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Abstract10

How protein move and deform determines their interactions with the environ-11

ment and is thus of utmost importance for cellular functioning. Following the12

revolution in single protein 3D structure prediction, researchers have focused on re-13

purposing or developing deep learning models for sampling alternative protein con-14

formations. In this work, we explored whether continuous compact representations15

of protein motions could be predicted directly from protein sequences, without ex-16

ploiting nor sampling protein structures. Our approach, called SeaMoon, leverages17

protein Language Model (pLM) embeddings as input to a lightweight (∼1M train-18

able parameters) convolutional neural network. SeaMoon achieves a success rate of19

up to 40% when assessed against ∼ 1 000 collections of experimental conformations20

exhibiting a wide range of motions. SeaMoon capture motions not accessible to the21

normal mode analysis, an unsupervised physics-based method relying solely on a22

protein structure’s 3D geometry, and generalises to proteins that do not have any23

detectable sequence similarity to the training set. SeaMoon is easily retrainable24

with novel or updated pLMs.25

Keywords: protein motion, protein language models, transfer learning, PCA, deep26

learning27
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Introduction28

Proteins coordinate and regulate all biological processes by adapting their 3D shapes29

to their environment and cellular partners. Deciphering the complexities of how proteins30

move and deform in solution is thus of utmost importance for understanding the cellular31

machinery. Yet, despite spectacular advances in protein structure determination and pre-32

diction, comprehending protein conformational heterogeneity remains challenging (Lane,33

2023; Miller and Phillips, 2021; Henzler-Wildman and Kern, 2007).34

Many recent approaches have concentrated on repurposing the protein structure predic-35

tion neural network AlphaFold2 (Jumper et al., 2021) to generate conformational diversity36

(Sala et al., 2023). Guiding the predictions with state-annotated templates proved suc-37

cessful for modelling the multiple functional states of a couple of protein families (Faezov38

and Dunbrack Jr, 2023; Heo and Feig, 2022). In addition, massive sampling strate-39

gies have shown promising results for protein complexes (Wallner, 2023) (Wallner, 2023;40

Johansson-Åkhe and Wallner, 2022) with notable success in the blind CASP15-CAPRI41

assessment (Lensink et al., 2023). While they can be deployed seamlessly with parallelized42

implementations (Brysbaert et al., 2024), they remain highly resource-intensive.43

Other strategies have explored promoting diversity by modulating and disentangling44

evolutionary signals (Sfriso et al., 2016). The rationale is that amino acid co-variations45

in evolution reflect 3D structural constraints (Benner and Gerloff, 1991; Göbel et al.,46

1994; Ortiz et al., 1999; Lapedes et al., 1999; Giraud et al., 1999; Thomas et al., 2005;47

Weigt et al., 2009). These evolutionary patterns can be extracted directly from align-48

ments of evolutionary related sequences, or, as shown more recently, by modeling raw49

sequences at scale with protein language models (Bepler and Berger, 2021; Elnaggar50

et al., 2022; Lin et al., 2023). Inputting shallow, masked, corrupted or sub-sampled51

alignments to AlphaFold2 allowed for modelling distinct conformations for a few protein52

families (Kalakoti and Wallner, 2024; Wayment-Steele et al., 2023; Del Alamo et al.,53

2022; Stein and Mchaourab, 2022). Nevertheless, contradictory findings have highlighted54

difficulties in rationalising the effectiveness of these modifications and interpreting them,55

particularly for metamorphic proteins (Porter et al., 2024; Chakravarty and Porter, 2022;56

Chakravarty et al., 2023).57

More classically, physics-based molecular dynamics (MD) is a method of choice to58

probe protein conformational landscapes (Hollingsworth and Dror, 2018). Nonetheless,59

the time scales amenable to MD simulations on standard hardware remain much smaller60

than those spanned by slow molecular processes (Chen et al., 2023). This limitation has61

stimulated the development of hybrid approaches combining MD with machine learning62

(ML) toward accelerating or enhancing sampling (Noé et al., 2020). Deep neural networks63

can help to identify collective variables from MD simulations as part of importance-64

sampling strategies (Chen et al., 2023; Belkacemi et al., 2021; Bonati et al., 2021; Wang65

et al., 2020; Ribeiro et al., 2018). Or they may directly generate conformations according66

to a probability distribution learnt from MD trajectories or sets of experimental structures67

(Zheng et al., 2024; Lu et al., 2023; Ramaswamy et al., 2021; Noé et al., 2019). Diffusion-68

based architectures (Abramson et al., 2024; Zheng et al., 2024; Jing et al., 2023) and69

the more general flow-matching framework (Jing et al., 2024) provide highly efficient and70

flexible means to generate diverse conformations conditioned on cellular partners and71

ligands. Nevertheless, they are prone to hallucination, and models trained across protein72
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families still fail to approximate solution ensembles (Abramson et al., 2024).73

On the other hand, the normal mode analysis (NMA) represents a data- and compute-74

inexpensive unsupervised alternative for accessing large-scale, shape-changing protein mo-75

tions (Hayward and Go, 1995). In particular, the NOLB method predicts protein func-76

tional transitions in real-time by deforming single structures along a few collective coordi-77

nates inferred with the NMA (Grudinin et al., 2020; Hoffmann and Grudinin, 2017). The78

generated conformations are physically plausible and stereochemically realistic. However,79

the results strongly depend on the 3D geometry of the starting structure, and although80

some of the initial topological constraints can be easily alleviated (Laine and Grudinin,81

2021), the NMA remains unsuitable for modelling extensive secondary structure rear-82

rangements.83

Training and benchmarking predictive methods is difficult due to the sparsity and84

inhomogeneity of the available experimental data (Berman et al., 2000). X-ray crys-85

tallography, cryogenic-electron microscopy (cryo-EM), and nuclear magnetic resonance86

spectroscopy (NMR) have provided invaluable insights into protein diverse conformational87

states (Ramelot et al., 2023; Miller and Phillips, 2021), but only for a relatively small num-88

ber of proteins (Bryant, 2023). Small-angle X-ray or neutron scattering (SAXS, SANS)89

and high-speed atomic force microscopy (HS-AFM) techniques allow for directly probing90

continuous protein heterogeneity, but with limited structural resolution (Trewhella, 2022;91

Martel and Gabel, 2022; Flechsig and Ando, 2023).92

Ongoing community-wide efforts aim at revealing the full potential of the available93

structural data by collecting, clustering, curating, visualising and functionally annotating94

experimental protein structures together with high-quality predicted models (Wankowicz95

and Fraser, 2023; Ramelot et al., 2023; Ellaway et al., 2023; Varadi et al., 2022; Modi and96

Dunbrack Jr, 2022; Parker et al., 2022; Tordai et al., 2022; Pándy-Szekeres et al., 2023).97

For instance, the DANCE method produces movie-like visual narratives and compact con-98

tinuous representations of protein conformational diversity, interpreted as linear motions,99

from static 3D snapshots (Lombard et al., 2024). DANCE application to the Protein Data100

Bank (PDB) (Berman et al., 2000) revealed that the conformations observed for most101

protein families lie on a low-dimensional manifold. Classical dimensionality reduction102

techniques can learn this manifold and generate unseen conformations with reasonable103

accuracy, albeit only in close vicinity of the training set (Lombard et al., 2024).104

Here, we explored the possibility of predicting protein motions directly from amino acid105

sequences without exploiting nor sampling protein 3D structures. To do so, we lever-106

aged protein Language Models (pLMs) pre-trained through self-supervision over large107

databases of protein-related data. Our approach, SEAquencetoMOtioON or SeaMoon, is108

a 1D convolutional neural network inputting a protein sequence pLM embedding and out-109

putting a set of 3D displacement vectors (Fig. 1). The latter define protein residues’ rela-110

tive motion amplitudes and directions. We tested whether SeaMoon could capture the lin-111

ear motion manifold underlying experimentally resolved conformations across thousands112

of diverse protein families (Lombard et al., 2024). To this end, we devised an objective113

function invariant to global translations, rotations, and dilatations in 3D space. SeaMoon114

achieved a success rate similar to the normal mode analysis (NMA) when inputting purely115

sequence-based pLM embeddings (Lin et al., 2023) without any knowledge about protein116

3D structures. It could generalise to proteins without any detectable sequence similarity117

to the training set and capture motions not directly accessible from protein 3D geometry.118
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Injecting implicit structural knowledge with sequence-structure bilingual or multimodal119

pLMs (Hayes et al., 2024; Heinzinger et al., 2023) further boosted the performance. This120

work establishes a community baseline and paves the way for developing evolutionary-121

and physics-informed neural networks to predict continuous protein motions.122
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Figure 1: Outline of SeaMoon’s approach. SeaMoon takes as input a high-
dimensional L × d matrix representation of a protein sequence of length L computed
by a pre-trained pLM. It outputs a set of 3D vectors of length L representing linear
motions. The training procedure regresses these output motions (blue and red arrows)
against ground-truth ones (yellow arrows) extracted from experimental conformational
collections through principal component analysis. For this, SeaMoon identifies the trans-
formation (rotation and scaling) minimising their discrepancy, computed as a sum-of-
squares error (SSE). We consider predictions with a normalised error (NSSE) smaller
than 0.6 as acceptable. We show the query protein 3D structure only for illustrating the
motions, it is not used by SeaMoon nor by the pLM generating the input embeddings..
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Results and Discussion123

The approach introduced in this work, SeaMoon, predicts continuous representations of124

protein motions with a convolutional neural network inputting pLM sequence embeddings125

(Fig. 1). We considered the purely sequence-based pLM ESM2 (Lin et al., 2023) and two126

structure-aware pLMs, namely ESM3 (Hayes et al., 2024) and ProstT5 (Heinzinger et al.,127

2023). ESM3 is the largest model (Table S1), and it can condition on and reconstruct128

several protein sequence and structural properties. ProstT5, the smallest model (Table129

S1), is a fine-tuned version of the sequence-only model T5 that translates amino acid130

sequences into sequences of discrete structural states and reciprocally. We trained and131

tested SeaMoon on over ∼ 17 000 experimental conformational collections representing132

a non-redundant set of the PDB at 80% sequence similarity. We used the principal133

components extracted from these collections as ground-truth linear motions to which we134

compared SeaMoon predicted 3D vectors. The latter are not anchored on a particular135

conformation and may be in any arbitrary orientation. To allow for a fair comparison,136

we determined the optimal rotation and scaling between the ground-truth and predicted137

vectors before computing the error between them (see Methods for details). Based on138

visual inspection, we considered predictions as acceptable when their normalised sum-139

of-squares error (NSSE) was smaller than 0.6 (Fig. 1). See Fig. S1 for illustrative140

examples of different error levels. By comparison, random predictions typically display141

errors above 0.9 (Fig. S2). SeaMoon is highly computationally efficient. It took 12s to142

predict 3 motions for each of 1 121 test proteins on a desk computer equipped with Intel143

Xeon W-2245 @ 3.90 GHz.144

SeaMoon predicts motions from sequences across diverse protein145

families146

SeaMoon predicted at least one acceptable linear motion for each of 300 test proteins from147

the purely sequence-based ESM2 embeddings (Table I and Fig. 2A). Its performance148

was comparable to that of the purely geometry-based unsupervised NMA. SeaMoon suc-149

cess rate improved by 25-40% when inputting structurally-informed embeddings com-150

puted by ESM3 or ProstT5, outperforming the NMA by a large margin (Table I and151

Fig. 2A). ProstT5, with the smallest number of parameters and embedding dimensions152

(Table S1), yielded the best overall performance (Fig. 2A, paired Wilcoxon signed-153

rank test p-values < 10−6 and < 10−9 with respect to ESM3 and ESM2, respectively). In154

addition, we observed a boost in performance by up to 10% upon stimulating the model155

to learn a one-sequence-to-many-motions mapping (Table I and Fig. 2A). More specifi-156

cally, we augmented the training data by using multiple (up to 5) reference conformations157

per experimental collection (Table S2). While the pLM embeddings within a collection158

should be highly similar, the extracted motions may differ substantially from one refer-159

ence to another (Lombard et al., 2024). The positive impact of this data augmentation160

strategy was most visible for the ESM-based version of SeaMoon (Table I and Fig. 2A).161

SeaMoon effectively generalised to unseen proteins across diverse families (Table I,162

Fig. 2B, and Fig. S4-5). It produced high-quality predictions at different levels of163

similarity to the training set, which we can interpret as varying difficulty levels. For164

instance, SeaMoon-ESM2(x5) almost perfectly recapitulated the motions of antibodies165

(Fig. S5A), a class of proteins well represented in both train and test sets. Beyond such166

easy cases, SeaMoon-ESM2(x5) could transfer knowledge between proteins with similar167

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614585doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.614585
http://creativecommons.org/licenses/by-nc/4.0/


7

0

100

200

300

400

0.0 0.2 0.4 0.6

Normalised sum of squares error

N
u

m
b

e
r 

o
f 

te
s

t 
p

ro
te

in
s

0

25

50

75

100

1, 3 2, 3 3, 1 3, 2

threshs

Inaccurate
Intermediate
Acceptable

0.2

0.4

0.6

0.4 0.6 0.8 1.0

TM−score

N
o

rm
a

li
s

e
d

 s
u

m
 o

f 
s

u
q

a
re

s
 e

rr
o

r

0.25

0.50

0.75

Sequence
identity (%)

A. B.

Top-100 proteins

#
(p

ro
te

in
s

Acceptable

Inaccurate

Highly inaccurate

SeaMoon ESM2 ESM3 ProstT5
ESM2(x5) ESM3(x5) ProstT5(x5)

Normal Mode Analysis

Figure 2: SeaMoon performance and generalisation capability. We report the
NSSE of the best match between 3 predictions and 3 ground-truth motions for each of
the 1 121 test proteins. A. Cumulative NSSE for six different versions of SeaMoon and for
the NMA. We tested three pLMs, namely ESM2, ESM3 and ProstT5, and a data augmen-
tation strategy with 5 training samples per experimental collection (x5). We cropped the
plot at NSSE = 0.6 for ease of visualisation; see Fig. S3 for the full curves. Inset: Agree-
ment between a selection of methods. For instance, the first bar stack gives the numbers
of proteins for which the NMA (right red square) produced acceptable (NSSE < 0.6),
inaccurate (0.6 < NSSE < 0.75) or highly inaccurate (NSSE > 0.75) predictions among
the top-100 proteins best-predicted by SeaMoon-ESM2(x5) (left blue square). B. NSSE
computed for SeaMoon-ESM2(x5) in function of sequence and structural similarity to the
training set.

Table I: Performance and dependence on the similarity to the training set
Method Protocol Number of proteins Correlation Correlation

w. acceptable predictions w. TM-Score w. sequence id.

SeaMoon

ESM2 320 (29%) -0.35 -0.20
ESM2(x5) 348 (31%) -0.39 -0.26
ESM3 416 (37%) -0.31 -0.18
ESM3(x5) 436 (39%) -0.38 -0.22
ProstT5 439 (39%) -0.32 -0.12
ProstT5(x5) 452 (40%) -0.37 -0.20

NMA 303 (27%) -0.09 0.03

We consider predictions as acceptable if their normalised sum-of-squares error is smaller than
0.6. The highest success rate is highlighted in bold.

3D folds but highly divergent sequences. The ATP-binding cassette (ABC) transporter168

superfamily provides an illustrative example of this intermediate difficulty (Fig. S5B).169

SeaMoon-ESM2(x5) accurately predicted the opening-closing motion of a putative ABC170

transporter from Campylobacter jejuni (Fig. S5B, 5T1PE, NSSE = 0.33) that does not171

have any detectable sequence similarity with the training set. This motion is character-172
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istic of the “Venus Fly-trap” mechanism for transporting sugars (Chandravanshi et al.,173

2020) and is shared with a structurally similar ABC transporter from the training set174

(Fig. S5B, 7C68B, TM-score = 0.83). At the most difficult level, SeaMoon-ESM2(x5)175

successfully captured the motions of proteins completely unrelated to the training set,176

such as the benzoyl-coenzyme A reductase from Geobacter metallireducens (Fig. S5C,177

4Z3ZF, NSSE = 0.37).178

SeaMoon complementary to the normal mode analysis179

We investigated the extent of the agreement between the purely sequence-based version of180

SeaMoon and the purely geometry-based NMA (Fig. 2A, inset, and Fig. S6). Among181

the top-100 proteins best-predicted by SeaMoon-ESM2(x5), about half exhibit motions182

accessible to the NMA (Fig. 2A, inset). Most of these motions involve a large portion of183

the protein (median collectivity κ = 0.69) and correspond to large conformational changes184

(median deviation of 5.1Å). They include functional opening-closing motions of virulence185

factors, thermophilic proteins, metalloenzymes, periplasmic binding proteins, dehydroge-186

nases, glutamate receptors, and antibodies (see Fig. S7 for illustrative examples). On187

the other hand, the NMA performed extremely poorly for a third of SeaMoon-ESM2(x5)188

top-100 (NSSE > 0.75, see Fig. 2A, inset). The associated motions tend to be localised189

with median collectivity κ = 0.20.190

The bacterial toxins PemK and protective antigen (PA) from anthrax illustrate SeaMoon’s191

capability to go beyond the NMA physics-based inference for highly localised motions192

and fold-switching deformations (Fig. 3). SeaMoon-ESM2(x5) captured the PemK’s193

loop L12 motion with high precision (Fig. 3A, NSSE = 0.24) whereas the NMA failed194

to delineate the mobile region in the protein and to infer its direction of movement (Fig.195

3A, in red). This highly localised motion (κ = 0.17) plays a decisive role in regulating196

PemK RNAse activity by promoting the formation of the PemK-PemI toxin-antitoxin197

(Kim et al., 2022). In the anthrax protective antigen, SeaMoon-ESM2(x5) accurately198

predicted the relative motion amplitudes and directions of an 80 residue-long region that199

detaches from the rest of the protein upon forming an heptameric pore Fig. 3B). By200

contrast, the NMA predicted a breathing motion poorly approximating the ground-truth201

one (Fig. 3B), likely due to its assumption that proteins behave as elastic networks.202

PA’s ∼30Å-large conformational transition is essential for the translocation of the bac-203

terium’s edema and lethal factors to the host cell (Machen et al., 2021). PemK and PA do204

not have any detectable sequence similarity to the training set. SeaMoon likely leveraged205

information coming from training proteins with similar folds and functions from other206

bacteria (Anderson et al., 2020; Dhanasingh et al., 2021).207

Reciprocally, SeaMoon covered 60% of the top-100 proteins best-predicted by the208

NMA with ESM2 embeddings, and up to 75% with ProstT5 embeddings (Fig. 2A,209

inset, and Fig. S6). Using implicit structural knowledge allowed recovering elastic210

motions such as that exhibited by the mammalian plexin A4 ectodomain (Fig. S8,211

NSSE = 0.28). Taken together, SeaMoon-ProstT5(x5) and the NMA approximated the212

motions of 554 test proteins (out of 1121, 49%) with reasonable accuracy (Table. I). This213

result suggests that combining SeaMoon transfer learning approach with the physics- and214

geometry-based NMA could be a valuable strategy.215
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Ground-truth SeaMoon-ESM2(x5) Normal Mode AnalysisA.
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1TZOA

Figure 3: Examples of motions well predicted by SeaMoon and not by the
NMA. The arrows depicted in yellow, blue and red on the grey 3D structures represent
the ground-truth motions and the best-matching predictions from SeaMoon-ESM2(x5)
and the NMA, respectively. A. Bacterial toxin PemK (PDB code: 7EWJ, chain G) from
the test set. It does not have any detectable sequence similarity to the training set B.
Anthrax protective antigen (PDB code: 1TZO, chain A) from the validation set. We
show the two most extreme conformations of the collection on the left, colored according
to the residue index, from the N-terminus in blue, to the C-terminus in red. The closest
homolog from the training set shares 35% sequence similarity.

SeaMoon can recapitulate entire motion subspaces216

Beyond assessing individual predictions, we evaluated the global similarities between217

predicted and ground-truth 3-motion subspaces focusing on the test proteins for which218

SeaMoon produced at least one acceptable prediction (Table I). We found that SeaMoon219

motion subspaces were fairly similar to the ground-truth ones, with a Root Mean Square220

Inner Product (RMSIP) (Amadei et al., 1999; Leo-Macias et al., 2005; David and Ja-221

cobs, 2011) higher than 0.5, for almost two thirds of these proteins. We observed an222

excellent correspondence for a dozen proteins, e.g., the Mycobacterium phage Ogopogo223

major capsid protein (Fig. 4 and Fig. S9). The purely sequence-based SeaMoon-224
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ESM2(x5) achieved an RMSIP of 0.75 on this protein, and the structure-aware SeaMoon-225

ProstT5(x5) reached 0.82. SeaMoon-ProstT5(x5) first, second and third predicted mo-226

tions had a Pearson correlation of 0.93, 0.73 and 0.75 with the first, third and second227

ground-truth principal components, respectively (Fig. 4A). The associated NSSE were228

all smaller than 0.5 (Fig. 4B). By inspecting the training set, we could identify sev-229

eral major capsid proteins from other bacteriophages sharing the same HK97-like fold230

as the Ogopogo one (TM-score up to 0.78), despite relatively low sequence similarity231

(up to 34%). The ability of SeaMoon to recapitulate the Ogopogo protein entire motion232

subspace with reasonable accuracy likely reflects the high conservation of major capsid233

protein dynamics upon forming icosahedral shells (Podgorski et al., 2023).234

Contributions of the inputs and design choices235

We investigated the contribution of SeaMoon inputs, architecture and objective function236

to its success rate through an ablation study, starting from SeaMoon-ProstT5 baseline237

model (Table S3 and Fig. S10). Inputting random matrices instead of pre-trained pLM238

embeddings or using only positional encoding had the most drastic impacts. Still, we ob-239

served that the network can produce accurate predictions for over 100 proteins in this240

extreme situation (Fig. S10, in grey). Annihilating sequence embedding context by set-241

ting all convolutional filter sizes to 1 also had a dramatic impact, reducing to success rate242

from 40 to 25% (Table S3 and Fig. S10). Moreover, a 7-layer transformer architecture243

(see Methods) underperformed SeaMoon’s convolutional neural network, despite having244

roughly the same number of free parameters (Fig. S10, in brown). Finally, disabling245

either sign flip or reflection (i.e., pseudo-rotation) or permutation when computing the246

loss degraded the performance by 6 to 15% (Fig. S10, in light green). This result un-247

derlines the utility of implementing a permissive and flexible comparison of the predicted248

and ground-truth motions during training.249

SeaMoon practical utility to deform protein structures250

SeaMoon does not use any explicit 3D structural information during inference. Its pre-251

dictions are independent of the global orientation of any protein conformation, making it252

impractical to directly use them to deform protein structures. To partially overcome this253

limitation, we propose an unsupervised procedure to orient SeaMoon predicted vectors254

with respect to a given protein 3D conformation. This method exploits the rotational255

constraints of the ground-truth principal components. Namely, the total angular velocity256

of the reference conformation subjected to a ground-truth principal component is zero (see257

Methods). Therefore, we determine the rotation that must be applied to the predicted258

motion vectors to minimize the total angular velocity of a target conformation.259

This strategy proved successful for the vast majority of SeaMoon’s highly accurate260

predictions. SeaMoon-ProstT5(x5) predicted motion vectors, oriented to minimise an-261

gular velocity, exhibit an acceptable error (< 0.6) in 85% of cases where the optimal262

alignment with the ground truth results in NSSE < 0.3. This result indicates that pre-263

dictions that approximate well the ground-truth principal components also preserve their264

properties. The human ABC transporter sub-family B member 6 gives an illustrative265

example where the third predicted motion vector approximates the first ground-truth266

principal component with NSSE = 0.20 upon optimal alignment and 0.22 upon angular267

velocity minimisation (Fig. 4C-E). Overall, the procedure allowed for correctly orienting268
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Figure 4: Motion subspace comparison and deformation trajectories. A-B.
Ogopogo major capsid protein motion subspace. PDB code: 8ECN, chain B. A. Pair-
wise similarities measured as Pearson correlations between the ground-truth motions and
SeaMoon-ProstT5(x5) predictions. B. Pairwise discrepancies measured as NSSE. C-E.
Trajectories of a human ABC transporter (PDB code: 7D7R, chain A) deformed along its
first ground-truth principal component (A) and the best-matching SeaMoon-ProstT5(x5)
prediction (B-C). B. The prediction is optimally aligned with the ground truth. C. The
orientation of the prediction minimises the protein conformation’s angular velocity. Each
trajectory comprises 10 conformations coloured from blue at the N-terminus to red at the
C-terminus.

acceptable predictions for 215 test proteins.269

Note that this post-processing increases computing time significantly, from 12s to 24m270

over the 1 121 test proteins on a desk computer equipped with Intel Xeon W-2245 @ 3.90271

GHz.272
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Methods273

Datasets274

To generate training data, we constructed a non-redundant set of conformational col-275

lections representing the whole PDB (as of June 2023) using DANCE (Lombard et al.,276

2024). To ensure high quality of the data, we replaced the raw PDB coordinates with277

their updated and optimised versions from PDB-REDO whenever possible (Joosten et al.,278

2014). We used a stringent setup where each conformational collection is specific to a set279

of close homologs. Specifically, any two protein chains belonging to the same collection280

share at least 80% sequence identity and coverage. We filtered out the collections with281

too few or too many data points. Namely, we asked for at least 4 and at most 500 con-282

formations and a representative protein chain comprising between 30 and 1 000 residues.283

We further retained only Cα atoms (option -c) and used coordinate weights to account284

for uncertainty (option -w).285

For each collection, DANCE extracted the K = 3 principal components contribut-286

ing the most to its total positional variance (Lombard et al., 2024). We interpret these287

components as the main linear motions explaining the collection’s conformational di-288

versity. Namely, the kth principal component defines a set of 3D displacement vectors289

{~xGT
ik , i = 1, 2, ...L} for the L protein residues’ Cα atoms. We normalised these vectors290

to facilitate their comparison across different proteins, such that ∑L
i=1 ‖~xGT

ik ‖2 = L. We291

further applied three filtering criteria with the aim of excluding collections with low di-292

versity or highly non-linear complex deformations: (i) maximum Root Mean Squared293

Deviation (RMSD) between any two conformations of at least 2 Å, (ii) first principal294

component (main linear motion) contributing at least 80% of the total variance and (iii)295

involving at least 12 residues, i.e., L× κ ≥ 12, where κ is the collectivity of the principal296

component (see definition below). This operation resulted in 7 339 collections, randomly297

split between train (70%), validation (15%) and test (15%) sets.298

DANCE makes use of a reference conformation to superimpose the Cα atoms’ 3D299

coordinates and centre them prior to extracting motions with PCA. By default, the refer-300

ence corresponds to the protein chain with the most representative amino acid sequence301

(Lombard et al., 2024). In order to augment the data, we defined up to 4 alternative302

reference conformations, in addition to the default one (option -n 5). At each iteration,303

DANCE chose the new reference conformation as the one displaying the highest RMSD304

from the previous one. This strategy maximises the impact of changing the reference and305

thus the diversity of the extracted motions.306

Model Specifications307

Input features308

SeaMoon takes as input embeddings computed from pre-trained pLMs, namely Evolution-309

ary Scale Models ESM2-T33-650M-UR50 (Lin et al., 2023) and ESM3-small (1.4B) (Hayes310

et al., 2024), as well as Protein sequence-structure T5 (Heinzinger et al., 2023). ESM2-311

T33-650M-UR50 is a BERT (Devlin et al., 2018) style 650-million-parameter encoder-only312

transformer architecture trained on all clusters from Uniref50 (Suzek et al., 2015, 2007),313

a version of UniProt (Consortium, 2022) clustered at 50% sequence similarity, augmented314

by sampling sequences from the Uniref90 clusters of the representative chains (excluding315

artificial sequences). ESM3-small (1.4B) is a transformer-based (Vaswani et al., 2017) all-316
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to-all generative architecture that both conditions on and generates a variety of different317

tracks representing protein sequence, secondary and tertiary structure, solvent accessibil-318

ity and function. It was trained on over 2.5 billion natural proteins collected from sequence319

and structure databases, including UniRef, MGnify (Richardson et al., 2023), OAS (Olsen320

et al., 2022) and the PDB (Berman et al., 2000), augmented with synthetic sequences321

generated by an inverse folding model (Hayes et al., 2024). Protein sequence-structure322

T5 is a bilingual pLM trained on a high-quality clustered version of the AlphaFold Pro-323

tein Structure Database (Barrio-Hernandez et al., 2023; Varadi et al., 2021) to translate324

1D sequences of amino acids into 1D sequences of 3Di tokens representing 3D structural325

states (Van Kempen et al., 2024) and vice versa. The 3Di alphabet, introduced by the326

3D-alignment method Foldseek (Van Kempen et al., 2024), describes tertiary contacts be-327

tween protein residues and their nearest neighbours. This 1D discretised representation328

of 3D structures is sensitive to fold change but robust to conformational rearrangements.329

Protein sequence-structure T5 expands on ProtT5-XL-U50 (Elnaggar et al., 2022), an330

encoder-decoder transformer architecture (Raffel et al., 2020) trained on reconstructing331

corrupted amino acids from the Big Fantastic Database (Steinegger et al., 2019) and332

UniRef50. Throughout the text, we refer to these pLMs as ESM2, ESM3 and ProstT5,333

respectively. We used the pre-trained pLMs as is, without fine-tuning their weights, and334

we gave them only amino acid sequences as input.335

Model’s architecture336

SeaMoon’s architecture is a convolutional neural network (LeCun et al., 2015) taking as337

input a sequence embedding of dimensions L× d, with L the number of protein residues338

and d the representation dimension of the chosen pLM, namely 1 280 for ESM2, 1 536 for339

ESM3, and 1 024 for ProstT5, and outputting K predicted tensors of dimensions L×3. It340

comprises a linear layer followed by two hidden 1-dimensional convolutional layers with341

filter sizes of 15 and 31, respectively, and finally K parallel linear layers (Table S1).342

SeaMoon’s convolutional architecture allows handling sequences of any arbitrary length343

L and preserving this dimension throughout the network. All layers were linked through344

the LeakyReLu activation function (Maas et al., 2013), as well as 80% dropout (Srivastava345

et al., 2014). We experimented with other types of architectures, including those based346

on sequence transformers, and chose the one based on CNNs as it demonstrated the347

maximum accuracy at a reasonable number of trained parameters. Please see Table S3348

and Fig. S10 for more details. We implemented the models in PyTorch (Paszke et al.,349

2019) v2.1.0 using Python 3.11.9.350

By design, the SeaMoon model predicts the K motion tensors in a latent space that is351

invariant to the protein’s actual 3D orientation. To align these predictions with a given352

3D conformation, additional information, such as the ground-truth motions, is required,353

as explained below.354

Loss function355

We aim to minimise the discrepancy between the predicted tensor X and the ground-truth356

tensor XGT, both of dimensions L×K×3, expressed as a weighted aligned sum-of-squares357

error loss,358

L = 1
L

min
R,S,P

(
L∑
i=1

wi‖R(PXGT
i )T − (SXi)T‖2

F

)
, (1)
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where Xi defines the set of K 3D displacements vectors {~xik ≡ (Xi,k,·)T , k = 1, 2, ...K}359

predicted for the Cα atom of residue i, XGT
i defines the corresponding ground-truth360

3D displacement vector set, ‖ · ‖F designates the Frobenius norm, and wi is a weight361

reflecting the confidence in the ground-truth data for residue i (Lombard et al., 2024). It is362

computed as the proportion of conformations in the experimental collection with resolved363

3D coordinates for residue i. The matrices R, of dimension 3 × 3, and P , of dimension364

K × K, allow for rotating and permuting the ground-truth vectors to optimally align365

them with the predicted ones. We chose to apply the transformations to the ground-366

truth vectors for gradient stability. We allow for rotations R because SeaMoon relies367

solely on a protein sequence embedding as input. Its predictions are not anchored in a368

particular 3D structure and hence, they may be in any arbitrary orientation. We allow for369

permutation P to stimulate knowledge transfer across conformational collections. The370

rationale is that a motion may be shared between two collections without necessarily371

contributing to their positional variance to the same extent. Additionally, we allow for372

scaling predictions with the K × K diagonal matrix S, so that SeaMoon can focus on373

predicting only the relative motion amplitudes between the amino acid residues.374

In practice, we first jointly determine the optimal permutation P and rotation R375

of the ground-truth 3D vectors. We test all possible permutations, and, for each, we376

determine the best rotation by solving the orthogonal Procrustes problem (Gower and377

Dijksterhuis, 2004; Schönemann, 1966). We shall note that the optimal solution may be378

a pseudo-rotation, i.e., det(R) = −1, which corresponds to the combination of a rotation379

and an inversion. The loss can then be reformulated as,380

L = 1
L

min
S

(
K∑
k=1

L∑
i=1

wi‖~xGT-trans
ik − Skk~xik‖2

)
, (2)

where ~xGT-trans
ik is the ground-truth 3D displacement vector for residue i matching the381

predicted 3D vector ~xik and aligned with it, and Skk ∈ R is the kth scaling coefficient,382

i.e. the kth non-null term of the diagonal scaling matrix S. The optimal value for Skk is383

computed as,384

Skk =
∑L
i=1 wi(~xGT-trans

ik )T~xik∑L
i=1 wi‖~xik‖2 . (3)

Training385

We trained six models (Table S2) to predict K = 3 motions using the Adam optimizer386

(Kingma and Ba, 2014) with a learning rate of 1e-02. We used a batch size of 64 input387

sequences and employed padding to accommodate sequences of variable sizes in the same388

batch. We trained for 500 epochs and kept the best model according to the performance389

on the validation set.390

Inference391

We provide an unsupervised procedure to orient SeaMoon’s predicted motions with re-392

spect to a target 3D conformation ~Ci during inference. This approach relies on the as-393

sumption that correct predictions comply with the same rotational constraints as ground-394

truth motions (see Supplementary Methods). Specifically, these constraints state that the395

cross products between the positional 3D vectors of the reference conformation C0 and396

the 3D displacement vectors defined by a ground-truth principal component XGT
k result397
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in a null vector,398
L∑
i=1

~Ci
0
× ~xGT

ik = ~0. (4)

Assuming that the motion tensor Xk predicted by SeaMoon preserves this property, we399

determine the rotation R that minimises the following cross-product,400

L∑
i=1

~Ci ×R~xik = ~0. (5)

This problem has at most four solutions and we solve it exactly using the symbolic401

wolframclient package in Python. See Supplementary Methods for a detailed explanation.402

In practice, we observe that these four solutions reduce to two pairs of highly similar403

rotations.404

Evaluation405

We assessed SeaMoon predictions on each test protein from two different perspectives.406

In the first assessment, we considered all K × K pairs of predicted and ground-truth407

motions and estimated the discrepancy between the two motions within each pair after408

optimally rotating and scaling them. We focused on the best matching pair for computing409

success rates and illustrating the results. In the second assessment, we considered the410

predicted and ground-truth motion subspaces at once and estimated their permutation-,411

rotation- and scaling-invariant global similarity. In addition, we estimated discrepancies412

and similarities between individual predicted and ground-truth motions after globally413

matching and aligning the subspaces. We detail our evaluation metrics and procedures414

in the following.415

Normalised sum-of-squares error416

At inference time, we estimate the discrepancy between the kth predicted motion and the
lth ground-truth principal component by computing their weighted sum-of-squares error
under optimal rotation Ropt and scaling sopt,

SSE = 1
L

L∑
i=1

wi‖~xGT-trans
il − sopt~xik‖2, (6)

with ~xGT-trans
il = Ropt~xGT

il (7)

In the best-case scenario, the prediction is colinear to the transformed ground-truth,417

~xGT-trans
il = c~xik, c ∈ R, such that (~xGT-trans

il )T~xik = ‖~xGT-trans
il ‖‖~xik‖ = c‖~xik‖2, ∀i ∈418

1, 2, ...L. By virtue of 3, the scaling coefficient sopt will be equal to c, and thus, the error419

will be null,420

SSEmin = 1
L

L∑
i=1

wi‖~xGT-trans
il − c~xik‖2 = 1

L

L∑
i=1

wi‖c~xik − c~xik‖2 = 0. (8)

In the worst-case scenario, the prediction is orthogonal to the ground truth, such that421

(~xGT-trans
il )T~xik = 0, ∀i ∈ 1, 2, ...L. The scaling coefficient will be null and, hence, this422

situation is equivalent to having a null prediction,423

SSEmax = 1
L

L∑
i=1

wi‖~xGT-trans
il −~0‖2 = 1

L

L∑
i=1

wi‖~xGT-trans
il ‖2. (9)
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The value of the raw error depends on the uncertainty of the ground-truth data. If all424

conformations in the collection have resolved 3D coordinates for all protein residues, then425

wi = 1, ∀i = 1, 2, ..., L and the maximum error is SSEmax = 1
L

∑L
i=1 ‖~xGT-trans

il ‖2 = L
L

= 1.426

As uncertainty in the ground-truth data increases, the associated errors will become427

smaller. To ensure a fair assessment of the predictions across proteins, we normalise the428

raw errors,429

NSSE = SSE

SSEmax
. (10)

Estimation of sum-of-squares errors for random vectors430

To compare SeaMoon results with a random baseline, we selected 14 ground-truth prin-431

cipal components from the test set. We focused on proteins with maximum confidence,432

i.e., for which wi = 1, ∀i = 1, 2, ..., L. We started with a set of 10 components chosen433

randomly. We then added the most localised component (collectivity κ = 0.06), the most434

collective one (κ = 0.85), a component from the smallest protein (33 residues), and a com-435

ponent from the longest one (662 residues). We generated 1000 random predictions for436

each ground truth component and computed their sum-of-squares errors under optimal437

rotation and scaling.438

Subspace comparison439

We estimated the similarity between the K×3 subspaces spanned by SeaMoon predictions440

and the ground-truth principal components as their Root Mean Square Inner Product441

(RMSIP) (Amadei et al., 1999; Leo-Macias et al., 2005; David and Jacobs, 2011). It442

is computed as an average of the normalised inner products of all the vectors in both443

subspaces,444

RMSIP =
(

1
K

K∑
k=1

K∑
l=1

L∑
i=1

(~xGT
ik )T~xortho

il

‖~xGT
ik ‖‖~xortho

il ‖

)
, (11)

where ~xortho
il is obtained by orthogonalising SeaMoon predictions using the Gram–Schmidt445

process. This operation ensures that the RMSIP ranges from zero for mutually orthog-446

onalising subspaces to one for identical subspaces and avoids artificially inflating the447

RMSIP due to redundancy in the predicted motions. We should stress that in practice,448

this redundancy is limited and the motions predicted for a given protein never collapse449

(Fig. S11). A RMSIP score of 0.70 is considered an excellent correspondence while a450

score of 0.50 is considered fair (Amadei et al., 1999).451

While the RMSIP is invariant to permutations and rotations, the individual inner452

products, reflecting similarities between pairs of motions, are not. For interpretability453

purposes, we maximised these pairwise similarities through the following procedure:454

1. compute the NSSE for all pairs of predictions and ground-truth principal compo-455

nents, under optimal rotation and scaling, as in 7,456

2. orthogonalise the predictions in the order of their losses, from the best-matching457

prediction to the worst-matching one,458

3. determine the optimal global rotation of the ordered set of matching ground-truth459

components onto the ordered set of orthogonalised predictions,460
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4. compute all pairwise normalised inner products and the corresponding RMSIP, and461

all pairwise NSSE under optimal scaling.462

Comparison with the normal mode analysis463

We compared SeaMoon performance with the physics-based unsupervised normal mode464

analysis (NMA) (Hayward and Go, 1995). The NMA takes as input a protein 3D structure465

and builds an elastic network model where the nodes represent the atoms and the edges466

represent springs linking atoms located close to each other in 3D space. The normal modes467

are obtained by diagonalizing the mass-weighted Hessian matrix of the potential energy468

of this network. We used the highly efficient NOLB method (Hoffmann and Grudinin,469

2017) to extract the first K = 3 normal modes from the test protein 3D conformations.470

We retained only the Cα atoms, as for the principal component analysis, and defined471

the edges in the elastic network using a distance cutoff of 10Å. We enhanced the elastic472

network dynamical potential by excluding edges corresponding to small contact areas473

between protein segments. We detected them as disconnected patches in the contact474

map using HOPMA (Laine and Grudinin, 2021). Contrary to SeaMoon predictions, the475

orientation of the NMA predictions is not arbitrary and thus, we do not need to align the476

ground-truth components onto them.477

Motion properties478

Contribution479

We estimate the contribution of the L× 3 ground-truth principal component XGT
k to the480

total positional variance as its normalised eigenvalue, λk∑
l
λl

.481

Collectivity482

We estimate the collectivity (Brüschweiler, 1995; Tama and Sanejouand, 2001) of the483

L× 3 predicted or ground-truth motion tensor Xk as,484

κ(Xk) = 1
L

exp
− L∑

i=1

3∑
j=1

X2
ijk logX2

ijk

 , (12)

with L the number of residues. If κ(v) = 1, then the corresponding motion is maximally485

collective and has all the atomic displacements identical. In case of an extremely localised486

motion, where only one single atom is affected, the collectivity is minimal and equals to487

1/L.488

Conclusion489

This proof-of-concept study explores the extent to which protein sequences encode func-490

tional motions. SeaMoon reconstructs these motions within an invariant subspace directly491

from sequence-based pLM embeddings. Our results indicate that incorporating structure-492

aware input embeddings significantly improves the success rate. Moreover, they highlight493

SeaMoon’s ability to transfer knowledge about motions across distant homologs, lever-494

aging the universal representation space of pLMs. However, the framework’s capacity to495

predict entirely novel motions has yet to be fully assessed.496
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SeaMoon’s transfer learning approach complements unsupervised methods that rely497

solely on the 3D geometry of protein structures, such as Normal Mode Analysis (NMA).498

Future work will focus on integrating these two sources of information into a unified,499

end-to-end framework. Incorporating explicit structural information for a target protein500

could resolve the ambiguity in orienting predicted motions without requiring ground-truth501

knowledge.502

One current limitation is the scarcity of functional motions in the training set, raising503

concerns about its accuracy and completeness. Both SeaMoon and NMA struggle to504

predict certain motions, suggesting that these may lack biological or physical relevance.505

Conversely, SeaMoon could be used to assess the evolutionary conservation of motions.506

Another limitation of the current approach is its reliance on a linear description of protein507

motion subspaces. Linear principal components are insufficient for describing complex508

loop deformations or large rearrangements of secondary structures. Introducing non-509

linearity could yield more realistic motion predictions. Future work will address these510

issues, potentially augmenting the training set with in silico generated data, such as511

motions derived from MD and NMA simulations, or protein conformations predicted by512

AlphaFold.513

Despite these limitations, the current findings offer valuable insights for integrative514

structural biology. SeaMoon provides a compact representation of continuous structural515

heterogeneity in proteins, enabling the sampling of conformations through a generative516

model. Additionally, the estimated motion subspaces can be used to compute protein517

conformational entropy. Lastly, our framework is highly versatile, featuring a lightweight,518

trainable deep learning architecture that does not depend on fine-tuning a large pre-519

trained model. This flexibility allows users to easily adapt the system to new input pLM520

embeddings without modifying the model architecture.521
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Göbel, U.; Sander, C.; Schneider, R.; Valencia, A. Correlated mutations and residue576

contacts in proteins. Proteins: Structure, Function, and Bioinformatics 1994, 18, 309–577

317.578

Ortiz, A. R.; Kolinski, A.; Rotkiewicz, P.; Ilkowski, B.; Skolnick, J. Ab initio folding of579

proteins using restraints derived from evolutionary information. Proteins: Structure,580

Function, and Bioinformatics 1999, 37, 177–185.581

Lapedes, A. S.; Giraud, B. G.; Liu, L.; Stormo, G. D. Correlated mutations in models of582

protein sequences: phylogenetic and structural effects. Lecture Notes-Monograph Series583

1999, 236–256.584

Giraud, B.; Heumann, J. M.; Lapedes, A. S. Superadditive correlation. Physical Review585

E 1999, 59, 4983.586

Thomas, J.; Ramakrishnan, N.; Bailey-Kellogg, C. Graphical models of residue coupling587

in protein families. Proceedings of the 5th international workshop on Bioinformatics.588

2005; pp 12–20.589

Weigt, M.; White, R. A.; Szurmant, H.; Hoch, J. A.; Hwa, T. Identification of direct590

residue contacts in protein–protein interaction by message passing. Proceedings of the591

National Academy of Sciences 2009, 106, 67–72.592

Bepler, T.; Berger, B. Learning the protein language: Evolution, structure, and function.593

Cell systems 2021, 12, 654–669.594

Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.;595

Shmueli, Y.; Dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S.; Rives, A.596

Evolutionary-scale prediction of atomic-level protein structure with a language model.597

Science 2023, 379, 1123–1130.598

Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.;599

Feher, T.; Angerer, C.; Steinegger, M.; Bhowmik, D.; Rost, B. ProtTrans: Toward600

Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans-601

actions on Pattern Analysis and Machine Intelligence 2022, 44, 7112–7127.602

Kalakoti, Y.; Wallner, B. AFsample2: Predicting multiple conformations and ensembles603

with AlphaFold2. bioRxiv 2024, 2024–05.604

Wayment-Steele, H. K.; Ojoawo, A.; Otten, R.; Apitz, J. M.; Pitsawong, W.;605
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