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Abstract—When compressing the electric field integral equa-
tion with the adaptive cross approximation or related fast solvers,
the resulting matrix can often be affected by numerical cancella-
tions at low frequency in the computation of the scalar potential.
This work theoretically studies the source of this instability and
proposes a solution based on a tree scheme. Numerical results
corroborate and confirm the theory and show the efficacy of the
proposed solution.

I. INTRODUCTION

The electric field integral equation (EFIE), solved by the
boundary element method (BEM), becomes a very competitive
solver for electromagnetic analyses when associated with a
fast solver such as the multilevel adaptive cross approximation
(MLACA) [1]. At low frequency, however, this formulation is
affected by ill-conditioning and loss of accuracy in the solution
process, which is often referred to as the low-frequency
breakdown. An efficient and widely spread remedy to this
limitation leverages the quasi-Helmholtz projectors that enable
the proper rescaling of the components of the EFIE system
matrix at low frequencies. A crucial step when manipulating
these projectors is to enforce the divergence-free nature of
the solenoidal functions employed in the quasi-Helmholtz
decomposition, which is a challenging operation when using
a standard compression scheme at the basis functions level of
the EFIE. The reason behind this is the lack of orthogonality
between the compressed hypersingular operator (TΦ) of the
EFIE and the solenoidal functions. A way to address this is
to compress the kernel at quadrature points level and thereby
leaving the divergence part of TΦ as uncompressed sparse
matrices. In addition to proposing a stable compression of the
EFIE at very low frequencies, we show in this contribution,
with the adequate mathematical framework, that this method
suffers from a loss of accuracy in the mapping between the
compressed kernel and TΦ. Moreover, we introduce a remedy
based on a hierarchical tree that prevents the numerical loss
of accuracy caused by the divergence operator and retains the
low frequency stability of the preconditioned EFIE. Numerical
results will corroborate the theory and validate the accuracy
of this new scheme.

II. BACKGROUND AND NOTATION

Let Ei be a time-harmonic incident electric field impinging
on a perfectly electrically conducting scatterer delimited by
the simply connected and closed boundary Γ ⊂ R3 with
outward pointing normal n̂. The induced surface current
density can be obtained by solving the EFIE, which reads

T J = ikTA + 1
ikTΦ = −n̂ × Ei where TAJ(r) =

n̂ ×
∫
Γ
G(r, r′)J(r′)dS′ is the vector potential operator,

TΦJ(r) = −n̂ × ∇Γ

∫
Γ
G(r, r′) divΓ J(r

′)dS′ is the scalar
potential operator and k is the wavenumber. Here, G(r, r′) =

eik∥r−r′∥/(4π ∥r − r′∥) is the Green’s function, ∇Γ and divΓ
are the surface gradient and surface divergence, respectively.

The EFIE is discretized using a triangular approximation
of Γ with average edge length h on which the Rao-Wilton-
Glisson (RWG, [2]) basis functions {f i}Ni=1 are defined
to expand the current as J ≈

∑N
i=1[j]if i. The EFIE is

then tested with rotated RWGs {n̂ × f i}, which yields
the linear system Tj =

(
ikTA + 1

ik TΦ

)
j = −ei where

[TA]ij := ⟨n̂ × f i, TAf j⟩Γ, [TΦ]ij := ⟨n̂ × f i, TΦf j⟩Γ,
[ei]i := ⟨n̂×f i, n̂×Ei⟩Γ with ⟨f , g⟩Γ =

∫
Γ
f(r) ·g(r)dS.

We also define the single layer potential operator Sf(r) =∫
Γ
G(r, r′)f(r′)dS′ that can be used for an alternative def-

inition of [TΦ]ij = ⟨divΓ f i, S divΓ f j⟩Γ. The interaction
between two RWG functions f i and f j consists in a weighted
sum of interactions between the four triangular cells T±

i , T±
j

on which the RWGs are defined, which can be integrated by
Gaussian quadrature with a set of points {ri}

Npts

i=1 .

III. NUMERICAL CANCELLATION: THEORETICAL
ANALYSIS

To compress T at quadrature points level, TA and TΦ are
decomposed as T̃A = XAKXT

A and T̃Φ = XΦKXT
Φ, where

the point-point interactions are stored as [K]ij := G(ri, rj)
and the sparse mapping matrices XΦ and XA combine the
Gaussian weights and cells coefficients. However, divΓ f i|T+

i

and divΓ f i|T−
i

are constant and of opposite value and the

above-mentioned construction of T̃Φ results in numerical
cancellation. We will now prove the following result:

Proposition 1. Given two RWG basis functions f i and
f j whose cells T±

i , T±
j have aligned centroids, suppose

that [TΦ]ij is computed via Gaussian quadrature with one
quadrature point per cell: c±i , c±j . Let ∆r =

∥∥c−i − c+i
∥∥ =∥∥c−j − c+j

∥∥ and R =
∥∥c±j − c±i

∥∥, and suppose ∆r ≪ R (see
Fig. 1a). If the Green function is compressed at tolerance ϵ,
then the upper bound on the error on the resulting compressed
element [T̃Φ]ij is

4ϵ

h2

∣∣∣∣k2 + 2ik

R
− 2

R2

∣∣∣∣−1

≈ 4ϵ

h2
max

{
2

R2
, k2

}−1

. (1)

Proof. Let q(R±±) := G(c±i , c
±
j ) = eikR

±±
/(4πR±±)

be the point-point interaction. Then, using divΓ f i|T+
i

=



(a) (b) (c)

Fig. 1: (a) The triangular support of a pair of interacting basis functions. (b) Relative error of the far interaction between two
RWGs computed from the compression of the cells. (c) Relative error of a far block of the compressed TΦ for a sphere.

−divΓ f i|T−
i

> 0 and the definition of [TΦ]ij , we expand
the ratio [TΦ]ij/q(R

++) as h → 0

[TΦ]ij
q(R++)

=
4πR

eikR
(
q(R++)− q(R+−)− q(R−+) + q(R−−)

)
=

4πR

eikR

(
2eikR

4πR
− eik(R+∆r)

4π(R+∆r)
− eik(R−∆r)

4π(R−∆r)

)
=

(
k2 +

2ik

R
− 2

R2

)
h2 +O

(
h4

)
, (2)

where we have used the fact that ∆r = O(h). Now, assuming
that q is compressed with relative error ϵ, then its absolute error
is |q(R±±)− q̃(R±±)| = ϵ |q(R±±)|. Since the maximum
error of a sum equals the sum of the maximum errors of the
terms, then the error on [T̃Φ]ij is less than 4ϵ |q(R±±)|. By
dividing by

∣∣[T̃Φ]ij
∣∣ and we obtain an upper bound of the

relative error on [T̃Φ]ij :

4ϵ |q(R±±)|∣∣[T̃Φ]ij
∣∣ =

4ϵ

h2

∣∣∣∣k2 + 2ik

R
− 2

R2

∣∣∣∣−1

. (3)

Finally, since the term 2/R2 dominates for R < 1/k and
the term k2 dominates for R > 2/k, the bound can be
approximated as 4ϵ/h2 max

{
2/R2, k2

}−1
.

This proposition suggests that the loss of significant digits
on T̃Φ is an issue for far basis functions at low frequency and
for refined meshes.

IV. NUMERICAL CANCELLATION: SOLUTION

The solution we propose relies on the compression of entries
with the same scaling as the entries of TΦ. Using an octree
in O(Npts logNpts) complexity, we construct the minimum
spanning tree linking the quadrature points and identify the
edges by the index of their end points, after arbitrarily choos-
ing a root. An edge-edge matrix Ke is considered, with entries
[Ke]ij = G(c+i , c

+
j ) − G(c+i , c

−
j ) − G(c−i , c

+
j ) + G(c−i , c

−
j )

where c±i and c±j are the origin and end points of the edges
i and j. With of its definition Ke = YKYT, where Y is the
sparse matrix of entries [Y]ij = 1 if rj is the origin of edge
i, −1 if rj is the end of edge i, and 0 otherwise. Y−1 and
its transpose are not sparse, but their matrix-vector products

can be performed in linear complexity thanks to the tree struc-
ture, starting from the root. After compressing Ke, we have
T̃Φ = XΦY

−1K̃e

(
YT

)−1
XT

Φ−T̃near
Φ +Tnear

Φ , where the sparse
pre-correction accounts for the incompressible singularity. The
row and column requiring the root vertex are filled as points
before the application of the XΦ matrices.

V. NUMERICAL RESULTS

In Fig. 1b we plotted the relative error on the far interaction
of two equal, equally oriented, and coplanar RWG basis
functions with ∆r = 1m at a frequency of 1.5MHz. Both
the vector and scalar potential entries are computed from the
four cells interactions with one Gaussian quadrature point per
cell. The compression at the desired tolerance of 10−3 is
simulated by rounding the cell-cell entries, giving the sawtooth
profile. This corroborates Proposition 1, as TΦ suffers from
cancellation, unlike TA, and the resulting error scales as
predicted and changes behaviour between R = 1/k and
R = 2/k.

The tree-based solution has been tested at a frequency of
1MHz on a sphere of radius 1m discretized at h = 10 cm,
resulting in 4320 basis functions. In Fig. 1c we show the
relative errors of a 1080 × 1076 contiguous block of TΦ

corresponding to the interactions between two far regions
of the sphere after compressing the whole matrix. While
using an MLACA on K implies the loss of significant digits,
our strategy remains unaffected by numerical cancellation,
resulting in an error that follows the tolerance.
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