes from the inextensibility condition of the particles and is expressed as

ΣF = σF

[(
A4 −

1

3
δA2

)
: γ̇

]
, (5)

where σF = πη0L
3/6 log (2ar) from slender body theory, and γ̇ is the strain-rate tensor. A2 and A4, which will be

defined below, represent the second and fourth-order conformation tensors, respectively.

B. Kinetic model

In a local volume, which is large enough to contain a statistically significant number of particles but smaller than
the characteristic length scale of the macroscopic properties of the system under consideration, a Brownian particle
suspension can be characterized by a distribution function Ψ(x,p, t). It reflects the probability of finding a particle
at position x with orientation p, at time t. Therefore, Ψ(x,p, t)dxdp represents the number of particles with center
of mass and orientation vectors in a range dxdp about x and p at the current time t. A single particle Smoluchowski
equation can be obtained in the dilute regime as follows [10, 35]

∂Ψ

∂t
= −∇x · (ẋΨ)−∇p · (ṗΨ) , (6)

where ∇p is the gradient operator in the configurational space. The time-dependent evolution of the position of a
Brownian particle, ẋ, is

ẋ = u−Dt · ∇x log Ψ, (7)

and the time-dependent evolution of its orientation, ṗ, can be written as

ṗ = ṗj −Dr∇p log Ψ, (8)

where ṗj is the Jeffery’s equation such as

ṗj = −1

2
ω · p +

λ

2
(γ̇ · p− γ̇ : ppp) . (9)

The rotational diffusion coefficient and translational diffusion tensor are denoted by Dr and Dt, respectively. The
latter is defined for non-spherical, rigid particles as Dt = D‖pp + D⊥ (δ − pp), where D‖ and D⊥ are constants
that characterize the diffusion parallel and perpendicular to the particle axis, respectively. The vorticity tensor is
denoted by ω and λ is a constant shape factor as a function of the rod aspect ratio ar. The combination of the above
equations, with the help of the continuity equation, leads to

DΨ

Dt
= ∇x · (Dt · ∇xΨ)−∇p · (ṗjΨ) +Dr∇2

pΨ, (10)

where D(...)/Dt = ∂(...)/∂t + u · ∇x(...) is the material derivative. Based on the distribution function, its moments
can be written. Specifically, the fourth-order, the second-order, and the zeroth-order moments of Ψ are respectively
defined as [1]

A4 =

∫
p

ppppΨdp, (11)
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A2 = A4 : δ =

∫
p

ppΨdp, (12)

c = A2 : δ =

∫
p

Ψdp, (13)

where c represents to the local number density of the suspension, which is directly linked to the trace of A2. The
moments A4 and A2 contain information on the local concentration and orientation of particles. For instance, a local
population of rods oriented randomly with a number density c1 is given by A2 = c1δ/3, whereas a group of rods
having the same direction with a number density c2 leads that A2 has only one non-zero component in the alignment
direction equals to c2. Therefore, it is found that the distribution function Ψ is normalized such as

1

V

∫
x

∫
p

Ψdpdx = n. (14)

After some straightforward algebraic manipulations, an evolution equation of the tensor A2 can be derived [1]

DA2

Dt
=− 1

2
(ω ·A2 −A2 · ω) +

λ

2
(γ̇ ·A2 + A2 · γ̇ − 2A4 : γ̇) + 2Dr (cδ − 3A2)

+D⊥∇2
xA2 +

(
D‖ −D⊥

)
∇x∇x : A4.

(15)

Since Eq. (15) involves A4, it requires a closure approximation to express A4 in terms of A2. Fortunately, standard
closure approximations [26, 43, 44] can be used for this case, by being cautious to normalise A2 by c in order to
maintain the unitary trace condition. In our previous investigation [1], the IBOF closure [26] was tested and yielded
more than 95% accurate results as compared to the exact solution obtained by solving the Fokker-Planck equation
given by Eq. (10). Hence, all the cases presented in this work involved the IBOF closure for the analysis. Eq. (15),
called macro-model, allows for solving of a set of partial differential equations (i.e., 6 PDEs in 3D, which are the
evolution of A11, A22, A33, A12, A13 and A23) rather than a full 6D Fokker-Planck equation (i.e., 3D in spatial space,
2D in configurational space and 1D in time), greatly simplifying the numerical simulation.

C. Dimensionless formulation of the problem

To render the problem dimensionless, the particle length L and the Newtonian viscosity of the suspending fluid
η0 are chosen as the characteristic length and viscosity, respectively. Therefore, the characteristic strain rate is
γ̇ = Uavg/L, where Uavg is the average flow velocity. We also introduce a dimensionless mean number density such
as c∗ = c/n, where n is the mean number density. The dimensionless form of the Cauchy equation can be written as

∇∗xP ∗ −∇∗2xu∗ = ∇∗x ·
{
c∗
[
Np

(
A∗4 −

1

3
δA∗2

)
: γ̇∗ +Nb (3A∗2 − δ)

]}
. (16)

As a result, the dimensionless form of the stress tensor is

Σ∗ = c∗
[
Np

(
A∗4 −

1

3
δA∗2

)
: γ̇∗ +Nb (3A∗2 − δ)

]
, (17)

where Np = πnL3

6log(ar)
is the particle coupling coefficient, and Nb = nkBT

η0γ̇
is the Brownian coupling coefficient. Following

the previous work [1], Per = γ̇/Dr, Pe⊥ = L2γ̇/D⊥ and Pe‖ = L2γ̇/D‖ are the rotary, perpendicular and parallel
Peclet numbers, respectively. For very long and thin rod-like particles, λ = 1 and the relation Pe⊥ = 2Pe‖ applies [10].
Based on this, the evolution equation for A2 in dimensionless form becomes

DA∗2
Dt∗

=− 1

2
(ω∗ ·A∗2 −A∗2 · ω∗) +

1

2
(γ̇∗ ·A∗2 + A∗2 · γ̇∗ − 2A∗4 : γ̇∗) +

2

Per
(δ − 3A∗2)

+
1

Pe⊥
∇∗x2A∗2 +

1

Pe⊥
∇∗x∇∗x : A∗4,

(18)
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where t∗ = tγ̇. The evolution equation of concentration c∗ is simply obtained by taking the trace of the above equation

Dc∗

Dt∗
=
DA∗2
Dt∗

: δ =
1

Pe⊥
∇∗x2c∗ +

1

Pe⊥
∇∗x∇∗x : A∗2. (19)

Eqs. (18) and (19) show the coupling between the concentration and the local orientation of the Brownian rods.
This coupling clearly appears in the last term of Eq. (19). In what follows the asterisks indicating the non-dimensional
quantities have been dropped for clarity.

III. NUMERICAL RESULTS

In this work, three shear flow problems (simple shear flow, Poiseuille flow and Couette flow) are tested using the
kinetic macro-model with the IBOF closure, which corresponds in solving Eqs. (1), (2) and (18) in their dimensionless
form. The accuracy of this model has been verified in Appendix A with comparing the results with the solution of
the full Fokker-Planck equation for simple shear flow (uncoupled model). The dimensionless shear viscosity is given
by η = Σ12 and the dimensionless first and second normal stress differences N1 and N2 are N1 = Σ11 − Σ22 and
N2 = Σ22−Σ33, respectively. Actually, the indices 1, 2 and 3 denote the flow direction, the velocity gradient direction
and the vorticity direction, respectively. Therefore, in a simple shear flow and Poiseuille flow, they correspond to x, y
and z, respectively, while in the Couette flow, they refer to θ, r and z, respectively. Initial conditions (unless otherwise
mentioned) are A2 = δ/3 and c = 1. It means that particles have a 3D random orientation with no concentration
gradient.

A. Simple shear flow

First, we consider a suspension flowing between two moving parallel plates. The geometry is a 2D square channel of
side H, where H/L = 106. A simple shear flow is imposed in the xy-plane, where the upper wall at y = H/2 translates
at γ̇H/2 = 0.5 in the x-direction, whereas the lower wall at y = −H/2 translates in the opposite direction. Due to
the symmetric conditions along the y = 0 axis, all results in the rectangular channel are plotted for 0 < y/H < 0.5.
Periodic flow conditions with ∆P = 0 at (x = 0 and x = H) are used to simulate the flow in an infinite channel.

1. Homogeneous systems

Under the one-way coupling assumption (Np = 0 and Nb = 0), we first explore the flow-induced microstructure
change for a homogeneous system in a simple shear flow. Numerical simulations are performed for Pe⊥ = 0.01, 0.1, 1
and 10, with a fixed value of Per = 10. There is no effect of translational diffusion on the system. No effect on the rod
orientation dynamics, shear viscosity, and normal stress differences is observed and no rod migration occur (results
not shown). This is confirmed by the fact that the right-hand side of Eq. (19) is always null. We then examine the
flow-microstructure coupling for Nb = 0, 10, 100, 250 and 1000 and Np = 0, 10, 100 with Pe⊥ = Per = 10. The two-
way coupling does not change the velocity profile in simple shear flows (as expected for viscometric flows) and does
not modify the rod orientations as well as the rheological properties (shear viscosity and normal stress differences).

2. Non-homogeneous systems - Effect of concentration gradient

We now investigate the effect of various initial concentrations on the transient rheological properties of Brownian rod
suspensions. As depicted in Fig. 1, six initial concentration gradient cases along the y-direction are examined with the
following equations, c1 = 1, c2 = −2.57y2 + 1.21, c3 = −3.43y2 + 1.28, c4 = −5.14y2 + 1.42, c5 = 1.42 for 0 < y < 0.35
else c5 = 0.0014 and c6 = 2.856 for 0 < y < 0.1755 else c6 = 0.0014. The average concentration in the channel is
kept constant to 1 for all the cases. Particles are initially isotropically oriented. The two-way coupling assumption
is taken into consideration. To examine the impact of concentration, it is necessary to keep the other parameters
influencing the study constant, such as maintaining fixed values for Nb = 250, Np = 10, and Per = Pe⊥ = 10. In
these cases, the presence of an initial concentration gradient results in a non-uniform distribution of particles within
the channel. As a result, particle migration occurs across the streamlines due to translational diffusion. The presence
of a concentration gradient in the y-direction leads to the right-hand side term in Eq. (19) becoming non-zero, which
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FIG. 1: Initial concentration gradients c1 = 1, c2 = −2.57y2 + 1.21, c3 = −3.43y2 + 1.28, c4 = −5.14y2 + 1.42,
c5 = 1.42 for 0 < y < 0.35 else c5 = 0.0014 and c6 = 2.856 for 0 < y < 0.1755 else c6 = 0.0014.

FIG. 2: Evolution of concentration distribution along the y-direction for various initial concentration gradients at
t = 0.025 and 0.05.

subsequently induces particle migrations. Indeed, since t increases, the concentration gradient gradually changes as
reported in Fig. 2, until reaching a uniform concentration distribution ci = 1 at the steady state (t ≈ 0.2). However, in
these cases, it is worth mentioning that the migration of rods does not have an impact on their orientation dynamics.
As a result, the transient rheological properties, which are specifically related to the orientation distributions of the
rods, remain unaffected by rod migrations.

3. Non-homogeneous systems - Effect of orientation gradient

To explore the influence of orientation along the y-direction, an orientation gradient is imposed in a simple shear
flow keeping the concentration constant and homogeneous. Four initial orientation gradient cases are examined, as
shown in Fig. 3, for which Ayy = Azz and Axy = 0. The first case is referred to as ”ISO”, where the rod orientation
is isotropic, i.e., A2 = δ/3. In the second case called ”ALI”, particles are perfectly aligned in the flow direction (i.e.,
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Axx = 1). ”LIN” corresponds to the initial condition, where the orientation gradient has a linear profile. Axx = 1
and Ayy = 0 at the walls (y = 0.5), whereas Axx = 0 and Ayy = 0.5 at center-line (y = 0). The latest case denoted
”QUA” considers a quadratic form for the orientation gradient, where rods are aligned in the flow direction at the
center-line, Axx = 1 and Ayy = 0, while at walls (y = 0.5), Axx = 0 and Ayy = 0.5. To isolate the effect of orientation,
parameters are fixed to Nb = 250, Np = 10, and Pe⊥ = Per = 10. No cross-streamline migrations of the rods are
observed. Furthermore, the various initial orientations of rods do not modify their final orientation distributions and
consequently the final rheological properties of the system. However, it changes the transient rheological properties
of the system.

(a) Initial distribution of Axx along the y-direction. (b) Initial distribution of Ayy along the y-direction.

FIG. 3: Initial rod orientations, ”ISO”, ”LIN”, ”ALI”, and ”QUA” for (a) Axx and (b)Ayy in the y-direction.

Evaluated at x = 0, Fig. 4, 5, and 6 depict the time evolution along the y-direction for Σxy, N1 and N2, respectively.
These figures provide valuable information about how the rheological properties of the system evolve over time in
response to changes in the initial orientation of the rods. The study reveals that rheological properties are strongly
linked with rod orientation distributions.

FIG. 4: Evolution of the shear stress along the y-direction for various initial rod orientations at t = 0.2, 0.6, 2 and 30.
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FIG. 5: Evolution of the first normal stress difference along the y-direction for various initial rod orientations at
t = 0.2, 0.6, 2 and 30.

FIG. 6: Evolution of the second normal stress difference along the y-direction for various initial rod orientations at
t = 0.2, 0.6, 2 and 30.

B. Poiseuille flow

Let’s consider now the planar Poiseuille flow problem. The geometry consists of a 2D square of side H and, therefore,
the flow occurs in the xy-plane (x being the flow direction and y the velocity gradient direction). The two fixed walls
are located at y ± 1/2. Periodic flow conditions of constant flow rate are used to simulate an infinite flow in the
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channel. The prescribed initial condition for the velocity is parabolic with ux = 1− 4y2 and uy = 0.

1. Effect of particle extra stress

By taking into account the two-way coupling effects in homogeneous systems, it is known that the presence of
particles in the fluid causes a flattening of the standard parabolic velocity profile in a Poiseuille flow [36]. However,
in our study, we focus on non-homogeneous systems, where migrating rods lead to the formation of concentration
variations, thus deviating from homogeneity. Hence, to investigate the impact of particle extra stress on the system,
we keep constant the translational and rotational Peclet numbers at a value of 10 (i.e., Per = Pe⊥ = 10). This allows
us to isolate and analyze the specific influence of the additional stress on the system (i.e., the effect of the coupling).

Fig. 7a presents the numerical results obtained by investigating the coupled flow field and rod conformations, in
particular the effect of Brownian stress contribution through Nb. Starting from a prescribed parabolic velocity profile
with an isotropic orientation distribution and c(t = 0) = 1, the velocity profile tends to flatten out with time (results
not shown). The system is fully developed at t = 30. As increasing Nb, the velocity profile tends to flatten more.
For Nb = 10, the effect on the velocity profile is relatively small. However, as Nb increases, particle stresses increase
leading to a more significant deviation from the standard parabolic profile.

Fig. 7b depicts the effect of Brownian stresses on the concentration profile at t = 30 (i.e., at steady-state). Particle
stress hinders the rod orientations toward the flow direction in the channel. It also favors the migration of rods toward
the walls as aligned rods have less tendency to migrate across the streamlines [1].

The effect of hydrodynamic stress contribution through Np is tested. Values of Np up to 100 show no significant
modifications in the velocity profile and concentration distribution. Note that the limit of convergence of this numerical
model is Np = 100, for higher values the numerical model diverges.

(a) Velocity profiles along the y-direction for Np = 0 and
for various values of Nb at t = 30.

(b) Concentration distributions along the y-direction for
Np = 0 and for various values of Nb at t = 30.

FIG. 7: Effect of Brownian stress contribution on the (a) velocity profile and the (b) concentration distribution
along the y-direction for Nb = 0, 10, 100, 250 and 1000 at t = 30 at t = 30 with Np = 0.

2. Effect of translational diffusion

In our previous work [1], the effect of translational diffusion in a limited planar channel is studied without flow
coupling. We aim now to explore the effect of translational diffusion in an infinite channel by taking into account the
two-way coupling effects in a transient study. Therefore, the coupling coefficients and the rotary Peclet number are
set at fixed values, such as Nb = 250, Np = 10 and Per = 10 with varying values of Pe⊥.

Fig. 8a shows the effect of translational diffusion on the velocity profile compared with the initial velocity. It is
found that extra stress has a more pronounced impact on the velocity profile at higher translational diffusion Peclet
numbers.
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(a) Velocity profiles along the y-direction for various
Pe⊥ at t = 30 compared with velocity profile with no

coupling.
(b) Concentration along the y-direction for various Pe⊥

at t = 30

FIG. 8: Effect of the translational Peclet number on the (a) velocity profile and the (b) concentration distribution
along the y-direction for Pe⊥ = 10−2, 10−1, 100 and 101 at t = 30.

Fig. 8b illustrates the influence of translational diffusion on the concentration distribution of the rods. At high
values of Pe⊥, there is a notable migration of the rods towards the walls of the channel. However, as Pe⊥ decreases,
this migration becomes less pronounced. When Pe⊥ drops below 10−1, the rods tend to remain more uniformly
distributed along the channel without significant concentration variations. In addition, the rods tend to maintain
an isotropic distribution at low values of Pe⊥ (results not shown). Consequently, the rheological properties of the
suspension are close to the ones of the suspending fluid when Pe⊥ becomes low (for more details, see Appendix B).

3. Effect of concentration gradient

A concentration gradient is now introduced keeping the rod orientation distribution isotropic. The same concen-
tration gradient cases are considered as in Section III A 2. The numerical simulations are performed with Nb = 250,
Np = 10 and Per = Pe⊥ = 10. No significant effect on the rod orientation is observed.

Figs. 9, 10, 11, and 12 show that the initial concentration gradients change the transient behavior of the velocity
profile, shear stress and both normal stresses differences. In a suspension of Brownian rods, the shear stress and
normal stress differences can undergo transient changes. These variations are caused by the presence of a concentration
gradient within the suspension, which in turn affects the generation of extra stress on the fluid. However, it is crucial
to emphasize that these transient changes do not impact the final steady-state values. As the rods migrate across
streamlines, the concentration gradient gradually diminishes, leading the system to reach a steady state characterized
by a well-developed and consistent concentration distribution. In this steady-state condition, the system achieves a
stable equilibrium, with final shear stress and normal stress difference values that are the same across the channel
for all the studied cases. Once the concentration becomes homogeneously distributed and the system reaches this
equilibrium state, the rheological properties no longer exhibit transient changes and maintain their steady-state values
throughout the channel.

C. Couette flow

The Couette flow is commonly used to study fluid dynamics and transport phenomena in cylindrical geometries.
Fig. 13 shows the Couette flow geometry used in this section, which consists of two concentric cylinders with radii Rout
and Rin = 0.8Rout. The outer cylinder is fixed, while the inner cylinder is rotating at angular velocity U/(γ̇Rout) =
0.36. Fig. 13 also displays the magnitude of the velocity field between the coaxial cylinders, which varies with the
radial distance. All the results in this section are plotted at the ”baseline” (see Fig. 13), since at this line the velocity



12

FIG. 9: Effect of the initial concentration on the velocity profile along the y-direction at t = 0.2, and 0.6.

FIG. 10: Effect of the initial concentration on the shear viscosity along the y-direction at t = 0.2, 0.6, 2 and 30.

vector has only one component in the θ-direction. Using a cylindrical coordinate system (r, θ, z) is suitable to present
the results.

1. Small gap

We first consider a flow between two concentric cylinders with a very small gap, known as Couette flow (Rin/Rout =
0.99). The difference in shear rates between the inner and outer cylinders is found to be around 2.8% (γ̇ = 1±2.8%s−1).
The rotary diffusion is fixed to a value of Per = 10 and the coupling coefficients are chosen to beNp = 10 andNb = 250.
We observe that even a small difference in the shear rates between the inner and outer cylinders can have a significant
effect on the system. The particles do not introduce any noticeable alterations to the flow field, and there is no
migration of particles across the streamlines. However, the orientation of the rods in the Couette flow is influenced by
the translational Peclet number, as shown in Fig. 14. The changes in particle orientation have notable consequences on
the rheological properties of the system, as depicted in Fig. 15. The isotropic distribution of rods at these conditions
leads to a minimal value of the shear viscosity comparable to the case of aligned rods, as well as for both normal
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FIG. 11: Effect of the initial concentration on the first normal stress differences along the y-direction at
t = 0.2, 0.6, 2 and 30.

FIG. 12: Effect of the initial concentration on the second normal stress differences along the y-direction at
t = 0.2, 0.6, 2 and 30.

stress differences. This behavior highlights the significant impact of rod orientation on the rheological properties of
the suspension.

2. Effect of particle extra stresses

Fig. 16a illustrates the effect of Brownian stress contribution on the velocity profile in a Couette flow with suspended
rods. It shows that as the Brownian coupling increases, the velocity profile becomes more flattened. This is because
the orientation of the elongated particles affects the stress contributions, which in turn changes the shear viscosity.
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FIG. 13: Initial dimensionless velocity magnitude in the Couette flow. The red vertical line will be referred to as
”the base line” in this work

As a result, the velocity profile deviates from the initial profile observed in a Couette flow

uθ/(γ̇Rout) =
1

R2
out −R2

in

(
0.45R2

inRout
r

− 0.45R2
inr

Rout

)
. (20)

When Nb = 100 or 250, the coupling between the flow-field and rod orientation is strong enough to cause the
formation of a reverse flow near the fixed cylinder. This occurs because the orientation of the rods affects the flow
field, leading to the formation of a pressure gradient that opposes the initial flow direction (last term in Eq. (16)). As
a result, the velocity near the fixed cylinder becomes negative.

Fig. 16b depicts the effect of Brownian coupling on the concentration of the rods. It indicates that as Nb increases,
the concentration of rods near the fixed wall decreases and becomes more concentrated near the moving wall. This is
due to the change in the velocity profile mentioned earlier.

3. Effect of translational diffusion

The effect of translational diffusion on the behavior of Brownian particles in the Couette flow is investigated by
simulating the flow for various values of Pe⊥. The results show that the behavior of the suspension in the Couette
flow is qualitatively similar to that observed in the Poiseuille flow. Fig. 17a reports the velocity profile between the
coaxial cylinders at t = 30. As expected, the velocity profile changes as the coupling between the particles and the
flow increases. Furthermore, the effect of coupling decreases as the translational Peclet number decreases. Fig. 17b
depicts the concentration distribution between the coaxial cylinders at t = 30. It demonstrates that at high values
of Pe⊥, the rods exhibit a migration towards the walls. Conversely, as Pe⊥ decreases, this migration becomes less
pronounced. At low values of Pe⊥, the rods tend to maintain an isotropic distribution. This isotropic behavior
significantly influences the rheological properties. The concentration distribution and migration of the rods play a
crucial role in determining the overall rheology and behavior of the suspension in a Couette flow.
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(a) Evolution of Aθθ with respect to the strain. (b) Evolution of Arθ with respect to the strain.

(c) Evolution of Arr with respect to the strain.

FIG. 14: Effect of the translational Peclet number on the evolution of the orientation components of (a) Aθθ, (b)Arθ
and (c) Arr as a function of strain (γ) at r = (Rin +Rout)/2 (γ̇ = 1/s).

IV. CONCLUSION

This numerical work investigates the rheological behavior of Brownian rod suspensions in a simple shear flow,
a Poiseuille flow, and a Couette flow, respectively. The effects of rod-fluid coupling, concentration gradients, and
translational diffusion are explored based on a kinetic macro-model.

The presence of rods in simple shear flow does not significantly alter the flow behavior, and translational diffusion
has minimal impact on the system. However, in Poiseuille flow, the rods cause deviations from the standard parabolic
velocity profile, leading to a flattened profile and the formation of concentration gradients. The coupling between
the flow-field and rod orientation affects their orientation, migration behavior, and rheological properties, which have
implications for the overall flow dynamics. In Couette flow, the rod-fluid coupling leads to an interesting phenomenon
of inverse flow near the fixed cylinder, driven by the interplay between rod orientation and flow field.

Also, we highlight here the influence of translational Peclet numbers on the behavior of Brownian rod suspensions
in flow systems. Low values of the translational Peclet number hinder the effects of rod-flow couplings, resulting in
minimal alterations to the flow behavior. However, as the translational Peclet number increases, pronounced migration
of rods towards the channel walls and increased alignment with the flow direction are observed. The results of our
work show that the famous sentence from Doi and Edwards [10], mentioned in the introduction, is only valid for
simple shear flow and even the slight deviation from linearity breaks this statement.

These results have significant implications for various applications involving rod-like particle suspensions. Under-
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(a) Evolution of the shear viscosity (Σrθ) with respect to
the strain.

(b) Evolution of the first normal stress difference (N1) with
respect to the strain.

(c) Evolution of the second normal stress difference (N2)
with respect to the strain.

FIG. 15: Effect of the translational Peclet number on the evolution of the normalized rheological properties (a)
shear viscosity (Σrθ), (b) first normal stress difference (N1) and (c) second normal stresses difference (N2) as a

function of strain (γ) at r = (Rin +Rout)/2 (γ̇ = 1/s).

standing the influence of translational Peclet numbers can aid in the design and optimization of microfluidic devices,
biophysical processes, and industrial applications, where the control and manipulation of rod-like particles in flow
systems are crucial. Further research and experimental investigations are necessary to validate and expand upon these
findings, exploring the interplay between translational diffusion and rod-flow couplings. Future works will focus on
exploring the effect of anisotropic translational diffusion in the case of active Brownian particles as well as the effect
of the stresses on the system.
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(a) Velocity profiles along the r-direction for
Nb = 0, 10, 100 and 250 at t = 30.

(b) Concentration distributions along the r-direction for
Nb = 0, 10, 100 and 250 at t = 30.

FIG. 16: Effect of Brownian stress contribution on the (a) velocity profile and (b) concentration distribution along
the r-direction for Nb = 0, 10, 100 and 250, and Np = 0 at t = 30.

(a) Effect of the translational Peclet number on the
velocity profile along the r-direction of the base line for

Pe⊥ = 10−2, 10−1, 100 and 101 at t = 30.

(b) Effect of the translational Peclet number on the
concentration along the r-direction of the base line for

Pe⊥ = 10−2, 10−1, 100 and 101 at t = 30.

FIG. 17: Effect of the translational Peclet number on ((a) velocity profile and (b) concentration along the
r-direction for Pe⊥ = 10−2, 10−1, 100 and 101 at t = 30.

Appendix A: Model validation

Based on Section II C, the dimensionless form of Eq. (10) is

DΨ∗

Dt∗
= ∇∗x ·

{[
1

Pe‖
pp +

1

Pe⊥
(δ − pp)

]
· ∇∗xΨ∗

}
−∇p · (ṗ∗jΨ∗) +

1

Per
∇2

pΨ∗. (A1)

In order to solve Eq. (A1) for homogeneous flows in 3D, a finite volume method is employed to discretize the
partial differential equation in the configurational space. Following the works of [25] and [35], the numerical method
is updated to deal with the 3D representation of Brownian particles and consists on discretizing the Fokker-Planck
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equation for NxN number of equations. The model is implemented using COMSOL Multiphysics live-linked with
MATLAB which uses the Finite Element (FE) method to solve the whole equations. The two-way coupling of fluid
and particles is taken into account using the weak formulation of the equations in the laminar flow physics interface.
The study of the numerical solution of the model is performed to verify the used model in a simple shear flow. We
compare the results with published data in the case of a homogeneous system by performing single-point calculations
(SPC) using the finite volume method. SPC calculation is performed by discretizing the half sphere of the unit radius
into N = 120x120 area elements, whereas only N = 20x20 element areas are considered for the FE scheme. Starting
from the initially homogeneous concentration c(t = 0) = 1 and the initially isotropic orientation of the particles, the
orientation state is expressed as a function of total strain in Fig. 18. A11 and A22 are proportional to the magnitude
of the alignment in the flow direction and velocity gradient direction, respectively, while A12 indicates the direction of
alignment. The model is simulated for Per = 10, Pe⊥ = 109 (which has no physical effect on translational diffusion
except for stabilizing the numerical scheme) in a transient study for γ = 30 without considering the hydrodynamic
and Brownian coupling effects. The concentration remains homogeneous (c = 1) during the study. Fig. 18 illustrates
a comparison between SPC and FE results, and using the IBOF closure. The FE results and the model using
the IBOF closure provide accurate dynamics and the appropriate steady-state values. This analysis confirms the
well-implementation of the FE code and the IBOF accuracy in this work.

FIG. 18: Comparison of the IBOF closure approximation [26] with the FE and single-point calculations (SPC) of
the conformation tensor components in simple shear flow (γ̇ = 1) with respect to strain γ.

Appendix B: Effect of translational diffusion on the rheological transient behaviors in Poiseuille flow

Fig. 19 shows the evolution of the shear stress profile along the y-direction for the mentioned time steps at various
Pe⊥ numbers. The results indicate that the shear stress Σxy of the suspension is highest near the walls, where the
shear stress and the alignment of the particles are highest, and lowest at the center of the channel, where the shear
stress and the alignment of the particles are lowest. As Pe⊥ increases, Σxy increases.

Figs. 20 and 21 present the normal stress differences for the mentioned translational Peclet numbers at the same
time steps. Due to the higher rod alignment at higher translational Peclet numbers, first normal stress differences
increase with the increase of Pe⊥. For Pe⊥ = 10−1 and 10−2, N1 values are around zero. N2 exhibits negative values,
it has higher values around the center of the channel than near the walls. As time increases, N2 decreases until it
reaches the steady state. Increasing Pe⊥ leads to lower values of N2, at low Pe⊥, N2 remains around zero. Due to
the anisotropic nature of the suspension, normal stress differences develop. The particles initially take some time to
align and arrange themselves in the flow direction after the flow is initiated.
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FIG. 19: Effect of the translational Peclet number on the shear stress Σxy along the y-direction for various Pe⊥
numbers at different time t.

FIG. 20: Effect of the translational Peclet number on the first normal stress difference N1 along the y-direction for
various Pe⊥ numbers at different time t.
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