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Highlights 1 

• Individual exemplars of natural auditory textures can be memorized when 2 

repeated. 3 

• For long exemplars, the corresponding memory traces are likely based on 4 

temporally-local features. 5 

• Temporally-local features can co-exist with time-averaged summary statistics in 6 

the representations of natural textures. 7 

• Auditory cognition can flexibly recruit multi-scale representations of complex 8 

sounds, shaped by task demands and fine-tuned through rapid plasticity 9 

10 
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Abstract 11 

Even though memory plays a pervasive role in perception, the nature of the memory 12 

traces left by past sounds is still largely mysterious. Here, we probed the memory for natural 13 

auditory textures. For such stochastic sounds, two types of representations have been put 14 

forward: a representation based on sets of temporally-local features or a representation based on 15 

time-averaged summary statistics. We synthesized naturalistic sound texture exemplars and used 16 

them in an implicit memory paradigm based on repetition, previously shown to induce rapid 17 

learning for artificial stochastic signals such as white noise. On the one hand, if the brain 18 

represented natural texture exemplars only as time-averaged summary statistics, then repetition 19 

detection and learning should all but vanish for longer exemplar durations. On the other hand, if 20 

the learning of repeated noise and repeated textures relied on similar processes, presumably 21 

involving temporally-local features, then results should be similar for noise and natural textures. 22 

Results were highly similar for artificial and natural sounds, showing an effect of duration on 23 

baseline repetition detection performance but little to no effect on learning afforded by repeated 24 

exposure. Thus, naturalistic texture exemplars were amenable to learning when repeated 25 

exposure was available. This finding is consistent with two interpretations: the existence of a 26 

special processing mode when acoustic repetition is involved, to which textures are not immune; 27 

or a convergence of the feature set versus summary statistics description of sound representations 28 

if a continuum of time scales is considered.   29 
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1. Introduction 30 

Auditory perception must combine the acoustic information reaching the ears at every 31 

moment in time with information from the past, stored in memory. This is obviously the case 32 

when rapidly recognizing sounds that have acquired meaning through exposure, such as for 33 

instance one’s own ringtone (Roye et al., 2010). More generally, a pervasive role of memory in 34 

perception is at the core of current theories based on predictive coding, which assume that a 35 

model of the world has been somehow internalized through experience (Heilbron & Chait, 2018; 36 

Lange et al., 2018). The nature of the memory traces left by past sounds, however, is still largely 37 

mysterious. Here, we probe the memory for natural auditory textures. For such stochastic sounds, 38 

two types of representations have been put forward: a representation based on temporally-local 39 

features (Agus & Pressnitzer, 2021), or a representation based on time-averaged summary 40 

statistics (McDermott et al., 2013). 41 

The temporally-local features hypothesis stems from a line of research that characterized 42 

the perception of repeated sounds. When hearing a repeated exemplar of white noise, listeners 43 

report the emergence of individual events, often described as “rasping” or “clanks” (Guttman & 44 

Julesz, 1963; Warren et al., 2001). Subsequent experiments have confirmed that the features used 45 

to detect repetition in white noise generally seem to have a local time-frequency support 46 

(Kaernbach, 1993; Ringer et al., 2023). Recently, the technique has been extended to longer-term 47 

memory traces. When listeners were exposed to the same exemplar of white noise which 48 

reoccurred several times during an experimental block, behavioral evidence of a “memory for 49 

noise” lasting up to several weeks was observed (Agus et al., 2010; Viswanathan et al., 2016). 50 

As the duration of the learnt noise exemplars extended to the multi-second range, it seemed 51 

unreasonable that listeners memorized the thousands of samples defining one particular noise 52 

exemplar. Rather, as was the case for the immediate repetition of noise, it was hypothesized that 53 

listeners stored a limited set of temporally-local features, which could be used as a compact 54 

identifier for a given noise exemplar (Agus et al., 2010). Neural correlates of the phenomenon 55 

were consistent with the feature set hypothesis, with the added proposal that feature sets could be 56 

at least partly idiosyncratic and thus unique to each listener/noise combination (Andrillon et al., 57 

2015; Luo et al., 2013; Ringer et al., 2023). Finally, similar findings were obtained with 58 

stochastic sounds other than white noise, such as random melodies (Bianco et al., 2020, 2023), 59 

random rhythms (Kang et al., 2017), or tone clouds with a broad range of spectro-temporal 60 
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complexities (Agus & Pressnitzer, 2021). Rapid plasticity was even evidenced with repeated 61 

exposure to noise exemplars during sleep (Andrillon et al., 2017). This all suggests that 62 

repetition automatically triggers the rapid formation of memory traces for many kinds of sounds. 63 

The summary statistics hypothesis stems from work on auditory textures (McDermott et 64 

al., 2013; McDermott & Simoncelli, 2011). Such textures are natural sounds with stochastic but 65 

stationary characteristics, such as the sound of fire crackling, water flowing, or wind blowing. 66 

The first important finding was that synthetic sounds matched in certain long-term statistics to 67 

natural sounds, as extracted from an auditory model, were readily identified as natural sound 68 

textures by listeners (Geffen et al., 2011; McDermott & Simoncelli, 2011). This showed that 69 

summary statistics were sufficient to recognize textures. Perhaps even more intriguingly, when 70 

asked to discriminate between two exemplars of the same texture (e.g., two instances of fire 71 

crackling), listeners’ performances decreased as the exemplar durations increased. This seems 72 

counter-intuitive, as for many other tasks, longer durations usually result in improved 73 

discrimination performance (Teng et al., 2016). However, such a seemingly paradoxical finding 74 

could be understood if the discrimination was based on time-averaged summary statistics, and 75 

not on temporally-local features that could be accrued as duration increased. To quote 76 

McDermott et al. (2013, abstract): “These results indicate that once these sounds are of 77 

moderate length, the brain’s representation is limited to time-averaged statistics, which, for 78 

different examples of the same texture, converge to the same values with increasing duration”. 79 

Similar results were observed with random melodies, whereby listeners could estimate the mean 80 

frequency of a melody without precise reports of the frequencies or temporal position of 81 

individual tones (Piazza et al., 2012, but see Bianco et al., 2020). Thus, summary statistics for 82 

textures could be the auditory equivalent of “ensemble coding” for visual perception, which is an 83 

efficient way to capture the gist of natural images (Whitney & Leib, 2016).   84 

At face value, the logical consequence of the summary statistics hypothesis is that 85 

different exemplars of the same texture cannot be memorized, simply because they cannot be 86 

discriminated in the first place. Thus, unlike other stochastic sounds or even tone clouds with 87 

similar spectro-temporal statistics, repeated exposure to a texture exemplar should not trigger 88 

any memory trace specific to that exemplar. As suggested by Nelken & de Cheveigné (2013), 89 

this stark difference could be because the auditory system may enter a “texture mode” when it 90 

recognizes one. Indeed, it makes much more sense to recognize the physical cause of a texture 91 
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(McDermott et al., 2013; McDermott & Simoncelli, 2011) or even some of its characteristics, 92 

such as temperature for flowing water (Velasco et al., 2013), than to recall the acoustic details of 93 

a given texture exemplar. Auditory cognition may thus be tuned to efficient representations of 94 

natural sounds and their statistical properties (Gervain & Geffen, 2019) to facilitate the 95 

categorization of the physical events making up our environment (Traer et al., 2021). However, 96 

an alternative to this “textures are special” idea is that “repetition is special”, in that repetition 97 

may trigger powerful plasticity phenomena able to overcome or complement the summary 98 

statistics code. This possibility is experimentally tested here. We synthesized naturalistic sound 99 

textures using the original McDermott & Simoncelli algorithm (2011) and used them in the 100 

“memory for noise” paradigm of Agus et al. (2010), based on repetition. 101 

2. Methods 102 

2.1. General procedure 103 

All experiments were performed online, as data collection took place during the 104 

pandemic. The method was otherwise identical to the original “memory for noise” study (Agus 105 

et al., 2010). Briefly, in such a paradigm, each trial consists of a single sound: either noise (N), or 106 

repeated noise (RN), that is, noise for which the first half is identical to the second half. The 107 

repetition is seamless, with no acoustic cue nor silent interruption between halves. The 108 

participant’s task is to report whether the trial contained a repeat or not. For some trials, the RN 109 

is randomly drawn anew, so participants only hear each RN stimulus once. Such a condition taps 110 

into short-term memory processes and provides a baseline repetition-detection performance, 111 

which may depend on various stimulus parameters such as duration (Kaernbach, 2004; Warren et 112 

al., 2001). However, without informing the participants, a third condition is introduced: one RN 113 

exemplar called the reference RN (RefRN), reoccurs over different trials throughout an 114 

experimental block. An improved performance for RefRN trials compared to RN trials is 115 

interpreted as learning of the RefRN exemplar. 116 

The stochastic stimuli used here were white noise, replicating previous studies, but we 117 

also introduced natural textures. Three texture categories were chosen: fire crackling (Fire), 118 

water running down a stream (Stream), and wind blowing (Wind). Texture trials (Tx) were all 119 

different and generated as in McDermott & Simoncelli (2011). Repeated textures (RTx) and 120 

reference repeated texture (RefRTx) trials were obtained by cross-fading two copies of a same 121 
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texture exemplar. Illustrations of the stimuli are shown in Figure 1. As can be seen, even though 122 

the choice of texture was largely arbitrary, they all differed in their spectro-temporal 123 

characteristics, which in turn differed from white noise.  124 

Different trial durations were tested on different experimental blocks: 250 ms, 500 ms, 125 

1000 ms, 2000 ms, and 4000 ms. For the RN/RTx and RefRN/RefRTx conditions, this 126 

corresponded to exemplar durations of 125 ms, 250 ms, 500 ms, 1000 ms, and 2000 ms, 127 

respectively. Testing different duration was critical as the summary statistics hypothesis predicts 128 

that the representation of longer textures will converge to the same statistics within a texture 129 

category, thus making the task harder. 130 

2.2. Participants 131 

72 individuals (13 female), aged between 18 and 38 (M = 29.7 SD = 1.66), with self-132 

reported normal hearing participated in the online experiment in return for monetary 133 

compensation. This corresponded to 18 participants per texture, similar to the number of 134 

participants in previous comparable in-lab studies. The sample size was preregistered (see 135 

below). Participants were recruited through Prolific (Oxford, UK). Before the experiment, all 136 

participants provided informed consent. At the end of the experiment, an online debriefing text 137 

was presented. The UCL Research Ethics Committee approved the protocol (#1490/009). 138 

2.3. Stimuli 139 

Because generating naturalistic textures can be computationally intensive, they were 140 

synthesized offline and stored as sound files, which were loaded to the participant’s browser 141 

during the experiment. The synthesis algorithm was the one from McDermott and Simoncelli 142 

(2011) as available online (http://mcdermottlab.mit.edu/downloads.html). In total, 9 sound files 143 

with a different random seed, each 392 s long, were synthesized for each of the three categories 144 

of natural sound textures. For symmetry, 9 sound files, also 392 s long, were generated for white 145 

noise. Each of the 36 unique sound files (9 random seeds x 4 sound types) was used twice, but 146 

always for different participants. To generate a trial, short exemplars of the desired duration were 147 

cut sequentially (no overlap between exemplars) from the 392 s-long sounds. For repeated trials 148 

(RN/RTx and RefRN/RefRTx), the same exemplar was collated twice, with a 10-ms crossfade. 149 

For non repeated trials (N/Tx), two different exemplars were collated, with the same crossfade 150 

technique.  151 

http://mcdermottlab.mit.edu/downloads.html
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2.4. Procedure 152 

 The experiment was conducted using the Gorilla platform (Cambridge, UK). Before 153 

starting the experiment, several checks were run to ensure data quality, including browser checks 154 

and headphone checks (Milne et al., 2021). Individuals who failed any of these checks were 155 

rejected from participating, so all participants are assumed to have been wearing headphones. 156 

Participants were then presented with an information sheet and gave their informed consent.  157 

Each participant completed five experimental blocks, each of which corresponded to a 158 

different exemplar duration, all for the same sound type. Each participant was thus only tested on 159 

one sound type (e.g. White noise or Fire). Each block was preceded by a brief familiarization 160 

phase with feedback. The participant first heard a sound with 10 repetitions of a given exemplar, 161 

to illustrate the cues to repetition at the duration of the block. This familiarization sound could be 162 

played up to three times. Then, four training trials were provided. In the training trials, the 163 

stimulus either consisted of an exemplar repeated 10 times or of 10 different exemplars. 164 

Participants were instructed to report whether they heard a repetition. Immediate feedback was 165 

given. Further training trials followed, with gradually increasing difficulty. Those training trials 166 

contained 4 repetitions (10 trials), 3 repetitions (12 trials), and finally 2 repetitions as in the main 167 

experiment (20 trials). Training trials were always 50% RN/RTx and 50% N/Tx (no 168 

RefRN/RefRTx). The training session was immediately followed by the experimental block at 169 

the same duration. Unlike for training, participants did not receive immediate feedback but did 170 

see their cumulative accuracy (percent correct) at the end of each block. Each block consisted of 171 

40 N/Tx trials, 20 RN/RTx trials,  and 20 RefRN/RefRTx trials, with those conditions presented 172 

in a pseudorandom order (Ref stimuli were never presented on successive trials).  173 

Participants were incentivized through bonus payments that would be calculated based on 174 

their overall accuracy at the end of the experiment  (Bianco et al., 2021). Finally, participants 175 

were also informed that their data would be rejected if they scored less than 60% accuracy on the 176 

task to discourage participants from guessing at random. 177 

2.5. Statistical Analyses 178 

We used the d' sensitivity index of signal detection theory to estimate performance. Hits 179 

were defined as “repeated” responses for RN/RTx and RefRN/RefRTx trials. False alarms were 180 

defined as “repeated” responses for N/Tx trials. When the proportion of hits or false alarms 181 
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reached 0 or 1 for a given participant and measurement, a correction corresponding to plus or 182 

minus half-a-trial was applied (Macmillan & Creelman, 2004).  183 

Analyses of variance (ANOVAs) and t-tests were used as inferential tests, with an -184 

level of 0.05. Reporting convention follows the APA guidelines, 7th edition, so all p-values less 185 

than 0.001 are reported as p < 0.001. The main analysis was a mixed-design ANOVA, fully 186 

reported in Table A1. Because the false alarm rate was shared between RN/RTx and 187 

RefRN/RefRTx condition, which could have introduced correlations across measurements, the 188 

ANOVAs and the paired t-tests contrasting conditions were performed on the z-transformed hit 189 

rates used to compute d' (Agus & Pressnitzer, 2021). We further checked that performing the 190 

same analyses on d', so z-transformed hit rates minus z-transformed false alarms, led to strictly 191 

identical conclusions. A Greenhouse-Geisser correction was applied when Mauchly’s test 192 

indicated a violation of the sphericity assumption (p < 0.05).  Further partial ANOVAs and t-193 

tests were run to help interpret the main analysis, as it included several factors and revealed 194 

second- and third-order interactions. The partial ANOVAs used repeated-measures or mixed-195 

design ANOVAs as appropriate. When performing partial analyses where all natural textures 196 

were considered together, and because different participants ran different texture blocks, a 197 

“participant” was defined as the average of individual results in the three natural texture blocks, 198 

in order of enrolment. All ANOVAs were run using JASP (JASPTeam, 2024). Effect sizes are 199 

reported as generalized η2, notated η2
G, as recommended for mixed designs (Lakens, 2013, p. 6). 200 

2.6. Preregistration and data availability 201 

The study was preregistered (ResearchBox #2762). There were minor deviations to the 202 

preregistration: the noise sound category was added for comparison; the hit-rate over time 203 

analyses were omitted due to the large number of conditions; the ANOVAs were run on z(hits) 204 

and not d' as justified above; partial ANOVAs were added to interpret the outcome of the full 205 

analysis. The main characteristics of the design (sample size, exclusion criteria, duration 206 

conditions, test procedure, main analyses) exactly followed the preregistration. The full dataset is 207 

available online (ResearchBox #2762).  208 
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2.7. Acoustic analyses 209 

Illustration of the stimuli are provided in Figure 1. Stimuli were passed into an auditory 210 

model as described in Agus et al. (2012), which consisted of a broadband pre-emphasis bandpass 211 

filter (0.4-8.5 kHz), a gammatone auditory filterbank, half-wave rectification, square root 212 

compression, and low-pass filtering at 100 Hz. Such a time-frequency representation, termed a 213 

“cochleagram”, is intended to roughly mimic the information available after peripheral auditory 214 

processing.  215 

          

          
Figure 1: Acoustic characteristics of white noise and natural textures. Illustrative examples 

of cochleagrams for the four different sound categories. The time-frequency cochleagrams use 

brighter colors to represent energy within simulated auditory filters. In all cases, repeated trials 

are shown, so the first 500-ms are identical to the last 500-ms. Note that there is no acoustic 

discontinuity at the repetition onset. The temporal waveforms (top inset of each panel) and 

spectral average (right inset of each panel) are also provided.  
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3. Results 216 

3.1. Validation of the online testing procedure  217 

 So far, all studies using variants of the “memory for noise” paradigm but one (Dauer et 218 

al., 2022) were performed under highly controlled laboratory conditions. It was thus unclear 219 

whether the findings, presumably dependent on subtle acoustic cues, would be robust enough to 220 

translate to online testing. 221 

Figure 2A shows the average results for the 0.5-s duration, for white noise, as this is the 222 

duration condition that was most extensively tested in previous investigations. Performance is 223 

expressed as the sensitivity index d' of signal detection theory. Baseline performance for the 224 

within-trial repetition detection task RN, for which the repeated noise exemplar was novel on 225 

each trial, was modest but still above chance (M = 0.67; t-test against the chance value of d' = 0: 226 

t(17) = 5.54, p < 0.001). Importantly, in the RefRN condition for which the same noise exemplar 227 

re-occurred throughout a block, performance improved (M = 2.06; paired t-test against RN 228 

 

      A            B 

 
 

Figure 2: Performance for 500-ms long exemplars. A). White noise. Repetition detection 

performance is shown, expressed as the d' sensitivity index of signal detection theory. For the 

Repeated Noise condition (RN), the noise exemplar was novel in each trial. For the Reference 

Repeated Noise condition (RefRN), the same noise exemplar re-occured on 20 trials randomly 

interspersed in the experiment. Dots represent individual participants, connected by thin lines 

across conditions. Mean performance and standard error about the mean are shown as thick 

lines. B). Natural textures. Performance averaged for the three natural textures. Same as A). 
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performance t(17) = 5.40, p < 0.001). This pattern of results replicates in-lab findings using 229 

white noise (Agus et al., 2010; Agus & Pressnitzer, 2013), validating the online procedure. 230 

Figure 2B shows the first set of results using natural textures, again for the 0.5-s duration, 231 

with performance for all three texture categories. For these relatively short-duration texture 232 

exemplars, performance was generally higher than for noise. In the baseline RTx condition, 233 

performance was well above chance (M = 2.07; t-test against the chance value of 0: t(17) = 234 

13.67, p < 0.001). In the RefRTx condition, performance further improved (M=2.74; paired t-test 235 

against RTx performance t(17) = 5.64, p < 0.001). This shows that within-trial repetition 236 

detection and across-trial learning are possible with relatively short texture exemplars.  237 

3.2. Repetition detection and rapid learning for short and long texture durations  238 

The main prediction of the summary statistics hypothesis is that texture exemplars should 239 

become more similar as their duration increases. Therefore, if performance on the memory for 240 

noise task relies on summary statistics, it should markedly decrease as texture duration increases. 241 

With the durations tested here, this is not what was observed. Figure 3 shows the results 242 

for white noise and textures, as a function of exemplar duration (remember that trial duration 243 

itself was twice as long). For noise, there was a steady decrease in performance in the RN 244 

condition from short to long durations, but, importantly, the performance gain observed for 245 

RefRT was approximately constant across the whole range of durations. For textures, 246 

performance in the RTx condition was always good (average d' above 1), but had a band-pass 247 

shape with a peak at 250 ms. Importantly, again, the performance advantage for RefTx was 248 

observed throughout the whole range of durations. 249 

These observations were formally tested by two separate repeated-measures ANOVAs, 250 

one for noise and one for textures, with factors “Condition” (2 levels, RN and RefRN for noise 251 

or RTx and RefRTx for textures) and “Duration” (5 levels, [125, 250, 500, 1000, 2000] ms). For 252 

noise, significant effects of Condition (F(1,17) = 44.81, p < 0.001, η2
G = 0.32) and Duration 253 

(F(4,68) = 11.14, p < 0.001, η2
G = 0.18) were observed, without any interaction between the two 254 

factors (F(4,68) = 1.42, p = 0.24, η2
G = 0.03). Similar findings were obtained with textures, with 255 

significant effects of Condition (F(1,17) = 470.4, p < 0.001, η2
G = 0.47) and Duration 256 

(F(2.53,46.0.6) = 14.28, p < 0.001, η2
G = 0.23). For textures, there was a significant interaction 257 

between Condition and Duration, with a small effect size (F(3.28,55.68) = 5.00, p = 0.003, η2
G = 258 
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0.09). Overall, the ANOVAs confirm that, while duration affected performance, the advantage 259 

provided by repeated exposure to a same exemplar was about constant for all durations, for both 260 

noise (RefRN vs RN) and textures (RefTx vs RTx). 261 

Finally, for textures, post-hoc tests were run to compare each data point with all others, 262 

using a conservative Bonferroni correction (45 comparisons). We only report the crucial tests for 263 

the summary statistics hypothesis, namely the possible advantage of RefTx over RTx, reflecting 264 

learning of the texture exemplar. At all tested durations, including the longest ones, a significant 265 

effect of RefTx was observed over RTx (all Bonferroni-corrected p < 0.001, except for 125 ms 266 

for which p = 0.003 and 250 ms for which p = 0.002). 267 

3.3. Effect of sound categories 268 

To investigate in further detail whether the different texture categories influenced 269 

performance, a mixed-design ANOVA was run with factors “Condition” (2 levels, RN/Rtx and 270 

RefRN/RefRTx), “Duration” (5 levels, [125, 250, 500, 1000, 2000] ms), and “Sound category” 271 

(4 levels, White noise, Fire, Stream, Wind). This main analysis is reported in full details in the 272 

Appendix, Table A1. To summarize, all main effects were significant (p < 0.001). The two-way 273 

interactions Condition * Duration and Texture * Duration, as well as the three-way interaction 274 

      A            B 

 
 

Figure 3: Effect of exemplar duration. A). White noise. Mean performance across 

participants is shown for the RN and RefRN conditions, as a function of exemplar duration. 

Error bars represent standard error about the mean. B). Natural textures. Performance averaged 

for the natural textures. Same as A.). 
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Condition * Texture * Duration, were also significant (p = 0.003 or less), with relatively small 275 

effect sizes (η2 = 0.05 or less).  276 

To help interpret the effect of sound category in relation to our question of interest, the 277 

memory for natural textures, we transformed the data to directly estimate the amount of learning 278 

that was afforded by repeated exposure to a sound exemplar. To this effect, we computed a 279 

“memory gain”, defined as performance for the trials where the sound exemplar re-occurred 280 

throughout a block (RefRN/RefTx) minus performance where sound exemplars were novel on 281 

each trial (RN/RTx). The memory gain obtained for the different sound categories and durations 282 

is displayed in Figure 4A. Even though the results were somewhat noisy, there was no trend for a 283 

smaller gain at longer texture durations, nor for a systematic advantage of white noise over natural 284 

textures, which would both be predictions of the summary statistics for natural textures hypothesis.  285 

A mixed-design ANOVA was performed on the memory gain with factors “Duration” (5 286 

levels, [125, 250, 500, 1000, 2000] ms), and “Sound category” (4 levels, White noise, Fire, Stream, 287 

Wind). An effect of Duration was observed, although with a small effect size (F(4,272) = 5.04, p 288 

< 0.001, η2
G = 0.05), suggesting that the memory gain was in fact larger for longer durations. 289 

Crucially, no effect of Sound category was found (F(3,68) = 2.21, p = 0.10, η2
G = 0.02). The 290 

      A            B 

 
 

Figure 4: Effect of sound categories. A). Learning was assessed by computing the sensitivity 

increase due to repeated exposure. The memory gain was defined as performance for the trials 

where sound exemplars re-occurred across 20 trials (RefRN/RefTx) minus performance where 

sound exemplars were novel on each trial (RN/RTx) B). Performance for the within-trial 

repetition detection task (RN/RTx) 
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Duration * Sound category was significant, with a medium effect size (F(12,272) = 2.57, p = 0.003, 291 

η2
G = 0.08).  292 

Finally, for completeness, we examined the baseline performance for individual sound 293 

categories in the immediate repetition detection task, so for the conditions RN/RTx. The results 294 

are shown in Figure 4B. The breaking-up of the data into sound categories revealed that the peak 295 

at 250 ms observed in the mean texture data (see Fig. 3B) was due to the Fire and Stream textures, 296 

as the Wind texture rather displayed a peak at 1000 ms.  297 

A mixed-design ANOVA was performed on the performance in the RN/RTx condition 298 

only, with factors “Duration” (5 levels, [125, 250, 500, 1000, 2000] ms), and “Sound category” (4 299 

levels, White noise, Fire, Stream, Wind). Like for the memory gain analysis, an effect of Duration 300 

was observed (F(4,272) = 24.14, p < 0.001, η2
G = 0.19). Unlike for the memory gain analysis, this 301 

time an effect of Sound category was observed (F(3,68) = 17.68, p < 0.001, η2
G = 0.21). The 302 

Duration * Sound category was also significant (F(12,272) = 3.88, p < 0.001, η2
G = 0.10).  303 

A post-hoc comparison of all data points for Figure 4B was performed (Duration * Sound 304 

category interaction). Briefly, possibly because of large number of comparisons, the robustness of 305 

the pattern of performance seen in Figure 4B could not be confirmed. In particular, the apparent 306 

peaks in performance at 250 ms for Fire and Stream and at 1000 ms for Wind were not significantly 307 

different from their neighbors (Table A2). So, whereas there were differences across sound 308 

categories, pinpointing them to specific durations and textures would require further experimental 309 

data. 310 

In summary, these analyses show that the texture type can influence baseline repetition-311 

detection performance, in terms of overall performance but also in terms of performance change 312 

with exemplar durations. However, all sound categories produced about the same amount of 313 

memory gain for all durations tested. Importantly, there was no difference between noise and 314 

natural textures for the memory gain. In particular, no clear advantage of noise, which produced 315 

the amount of memory gain expected from previous studies, was found over natural textures, 316 

which produced sizeable memory gains even at the longest durations tested.    317 
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4. Discussion 318 

Combining ideas and techniques from two different lines of research, we applied a 319 

“memory for noise” paradigm to natural auditory textures. Two different predictions were made 320 

based on the putative representation of natural textures. If natural textures were only represented 321 

as time-averaged summary statistics, then repetition-detection and learning should be impossible 322 

for longer exemplar durations, because all texture exemplars should be represented by virtually 323 

identical summary statistics. However, if the rapid plasticity mechanisms induced by repeated 324 

exposure were able to complement the summary statistics representation by temporally-local 325 

features, unique to each exemplar, then results should be similar for white noise and natural 326 

textures.  327 

The experimental findings strongly supported the second hypothesis. Results replicated 328 

previous findings for white noise, showing an effect of duration on baseline repetition detection 329 

performance but little to no effect on learning afforded by repeated exposure. Incidentally, this 330 

confirmed that the presumably subtle acoustic features required to memorize different noise 331 

exemplars were available in an online setting (Dauer et al., 2022). For natural textures, results 332 

were highly similar. Importantly, in spite of differences across sound categories in baseline 333 

immediate repetition-detection, a similar amount of learning with repeated exposure was 334 

observed for all sound categories tested.  335 

4.1. Texture discrimination versus texture repetition detection 336 

It is useful at this point to provide more details about the experimental data that led to the 337 

original formulation of the summary statistics hypothesis (McDermott et al., 2013). The crucial 338 

finding was from McDermott et al.’s Experiment 2. Participants heard three different sounds in 339 

each trial. All sounds were from the same natural texture category (e.g. Fire). Two of them were 340 

acoustically identical, whereas the third one was a different exemplar from the same texture 341 

category. Participants had to indicate the odd one out. Exemplar durations ranged from 40 ms to 342 

2500 ms. Performance decreased with duration, from about 90% correct at 40 ms down to about 343 

75% correct at 2500 ms. This decrease showed that texture exemplars were perceived as more 344 

and more similar with duration, and this was interpreted by remarking that summary statistics 345 

converged towards their mean value for the texture category as duration increased. 346 
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Here, we used the exact same texture generation algorithm and tested exemplar durations 347 

over a similar range. A difference between the two studies, however, is that in the original 348 

texture discrimination paradigm, there was no immediate repetition of texture exemplars 349 

(McDermott et al., 2013). All sounds within a trial were surrounded by silent gaps. Here, within-350 

trial repetitions were seamless. Could this account for the different outcomes, as repetition 351 

regularity (Rajendran et al., 2016) and predictability (Dauer et al., 2022) have been shown to 352 

modulate noise learning? This is a possibility, but with caveats. First, because of the trial 353 

structure of the texture discrimination task, there was always a direct repeat of the texture 354 

exemplars (the odd-one-out was either the first or the last sound of a trial). Second, the exact 355 

value of the inter-stimulus interval made no difference to the findings of McDermott et al. 356 

(2013). Finally, noise learning can occur even with non-contiguous repetition (Andrillon et al., 357 

2015; Bianco et al., 2020; Kaernbach, 2004; Ringer et al., 2023), although in these experiments 358 

the gaps were not silent. Noise learning has also been observed without immediate repetitions 359 

and intervening silences, albeit less reliably than when there are immediate repetitions (Agus & 360 

Pressnitzer, 2013). 361 

Perhaps a more critical difference is that texture exemplars were never presented more 362 

than twice in the original texture discrimination paradigm, as new exemplars were used on each 363 

trial. Here, the reference texture exemplars re-occurred over 20 trials, randomly interspersed 364 

within an experimental block. We suggest that this is the main difference between the two 365 

paradigms: the amount of exposure to a given texture exemplar. 366 

4.2. Repetition is special? 367 

Given the similarity between the learning patterns for noise and textures, as well as 368 

similarities with previous results with tone clouds of comparable spectro-temporal complexity 369 

(Agus & Pressnitzer, 2021), it appears that the memory processes induced by repetition 370 

generalized to natural textures.  371 

  There are several speculative arguments suggesting that repetition should be special for 372 

the auditory modality. From an ecological point of view, it is not obviously possible to actively 373 

search “back in time” for additional information once a sound has ended, unlike for visual search 374 

(Demany et al., 2010; Garnier-Allain et al., 2023). Thus, the auditory system may have evolved 375 

to be exquisitely tuned to repetitions, as they provide a unique opportunity to re-examine 376 
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auditory cues with a deeper level of processing. Also, scene elements that reoccur likely indicate 377 

an agent in the environment that may be behaviorally significant. Finally, in a predictive coding 378 

framework, events that repeat in the past may reasonably be attributed to a higher-than-baseline 379 

probability of repeating in the future, so repeated sounds should be expected to alter neural 380 

processing in such a framework (Baldeweg, 2006). Perhaps relatedly, repetitions have been 381 

shown to actually change the very perceptual qualities of sound, such as in the speech-to-song 382 

illusion (Deutsch et al., 2011), which, interestingly, also generalizes to natural textures (Rowland 383 

et al., 2019).  384 

Thus, one interpretation of the present findings is that repetition “overcame” the default 385 

processing mode for textures. If the detailed acoustic information could be initially preserved for 386 

at least the duration of the exemplar, 2000ms in our case, then an immediate repeat could be 387 

detected and the “repetition mode” recruited. This could then result in complementing the well-388 

established summary statistics representation of natural textures, used in texture class 389 

recognition, with temporally-local features, useful to memorize unique exemplars. Such a 390 

mechanism could be related to auditory scene analysis processes, creating foreground events 391 

emerging from the background texture when repetition is involved (McDermott et al., 2011). The 392 

possibility of different processing modes for natural textures was floated in the original studies 393 

(McDermott et al., 2013; Nelken & de Cheveigné, 2013). The present data provides experimental 394 

support for the idea.  395 

4.3. Time scales of representation 396 

 Another possible interpretation relies on a loose interpretation of the feature set versus 397 

summary statistics dichotomy. The core difference between the two possible representations is 398 

the time scale over which features versus statistics are estimated. Thus, there could be an overlap 399 

between the two notions if auditory representations could be based on multiple or even flexible 400 

temporal time scales. 401 

There is a large and growing body of evidence suggesting the auditory system represents 402 

sounds over different time scales, from behavioral (Divenyi, 2004; Teng et al., 2016) or neural 403 

(Albouy et al., 2020; Joris et al., 2004; Norman-Haignere et al., 2022) findings. The details of the 404 

underlying theories differ on important points, such as whether all time scales within the possible 405 

range are available simultaneously, whether they depend on the task and context (McWalter & 406 
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McDermott, 2019), or whether a limited number of fixed windows exist to encode fine and 407 

coarse details (Teng et al., 2016). However, all accounts suggest that short and long time scales 408 

for features/statistics may coexist in auditory representation of complex sounds.  409 

Given such findings, the boundary between a relatively long-duration feature and a 410 

relatively short-duration statistics becomes blurry. Thus, instead of a dichotomy in kind, we 411 

suggest that the features versus statistics distinction may better be thought of in terms of a 412 

continuum over different time scales. To come back to the present findings, when presented with 413 

repeating sounds, the auditory systems could trigger plasticity mechanisms that require a 414 

compact but distinctive representation of the sound exemplar being repeated. This representation 415 

could be viewed as a feature set, or as a collection of short summary statistics. Note that such an 416 

interpretation also applies to the original texture discrimination findings, where performance 417 

decreased with duration but, importantly, still remained above chance even for the longest 418 

textures. In this task, a single repeat of a texture exemplar was available, so it may have been 419 

able to trigger the memory for distinctive features/statistics in at least in a subset of trials.  420 

5. Conclusion 421 

We have shown that naturalistic texture exemplars are amenable to learning when 422 

repeated exposure is available. In this respect, natural textures join the growing list of stochastic 423 

sounds that behave surprisingly similarly in a “memory for noise” paradigm. This main finding 424 

is consistent with two interpretations: the existence of a special processing mode when acoustic 425 

repetition is involved, to which textures are not immune; or a convergence of the feature set 426 

versus summary statistics description of sound representations, if a continuum of time scales is 427 

considered.  428 

To conclude, whereas the computational appeal of summarizing a texture to its statistics 429 

is obvious, one may wonder what use there could be to store the detailed acoustic features of a 430 

given exemplar? It could be that such a finding is simply the by-product of powerful plasticity 431 

mechanisms triggered by repetition, which are useful to generate sparse representations of 432 

meaningful sounds (Gervain & Geffen, 2019; Wang et al., 2020). We speculate that, more 433 

generally, it is the sign of the auditory system adapting its very processing to the statistical 434 

peculiarities of its environment, even before the subsequent inferential processes required to 435 

recognize natural sound categories.  436 
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Appendix A. Supplemental statistical reporting. 437 

Table A1. Results of the main mixed-design ANOVA on the full dataset. 438 

Within Subjects Effects  

Cases 
Sphericity 

Correction 

Sum of 

Squares 
df 

Mean 

Square 
F p η²G  

Condition  None  102.212  1.000  102.212  228.180  < .001  0.260  

Condition ✻ Category  None  2.968  3.000  0.989  2.209  0.095  0.010  

Residuals  None  30.460  68.000  0.448         

Duration  None  31.668 a  4.000 a  7.917 a  21.986 a  < .001 a  0.098  

   Greenhouse-

Geisser 
 31.668  3.442  9.201  21.986  < .001  0.098  

Duration ✻ Category  None  16.000 a  12.000 a  1.333 a  3.703 a  < .001 a  0.052  

   Greenhouse-

Geisser 
 16.000  10.325  1.550  3.703  < .001  0.052  

Residuals  None  97.944  272.000  0.360         

   Greenhouse-

Geisser 
 97.944  234.032  0.419         

Condition ✻ Duration  None  6.868  4.000  1.717  5.043  < .001  0.023  

   Greenhouse-

Geisser 
 6.868  3.612  1.901  5.043  0.001  0.023  

Condition ✻ Duration ✻ 

Category 
 None  10.565  12.000  0.880  2.586  0.003  0.035  

   Greenhouse-

Geisser 
 10.565  10.837  0.975  2.586  0.004  0.035  

Residuals  None  92.599  272.000  0.340         

   Greenhouse-

Geisser 
 92.599  245.634  0.377         

Note.  Sphericity corrections not available for factors with 2 levels. 

Note.  Type III Sum of Squares 

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05). 

 439 

Between Subjects Effects  

Cases Sum of Squares df Mean Square F p η²G  

Category  45.467  3  15.156  14.834  < .001  0.135  

Residuals  69.477  68  1.022         

Note.  Type III Sum of Squares 

  440 

Assumption Checks 441 

Test of Sphericity  

  
Mauchly's 

W 

Approx. 

Χ² 
df 

p-

value 

Greenhouse-Geisser 

ε 

Huynh-Feldt 

ε 

Lower Bound 

ε 

Duration  0.761  18.169  9  0.033  0.860  0.912  0.250  

Condition ✻ 

Duration 
 0.796  15.187  9  0.086  0.903  0.960  0.250  

 442 
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Table A2. Selected post-hoc comparisons for Figure 4B, showing the comparisons of peak 443 

values to their neighbors for the natural textures. Due to the high number of comparisons, the 444 

lenient Holm correction was applied. 445 

 446 

Post Hoc Comparisons - Texture ✻ Duration  
  Mean Difference SE t pholm  

Fire, 125  Fire, 250  -0.477  0.187  -2.552  1.000  

Stream, 125  Stream, 250  -0.161  0.187  -0.861  1.000  

Fire, 250  Fire, 500  0.572  0.187  3.062  0.281  

Stream, 250  Stream, 500  0.214  0.187  1.148  1.000  

Wind, 500  Wind, 1000  -0.026  0.187  -0.139  1.000  

Wind, 1000  Wind, 2000  0.190  0.187  1.019  1.000  

Note.  P-value adjusted for comparing a family of 190 

  447 
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