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ABSTRACT: In this paper, we evaluated the ability of four coarse-grained
methods to predict protein flexible regions with potential biological importance,
UNRES-flex, UNRES-DSSP-flex (based on the united residue model of
polypeptide chains without and with secondary structure restraints, respectively),
CABS-flex (based on the C-α, C-β, and side chain model), and nonlinear rigid
block normal mode analysis (NOLB) with a set of 100 protein structures
determined by NMR spectroscopy or X-ray crystallography, with all secondary
structure types. End regions with high fluctuations were excluded from analysis.
The Pearson and Spearman correlation coefficients were used to quantify the conformity between the calculated and experimental
fluctuation profiles, the latter determined from NMR ensembles and X-ray B-factors, respectively. For X-ray structures
(corresponding to proteins in a crowded environment), NOLB resulted in the best agreement between the predicted and
experimental fluctuation profiles, while for NMR structures (corresponding to proteins in solution), the ranking of performance is
CABS-flex > UNRES-DSSP-flex > UNRES-flex > NOLB; however, CABS-flex sometimes exaggerated the extent of small
fluctuations, as opposed to UNRES-DSSP-flex.

1. INTRODUCTION
The flexibility of proteins is crucial to fulfill their biological
role.1 For example, contemporary descriptions of agonist and
antagonist effects incorporate the dynamic interconversion
between inactive and activated states of proteins. An agonist
molecule facilitates the shift of a protein toward the activated
conformation by selectively binding to it.2 As a consequence,
the information on protein flexibility is essential in drug
design.3 When the ligand is attached to the protein, it can
induce a cascade of motions, resulting in a conformational
change.2 However, if the ligand-binding pocket shows high
structural fluctuations, this information should be included in
the prediction of ligand−protein interactions.
Nuclear magnetic resonance (NMR) spectroscopy is one of

the most powerful tools to study protein flexibility. NMR
measurements give the information on the contact distances
(typically 5 Å or less) between paramagnetic nuclei (mostly
protons) based on the nuclear Overhauser effect (NOE) and
local structure based on the chemical shifts thereof. Because
the measured quantities are averaged over at least a millisecond
time scale, NMR structure determination results in an
ensemble, from which flexibility can be estimated right
away.4 NMR structures are usually diffuse in regions with
scarce NOE signals (e.g., flexible ends or loops), which
indicates that most of the contacts are averaged over the period
of mixing time and, consequently, not observed. Thus,
qualitatively, NMR provides information on flexible regions.
However, it must be borne in mind that with sparse

experimental restraints, the ensemble diversity heavily depends
on the force field.
Thus, qualitatively, NMR provides the information on

flexible regions; however, it must be kept in mind that with
sparse experimental restraints, the ensemble diversity heavily
depends on the force field. Additionally, relaxation experiments
can be performed, from which the S2 order parameters can be
determined,5 which provide direct information on flexibility.
About 90% of the structures in the protein databank (PDB)6

were solved by X-ray crystallography, which continues to
provide the highest resolution. As opposed to the NMR
spectroscopy, which treats protein molecules in solution, the
X-ray measurements are performed on crystals in which the
atoms can only fluctuate about equilibrium positions. The
extents of these fluctuations (and, thereby, flexibility) are
related to the Debye−Waller factors (B-factors) of the
respective atoms through a simple formula (see Section 2).7

Even though the B-factors do not capture the full flexibility of
proteins in solutions,4 they are still good indicators of the
regions with high flexibility (e.g., flexible loops). It should be
noted, however, that the B-factors are influenced by the
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refinement procedure and crystal defects, diffraction decay, and
other factors.8,9

The core of a structure is usually defined equally well
regardless of whether it has been solved by X-ray or NMR;
however, for the reasons pointed out above, the loops in crystal
structures appear too rigid, while those in the NMR structures
are too “floppy”.10

Four basic types of computational approaches can be used to
estimate the protein flexibility: (i) molecular dynamics
(MD),11−13 (ii) Monte Carlo (MC) methods,14 (iii) elastic15

and Gaussian16 network models, and (iv) normal mode
analysis (NMA).17 Like NMR structure determination, MD
and MC result in conformational ensembles, from which it is
straightforward to quantify the flexibility of the respective
regions. Both all-atom and coarse-grained models are used
here. Compared to all-atom models, the coarse-grained
approaches cover about 3 orders of magnitude wider time
scale (due to averaging out the degrees of freedom absent from
the model), which enables much more extensive conforma-
tional sampling.19 Moreover, coarse-grained models are
computationally less expensive compared to all-atom simu-
lations, which require substantial computational resources to
carry out. The reduction of the complexity of the system by
treating groups of atoms as a single entity simplifies the
modeling process and can lead to a better understanding of the
system’s behavior. All-atom simulations can suffer from
insufficient “sampling” due to their high dimensionality. On
the other hand, many coarse-grained models cover specific
kinds of molecules (e.g., proteins), while all-atom models are
more easily generalizable to other systems. In the elastic
network models, atoms whose distances are smaller than a
preassigned cutoff distance are linked with springs with equal
force constants, while in the Gaussian network models, the
force constants depend on distances. Usually, in both
approaches, an amino acid residue is represented by the Cα
atom; however, all-atom variants of both approaches are also
used. Finally, the normal mode analysis uses the complete
energy Hessian at the potential energy minimum (see Section
2.4).
As the disparity between the number of solved protein

structures and that of known protein sequences continues to
widen, computational tools for accurate prediction of protein
flexibility solely from amino acid sequences would be the best
solution. MEDUSA20 is one of the methods for predicting
protein flexibility using the sequence information alone, which
utilizes evolutionary insights from sequences of homologous
proteins and the physicochemical properties of amino acids.
cdsAF2 is another method, based on AlphaFold2,21 which
integrates pairwise geometric features with multiple sequence
alignments. These approaches facilitate the identification of
potentially highly deformable protein regions and provide
insights into the general dynamic properties of proteins.
However, methods for flexibility prediction based on protein
dynamics are still more accurate.
The purpose of this work was to evaluate the accuracy of

protein flexibility predictions by using four coarse-grained
methods. Two of those are based on the coarse-grained united
residue (UNRES)22 model implemented (i) in the unre-
strained mode (termed UNRES-flex) and (ii) with secondary
structure restraints based on Dictionary of Protein Secondary
Structure (DSSP)23 assignment (termed UNRES-DSSP-flex).
The next approach is based on (iii) the C-α, C-β, and side
chain (CABS)24 coarse-grained model (termed CABS-flex),

and the last one (iv) is the nonlinear rigid block normal mode
analysis (NOLB)17 approach. These approaches are based on
canonical molecular dynamics (UNRES-flex and UNRES-
DSSP-flex), Monte Carlo dynamics (CABS-flex), and normal
mode analysis (NOLB), respectively. All these approaches are
computationally fast and not resource-demanding. We show
that these methods result in reliable flexibility prediction.

2. METHODS
2.1. Test Set. The test set consisted of 100 proteins, which

were already used to evaluate the prediction capability of
UNRES.25 This set contains proteins with various structures
(30 α-helical, 21 β-sheet, and 49 α + β) determined by NMR
(50 structures) and X-ray (50 structures). In Table S1 of the
Supporting Information, the benchmark proteins are grouped
according to the secondary structure and structure determi-
nation method. The selected proteins are single-chain globular
proteins. Most of them were taken from the benchmark set of
69 proteins with various structural types used to test the latest
version of UNRES,25 which were selected to contain less than
200 residues, all secondary structure types (α, β, and α + β),
and no missing coordinates in the structures.25 Because ab
initio folding simulations were not carried out in this work, the
benchmark set of ref 25 was extended by larger proteins.
Finally, the set contained 79 proteins with chain length less
than 100 residues, 11 from more than 100 and less than 200
residues, and 10 larger than 200 residues. The smallest and
largest chain lengths were 20 and 532 residues, respectively.
None of them was used in parametrizing the variant of UNRES
applied in this work.25 Detailed information on the test-set
proteins, including their chain lengths, can be found in Table
S1 of the Supporting Information.

2.2. UNRES-FLEX and UNRES-DSSP-FLEX. The UNRES-
flex and UNRES-DSSP-flex methods are based on the UNRES
coarse-grained model of polypeptide chains, in which a
polypeptide chain is represented by a sequence of α-carbon
(Cα) atoms linked with virtual bonds, with peptide groups (p)
located halfway between the consecutive Cαs and united side
chains (SCs) attached to the Cαs with the Cα-SC virtual
bonds. Only the united peptide groups and the united side
chains are interaction sites, while the Cαs assist in the chain
geometry definition. The effective energy function has been
developed on a physical basis, by expressing the potential of
mean force in terms of Kubo cluster cumulant functions,26

which are approximated analytically by Kubo cluster
cumulants. The energy function is expressed by eq 125
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where USC diSC d j
represents the mean free energy of the

hydrophobic (hydrophilic) interactions between the side
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chains, USCdip dj
denotes the excluded volume potential of the side

chain−peptide group interactions, Up dipdj
describes the peptide−

peptide group interaction potential, Ubond(di), are simple
harmonic potentials of the virtual bond where di is the length
of ith virtual bond, Utor, Utord, Ub, and Urot are the virtual
bond−dihedral angle torsion terms, and Ucorr(3) and Uturn(3)
account for the coupling between the backbone local and
backbone−electrostatic interactions, respectively. The solvent
is implicit in UNRES and protein−solvent interactions are
contained in the effective energy terms of eq 1, mainly in
USC diSCdj

. The factors f n account for the dependence of the
effective energy function on temperature, this reflecting the
fact that it corresponds to the potential of mean force
(restricted free energy) and not potential energy. The factors
are expressed by eq 227

f T
T T T T

( )
ln exp(1 exp( 1)

ln exp / exp ( / )n n n
0

1
0

1= [ + ]
{ [ ] + [ ]} (2)

where T0 = 300 K. The main conformational search engine
used with UNRES is Langevin molecular dynamics, which was
implemented in our earlier work.28,29 UNRES has been
successful in protein structure prediction,21 studying protein
folding dynamics and thermodynamics,30 and solving bio-
logical problems.31

In this work, short MD simulations were conducted. A total
of 200,000 steps were performed with a time step of 4.89 fs,
which gives about 1 ns trajectory length. However, as the
UNRES time unit amounts to about 1000 laboratory time
units, due to averaging over the degrees of freedom not
included in the model,22,32 each simulation effectively
corresponded to 1 μs laboratory time. The newest NEWCT-
9P version of the UNRES force field parametrized by using the
experimental conformational ensembles of nine proteins with
various secondary structures25 was used. The temperature in
Langevin dynamics simulations was set to 300 K, and the
friction of water was scaled by the factor of 0.01 as in our
previous work.29 It should be noted that Langevin dynamics
provides thermostatting. We term UNRES-flex the method of
predicting protein fluctuations based on canonical Langevin
MD simulations with UNRES.
In part of the simulations, restraints were imposed on the

selected Cα···Cα···Cα···Cα backbone virtual bond−dihedral
angles to restrain the secondary structure,23 determined by
DSSP,23 entirely based on the backbone hydrogen bonds, as
defined by an electrostatic model.33 Flat-bottom quartic
restraints with the force constant equal to 50 kcal/mol/rad4

were applied with a fourth-order flat-bottom range of about 50
± 20° for α-helical and 180 ± 40° for β-sheet regions. For
better probing of the conformational space, three independent
MD simulations were performed. MD simulations were carried
out with the same settings as the regular UNRES MD
simulations. We term the above approach to protein flexibility
prediction the UNRES-DSSP-flex method.

2.3. CABS-FLEX. CABS-flex is based on the CABS model of
polypeptide chains, which is a medium-resolution coarse-grain
model,34 in which the backbone is represented by consec-
utively linked Cα atoms, with virtual peptide group sites
located in the centers of the Cα···Cα virtual bonds, and each
side chain is represented by the Cβ atom and a united site that
encompasses the respective side-chain atoms next to Cβ. The
polypeptide chains are superposed on a high-resolution cubic

lattice. This model utilizes Monte Carlo dynamics with the
asymmetric Metropolis scheme, satisfying the requirements of
microscopic reversibility.14 Owing to the possibility of
precomputing most of the energy components, the lattice
representation enables very fast sampling of the conformational
space. The CABS model utilizes secondary structure data that
are automatically determined by DSSP.23 The secondary
structure data are simplified to helix/β/coil representation, the
“coil” designation representing all secondary structures except
for α-helix and β-sheet structures.35 The energy is expressed by
eq 3 (ref 14)

E w E w E w E w E

W E
TOT SDD SSD SSI SSI HB HB R R

LR LR

= + + +

+ (3)

where ESSD (with weight wSSD = 1.0) is the energy of short-
range sequence-independent interactions, ESSI (with weight
wSSI = 0.375) is the energy of short-range sequence-dependent
interactions, EHB (with weight wHB = 1.0) is the hydrogen bond
energy, ER (with weight wR = 1.0) is the energy of repulsive
interactions, and ELR (with weight of wLR = 2.0) is the energy
of long-range pairwise interactions, calculated after summing
up all pairwise interactions. For details, see ref 14.
CABS was applied to simulate protein dynamics24 and has

been used to study protein−protein interactions35 and
conformational changes and to predict protein flexibility.35,36,14

It is an integral component of CABS-DOCK software, which
also includes protein−peptide docking.35
Compared to sequence-based fluctuation predictors, CABS-

flex can detect nonobvious, potentially biologically relevant,
dynamic fluctuations in regions considered to be rigid, e.g.,
those corresponding to well-defined secondary structure
elements.37 The obtained fluctuation profiles can be used to
identify functionally important motions, the most mobile
structural fragments, which are potential targets for molecular
docking.38

In this work, simulations were carried out with CABS-flex
(standalone version)34 using the default settings. Restraints
were generated only for pairs of residues corresponding to a
regular secondary structure (helical or sheet; the “ss2 mode”)
and Cα..Cα distance between 3.8 and 8.0 Å (the ‘gap3′
option). Reduced temperature was set at 1.4, as recommended
by the authors (a value of 1.0 is generally close to the
temperature of the crystal, while a value of 2.0 typically causes
the complete unfolding of unrestrained small protein chains).36

Three independent Monte Carlo simulations were performed
for each system.

2.4. NOLB. NOLB is based on the normal mode analysis
(NMA) technique.17 The harmonic anisotropic elastic network
(AEN) model is used to express the potential energy, as given
by eq 4

V d dq q( )
2

( ( ) )
i j

ij ij
0 2

dij dcut

=
<
< (4)

where q is the vector of generalized coordinates, dij(q) and dij0
are the distance between the ith and jth atoms and the distance
in the reference (energy-minimum) structure, respectively, and
γ is the force constant. The normal modes are obtained by
diagonalization of the Hessian matrix of the potential energy
(given by eq 4). Coarse-graining protein structures into rigid
blocks makes NOLB computationally efficient.17
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Each mode defines a collective displacement (a sequence of
rotations and translations) of the consecutive one.17 The
displacements are scaled by the desired amplitude A. To
handle large amplitudes, the total displacements can be
optionally divided into several steps, which are applied
iteratively.17,18 This procedure considerably reduces the
valence geometry violations compared to Cartesian coordinate
NMA.17 The NMA has been applied to various biomolecular
systems, including proteins,17 RNA,17 and DNA,17 and to
study protein−ligand binding,39 protein−protein interac-
tions,40 and protein folding.41

2.5. Analysis of Simulation Results. To assess the
quality of fluctuation prediction by each of the four methods
considered in this work (UNRES-flex, UNRES-DSSP-flex,
CABS-flex, and NOLB, respectively) in an objective manner,
we used the root mean square fluctuation (RMSF)42 analysis.
For residue with index i, RMSF is defined by eq 5 (ref 42)

N
x j xRMSF

1
( ( ) )i

j

N

i i
2=

(5)

where xi(j) is the position of the ith Cα atom of a given jth
snapshot or jth NMR model and ⟨xi⟩ is the position of the ith
Cα atom averaged over the respective simulation or NMR
ensemble. The RMSF profile of a given protein shows its
flexibility along the chain.43

The fluctuation profiles from NMR, UNRES-flex, UNRES-
DSSP-flex, and NOLB ensembles were calculated as follows.
First, the Cα traces of all structures were superposed on that of
the first structure of the respective batch. Subsequently, the
mean structure was calculated by averaging the Cα Cartesian
coordinates and each structure was superposed on the mean
structure and the mean structure was calculated again. There
was no need to iterate the procedure further because the mean
structures of the second iteration were already very close to
those of the first one. The RMSF profiles were calculated
taking the mean structures as references (eq 5). The RMSF
profiles from CABS-flex were output directly by the CABS-flex
program.14

For X-ray structures, RMSF is related to the B-factor, as
approximately expressed by eq 6 (ref 44).

B
RMSF

3
8i

i
2=

(6)

where Bi is the B-factor of residue i. We shall refer to the
RMSF values obtained by the respective simulation as
“predicted” and to those calculated from NMR ensembles or
B-factors as “experimental”. One can, in principle, obtain
slightly better fits to the crystallographic B-factors if one
accounts for rigid body crystallographic disorder by, e.g.,
introducing additional rigid body disorder parameters for each
PDB structure and optimizing them mutually with a
regression.45 However, since our main goal was a relative
comparison of the four simulation techniques, we omitted this
additional disorder correction in our computations.
We compared the RMSF profiles obtained with the

respective methods with those calculated from NMR
ensembles or B-factors. As measures of profile similarity, we
used the Pearson product−moment correlation coefficient
(rp)

46 and the Spearman rank correlation coefficient (rs).
47

These are expressed by eqs 7 and 8, respectively

r
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where xi and yi are the predicted and experimental RMSF
values for residue with index i, respectively, x̅ and y̅ are the
RMSFs averaged over all residues, and n is the number of
residues.

r
d

n n
1

( 1)
i
n

i
s

1
2

2= =

(8)

where di is the difference between the ranks of the predicted
and experimental RMSF for residue with index i. The rank is
the position of residue i obtained when residues are sorted
according to ascending RMSF values. The Pearson correlation
coefficient is close to 1 (correlation) or −1 (anticorrelation) if
the two profiles are linearly (homothetically) related to each
other, whereas the Spearman correlation coefficient is close to
1 if they vary concurrently or to −1 if they vary counter-
currently. A value close to 0 indicates no correlation/
anticorrelation or concurrency/counterconcurrency.48

The fluctuations of N- and C-terminal sections of single-
chain proteins are usually significantly higher than those of the
remaining sections of the structure. This feature is most
pronounced for NMR structures. The fluctuations of the
terminal parts are nonspecific and could thus blur the
fluctuations in loop regions, which usually contribute to
functionally important motions. Thus, the analysis of the
flexibility of a protein performed with the N- and C-terminus
included may bias the correlation results. To compare the
calculated and experimental fluctuation profiles, we, therefore,
removed the terminal regions, by using the procedures
described below for the X-ray and the NMR structures.
However, the simulations (for UNRES-flex, UNRES-DSSP-
flex, and CABS-flex) or normal mode calculations (for NOLB)
were performed for complete structures.
For each X-ray structure, the RMSF profile was calculated

from the B-factors (eq 6) over the whole protein.
Subsequently, the average (over all residues) RMSF value (
RMSF) and its standard deviation ( RMSF) were calculated.
Finally, the terminal segments were eliminated such that
RMSF RMSF 3i RMSF> for i = 1, 2, ···, lnt and i = n, n − 1,
···, n − lct + 1, where lnt and lct are the lengths of the
eliminated N- and the C-terminal segments, respectively.
For each NMR ensemble, the mean structure and RMSF

profile were determined over the whole structure as described
earlier in this section. Subsequently, the average RMSF and its
standard deviation were calculated and the terminal segments
with RMSF RMSF 0.2 Åi RMSF> + were eliminated. This
procedure was repeated for the truncated chain; however, in
most cases, further deletions were not required.
Because different methods result in different RMSF

amplitudes, we also considered normalized RMSF profiles
(the RMSFN profiles), defined by eq 9, in part of the analysis
and for visualization purposes.

RMSFN
RMSF

RMSF
i

i

i
n

i1
2

=
= (9)

To determine the dependence of the rp and rs correlation
coefficients on the method used (UNRES-flex, UNRES-DSSP-
flex, CABS-flex, and NOLB) and on the type of secondary
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structures (α, β, and α + β), a two-way analysis of variance
(ANOVA)49 was carried out at the 0.05 significance level,
using the online server available at https://www.statskingdom.
com/two-way-anova-calculator/.

3. RESULTS
3.1. Impact of Terminal Sections on Fluctuation

Profiles and Dependence on the Trajectory. As stated in
Section 2.5, the fluctuations of the N- and C-terminal regions
are usually much higher than those of other protein fragments.
To illustrate this observation, let us consider the nuclear
receptor binding factor 2 from mice (PDB: 2CRB, an all-α
protein), the NMR structure of which is shown in Figure 1A.

For the whole protein, UNRES-flex, UNRES-DSSP-flex, and
CABS-flex yield high rp (from 0.94 to 0.96; Figure 2A). The
correlation coefficients were computed from RMSFN profiles
averaged over all three trajectories corresponding to a given
method. However, it is clearly seen from Figure 2A that the
good agreement between the experimental RMSFN profile and
those predicted with UNRES-flex, UNRES-DSSP-flex, and
CABS-flex arises from the fluctuations at the ends (which
usually are not biologically relevant). After removing the
terminal sections (which leaves residues 8−85), the agreement
between the experimental and predicted RMSFN profiles is
still good with rp ranging from 0.49 to 0.81 (Figure 2B).

Consequently, to avoid biasing the results, we analyze
fluctuation profiles without the terminal sections.
To determine how the fluctuation profiles depend on the

trajectory, we compared the RMSFN profiles obtained from
each of the three individual MD or MC trajectories simulated
with UNRES (UNRES-DSSP) or CABS. It should be noted
that NOLB is a deterministic method, and thus, only one
calculation per system was required. From Figure 2A, it can be
seen that the differences between the RMSFN profiles
calculated from individual trajectories are similar over the
whole sequence. Therefore, at the ends, where the fluctuations
are high, these differences are smaller compared to the extent
of fluctuations. Consequently, there are only small differences
between the Δrp (0.09 for UNRES-flex, 0.06 for UNRES-
DSSP-flex, and 0.08 for CABS-flex) and Δrs (0.06 for UNRES-
flex, 0.12 for UNRES-DSSP-flex, and 0.02 for CABS-flex)
values corresponding to different trajectories. Consequently,
based on the analysis of whole RMSFN profiles, it could be
concluded that running just one trajectory was sufficient.
However, it must be kept in mind that the complete RMSFN
profiles are dominated by the fluctuations of end sections.
When these sections are removed to keep only biologically
relevant regions, the differences between RMSFN profiles
become more noticeable (Figure 2B), which is reflected in
bigger differences in the Δrp (0.38 for UNRES-flex, 0.22 for
UNRES-DSSP-flex, and 0.19 for CABS-flex) and Δrs (0.05 for
UNRES-flex, 0.22 for UNRES-DSSP-flex, and 0.03 for CABS-
flex) values. This result clearly demonstrates that running
multiple trajectories is necessary to get reliable RMSFN
profiles. Consequently, in what follows, we discuss the RMSFN
profiles and the quantities derived from those averaged over
three trajectories.
It should also be noted that the rp values for the

experimental fluctuation profiles and those predicted with
NOLB are lower, this feature being probably due to the fact
that normal mode analysis is mostly relevant to cases with a
well-defined reference structure, which is not the case of NMR
ensembles.

3.2. Comparison of Predicted and Experimental
RMSFN Profiles over the Benchmark Set. 3.2.1. Depend-
ence on the Prediction Method, Method of Structure
Determination, and Secondary Structure. The RMSFN
plots for all 100 benchmark proteins are collected in Figures
S1 (truncated structures) and S2 (full structures) of the
Supporting Information. The correlation coefficients for each
individual protein are shown in Tables S2 and S3 of the
Supporting Information for the truncated and the full
structures, respectively.
To determine which method considered in this work

(UNRES-flex, UNRES-DSSP-flex, CABS-flex, or NOLB) best
reproduces the fluctuation profiles, averages of the Pearson
(rp) and Spearman (rs) coefficient were computed first for the
truncated and full structures, respectively. In each instance, the
averages were computed over the subsets corresponding to a
given method of protein structure determination (NMR or X-
ray) and a given type of secondary structure (α, β, or α + β) of
the subset of the set of 100 proteins considered in this work.
These average coefficients are summarized in Tables S4 and S5
of the Supporting Information for the truncated and full
structures, respectively, and shown as whiskered bar plots
(showing their mean values and their standard deviations) in
Figure 3A−3D. For completeness, averages over the structure
determination method, secondary structure type, and both are

Figure 1. Cartoon representations of the structures of proteins
selected for detailed discussion. (A) Nuclear receptor binding factor 2
from mice (PDB: 2CRB, all-α, NMR structure), (B) Gag polyprotein
of the Rous sarcoma virus (PDB: 1A6S, all-α, NMR structure),50 (C)
vitamin D-dependent calcium-binding protein from the bovine
intestine (PDB: 3ICB, an all-α, the X-ray structure),51 and (D)
third SH3 domain of the Cin85 adapter protein (PDB: 2K9G, all-β,
NMR structure).
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Figure 2. RMSFN profiles for 2CRB calculated with UNRES-flex, UNRES-DSSP-flex, CABS-flex (three simulations and average), and NOLB
compared with that calculated from the NMR ensemble for (A) whole and (B) truncated (to remove the terminal segments with high fluctuations)
structures. The profiles are distinguished with line styles and colors as described in the graphs. The green wave lines at the bottom of the graphs
mark the α-helical segments. For the whole structures, the rp (rs) values corresponding to the first, second, and third simulations and the mean rp
(rs) values were 0.93 (0.61), 0.94 (0.58), 0.85 (0.56), and 0.94 (0.58) for UNRES-flex, 0.89 (0.71), 0.95 (0.62), 0.95 (0.68), and 0.95 (0.62) for
UNRES-DSSP-flex, 0.94 (0.87), 0.96 (0.78), 0.87 (0.75), and 0.94 (0.81) for CABS-flex, and 0.56 (0.53) for NOLB. For the truncated structures,
the rp (rs) values corresponding to the first, second, and third simulations and the mean rp (rs) values were 0.43 (0.60), 0.34 (0.27), 0.35 (0.43),
and 0.44 (0.56) for UNRES-flex, 0.47 (0.53), 0.27 (0.21), 0.52 (0.51), and 0.47 (0.52) for UNRES-DSSP-flex, 0.74 (0.68), 0.60 (0.43), 0.53 (0.33),
and 0.66 (0.50) for CABS-flex, and 0.39 (0.49) for NOLB.
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also shown in Tables S4 and S5 and in Figure 3E,3F. As can be
seen from Figure 3 and Tables S4 and S5, the correlation
coefficients (rp and rs) seem to depend mostly on the type of
the method for fluctuation prediction.
To verify the above qualitative observation, we used two-way

ANOVA with the following two categories of variables: (i)
methods for fluctuation prediction and (ii) type of secondary
structures. Separate analyses were carried out depending on
the method of structure determination. The reason for this
separation was that for X-ray structures, the experimental
fluctuation profiles are calculated from the B-factors (eq 6) and
correspond to harmonic or quasi-harmonic vibrations around
the energy minimum. Conversely, the experimental fluctuation
profiles calculated from the NMR structures (eq 5) have the

sense of ensemble variance around the mean structure. The
respective significance levels are summarized in Table S6 of the
Supporting Information. As can be seen, the dependence of the
correlation coefficients on the method of fluctuation prediction
is significant at least at the 0.05 significance level (except for
the rs and X-ray structures), while that on the secondary
structure type is insignificant (except for rs and NMR
structures). The influence of both categories of variables
(interaction) on the correlation coefficients is of little or no
significance (Table S6). Thus, ANOVA confirms the depend-
ence of rs and rp on the method of fluctuation prediction that
could be seen from Figure 3.
To determine the specific differences between the qualities

of the methods of fluctuation prediction when applied to

Figure 3.Whiskered bar plots (whiskers corresponding to standard deviations) of the mean Pearson (A, C, E) and Spearman (B, D, F) correlation
coefficients between residue fluctuation profiles obtained by UNRES-flex (steel blue), UNRES-DSSP-flex (green), CABS-flex (orange) simulations,
and NOLB (blue) for truncated structures, for NMR (A, B) and X-ray (C, D) structures and irrespective of the structure determination method (E,
F). Analyses were performed for the α-, β- and α + β-proteins and irrespective of the secondary structure type (all), as indicated in the abscissae.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00754
J. Chem. Theory Comput. 2024, 20, 7667−7681

7673

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00754/suppl_file/ct4c00754_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00754/suppl_file/ct4c00754_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00754/suppl_file/ct4c00754_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00754/suppl_file/ct4c00754_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00754?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


proteins with a given type of secondary structure, we compared
the respective sets of correlation coefficients (rp or rs) by using
Student’s test, separately for the X-ray and for the NMR
structures. Detailed results are collected in Table S7 of the
Supporting Information. As can be seen, CABS-flex, UNRES-
flex, and UNRES-DSSP-flex perform better than NOLB for
NMR structures, while NOLB performs better than UNRES-
flex and UNRES-DSSP-flex for X-ray structures of α + β
proteins (Table S7C,D). It should be noted that we only refer
to the differences that have been assessed to be statistically
significant. Irrespective of the secondary structure type, NOLB
performs better than UNRES-flex but only in terms of the
difference of the Pearson coefficient (Table S7C).
CABS-flex performs better, at the 5% or better statistical

significance, than UNRES-flex for NMR structures of α + β
proteins (Table S7A of the Supporting Information). For the
X-ray structures of α + β proteins, CABS-flex performs better
than UNRES-flex; however, the statistical significance of the
differences between the correlation coefficients is worse than
5% (Table S7C of the Supporting Information). For the NMR
structures of α + β proteins, the Pearson correlation coefficient
corresponding to CABS-flex is greater than that for UNRES-
DSSP-flex at about 5% significance level (Table S7A). On the

other hand, for the benchmark proteins irrespective of the
secondary structure type, there are no statistically significant
differences between CABS-flex, UNRES-flex, and UNRES-
DSSP-flex. Consequently, it can be stated that CABS-flex and
UNRES-DSSP-flex predict fluctuations with a similar accuracy.
The above observations are illustrated in Figure 4A−D,

drawn for α + β (A and C) and all (B and D) secondary
structure types and NMR (A and B) and X-ray (C and D)
structures, in which we plotted arrays with fields corresponding
to the rp (above-diagonal) and rs (below-diagonal), the colors
of the respective fields indicating statistical significance and the
sign of the difference.
3.2.2. Distributions of Correlation Coefficients. The

analysis described in Section 3.2.1 enabled us to evaluate the
four prediction methods considered in this study with regard
to their average performance, depending on the secondary
structure type and fluctuation prediction method. However,
the shape of the distribution of a correlation coefficient, in
particular its modality and asymmetry, can provide additional
information regarding the likelihood of very good or very poor
predictions.
To analyze the asymmetry of the distributions, we binned

the Pearson and Spearman correlation coefficients (rp or rs,

Figure 4. Visualization of the sign of and statistical significance of the rp (above-diagonal) and rs (below-diagonal) correlation coefficients
corresponding to the four methods of fluctuation prediction evaluated in this work for NMR (A, B) and X-ray (C, D) structures and α + β (A, C)
and all (B, D) proteins. For rp, the method corresponding to the respective column heading is compared with that corresponding to that of an
above-diagonal row entry, while for rs, the method corresponding to the respective row heading is compared with that of a below-diagonal column
entry. Red: the difference is negative at <0.05 significance level, blue: the difference is positive at <0.05 significance level, and gray: the difference is
statistically insignificant.
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respectively, 0.1 bin size), separately for NMR and X-ray
structures, and plotted the numbers of counts against the
respective correlation coefficients (Figure 5A−D). This
analysis was performed for truncated structures only.
An apparent feature of the rp distribution calculated with

NOLB for NMR structures is its bimodality, with the first
maximum at about 0 and the second one at about 0.3. The rs
distribution is effectively unimodal; however, it is very broad,
which could be a result of merging two lobes. If only the
second part of the rp distribution is considered, the
performance of NOLB (as assessed by rp) is similar to that
of UNRES-flex, while the first part corresponds to poor
predictions. We, therefore, examined the structures corre-
sponding to the first part of the distribution (centered at rp ≈
0). This list is shown in Table S8 of the Supporting
Information. However, the respective structures do not seem
to possess any common feature such as exceptional non-
compactness, a particular type of secondary structure,
particularly long loops, etc. Therefore, it seems that the poorer
performance of NOLB with NMR structures compared to that
with X-ray structures could result from its Hamiltonian, which
is based on interatomic distances exclusively.
The well-established elements of protein X-ray structures

(e.g., α-helices) are usually both close to the other structural
element of that protein, and if they are on the protein exterior,
they are tightly packed against the other protein molecules. On
the other hand, loops are both more distant from the rest of
the protein and are not tightly packed against the other protein
molecules. Therefore, the flexibility of a fragment in an X-ray
structure primarily depends on the distance of its atoms from
those of the other fragments, the strength of specific
interactions being less important. This observation is

supported by Figure 5C,D, in which the distributions of rp
and rs, respectively, from X-ray structures are shown. As can be
seen, the distributions corresponding to NOLB are unimodal
and slightly shifted to the right with respect to those from the
other methods. The NMR structures selected for this study are
those of monomeric proteins in solution and, consequently, the
strength of specific interactions is more important. Con-
sequently, NOLB could probably benefit from weighting the
harmonic Hamiltonian elements by the contact energies
between the respective residues taken, e.g., from the
Miyazawa−Jernigan table.52
While the rp and rs distributions corresponding to NMR

structures and UNRES-flex, UNRES-DSSP-flex, and CABS-flex
do not exhibit apparent bimodality, they are all left-skewed,
this indicating that poor predictions can occasionally happen.
For quantitative comparison, we computed the skewnesses of
each distribution, which is defined by eq 10

n
1

(RMSF RMSF)
i

n

i
RMSF
3

1

3=
= (10)

where n is the number of structures analyzed. For rp, the values
are γUNRES‑flex = −0.50, γUNRES‑DSSP‑flex = −0.86, γCABS‑flex =
−1.16, and γNOLB = −0.01, while for rs, γUNRES‑flex = −0.79,
γUNRES‑DSSP‑flex = −1.09, γCABS‑flex = −1.60, and γNOLB = −0.34.
The skewness is the most negative for CABS-flex; this
observation conforms to the high density of the significantly
positive correlation coefficient and the presence of those with
small values and even with negative values. The second
negative skewness occurs for UNRES-DSSP-flex, the respective
distributions having similar features. For UNRES-flex, the
distribution is more symmetric because its center is shifted to
the left compared to CABS-flex and UNRES-DSSP-flex. For

Figure 5. Distributions of Pearson’s (rp) or Spearman’s (rs) correlation coefficient values between the fluctuation profiles obtained from the NMR
ensembles or X-ray B-factors and those predicted by using UNRES-flex (steel-blue column), UNRES-DSSP-flex (green column), CABS-flex
(orange column), and NOLB (blue column) after removing the terminal protein sections.
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NOLB, the skewness is negligible for rp and still small for rs,
which results from a similar weight of both lobes of rp
distribution and the nearly symmetric broad distribution of
rs. From this analysis, it can be concluded that while CABS-flex
and UNRES-DSSP-flex generally give good fluctuation
predictions for NMR ensembles (and, thereby, protein
ensembles in solution), they can occasionally result in poor
predictions. The IDs of the proteins for which low correlation
coefficients were obtained are collected in Table S8 of the
Supporting Information. These structures do not seem to
exhibit any particular features, and therefore, UNRES or CABS
Hamiltonians could be responsible for poor performance. This

observation is supported by the fact that some of these
structures are common for all of the three methods.
For X-ray structures, the rp and rs distributions are not

significantly skewed (Figure 5C,D). The skewness values are
γUNRES‑flex = −0.02, γUNRES‑DSSP‑flex = −0.46, γCABS‑flex = −0.31,
and γNOLB = −0.14 for rp and γUNRES‑flex = −0.06, γUNRES‑DSSP‑flex
= −0.21, γCABS‑flex = −0.21, and γNOLB = 0.13 for rs. It can also
be noted that the maxima of the distributions for CABS-flex,
UNRES-DSSP-flex, and UNRES-flex are shifted to the left
compared to those corresponding to NMR structures (as
opposed to the distributions from NOLB). This feature can
result from predicting fluctuations for isolated protein
molecules, while they are subjected to crystal packing in the

Figure 6. The cumulative distribution functions of the average Pearson’s (rp) or Spearman’s (rs) correlation coefficient values between the
fluctuation profiles obtained from the NMR ensembles or X-ray B-factors and those predicted byUNRES-flex (steel-blue line and diamonds),
UNRES-DSSP-flex (green line and squares), CABS-flex (orange line and triangles), and NOLB (blue line and dots) after removing the terminal
protein sections.
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crystal structures. As mentioned, NOLB has an advantage here
because crystal packing could be, in part, accounted for by the
harmonic Hamiltonian dependent on contact distances.
Because the distributions of rp and rs are multimodal or

skewed, the quality of prediction methods cannot be assessed
based on the comparison of averages (carried out in Section
3.2.1) alone. Therefore, we constructed the cumulative
distribution plots shown in Figure 6A−D. The value of the
cumulative distribution at x is defined as the number of
structures such that the respective correlation coefficient does
not exceed x. As can be seen from Figure 6A,B, for NMR
structures, the curves corresponding to NOLB are significantly
shifted to the left from those corresponding to the other three
methods, this indicating that NOLB is not the preferable
method for predicting the fluctuations of NMR structures
(and, thereby, single protein molecules in solution). This
conclusion fully conforms with that drawn in Section 3.2.1. For
the other three methods, the rank is UNRES-flex < UNRES-
DSSP-flex < CABS-flex, suggesting that CABS-flex performs
best (however, as assessed in Section 3.2.1, the difference is
statistically significant only between UNRES-flex and CABS-
flex; Figure 4). Thus, CABS-flex and UNRES-DSSP-flex seem
to be preferable to predict the fluctuation profiles of proteins in
solution.
For the X-ray structures, the curves corresponding to NOLB

are shifted to the right with respect to those corresponding to
the other three methods, the difference being, however, small.
This observation conforms with the respective conclusion
drawn in Section 3.2.1 because NOLB was found statistically
better only for X-ray structures of α + β proteins (Figure 4C).
On the other hand, it can be seen from Figure 6 that the lowest
correlation coefficients from NOLB start from about 0.2 for X-
ray structures, while they start from 0 for the other three
methods. This observation suggests that NOLB should be the
method of choice for X-ray structures. Further to this
conclusion, NOLB is probably the best method to predict
the fluctuation profiles of proteins in a crowded environment.
3.2.3. Dependence of Correlation Coefficients on Protein

Size. To check whether the quality of protein flexibility
prediction depends on chain length, we plotted the average
values of rp and rs in the number of residues in a chain for
truncated structures for each of the four methods, separately
for the NMR and the X-ray structures. These plots are shown
in Figure S3 of the Supporting Information. The chain lengths
ranged from 20 to 117 residues for the NMR and from 30 to
532 residues for X-ray structures (after truncation). As can be
seen from the figure, no correlation is exhibited between chain
length and rp or rs. However, for all methods except UNRES-
flex, the correlation coefficients are less dispersed and
concentrated around 0.5 for chains exceeding 200 residues,
this feature being the most pronounced for CABS-flex.

3.3. Detailed Analysis of RMSFN Profiles for
Representative Proteins. To illustrate the differences
between the performance of the four methods for fluctuation
prediction, we selected three representative cases: Gag
polyprotein of the Rous sarcoma virus (PDB: 1A6S, an all-α,
the NMR structure),50 vitamin D-dependent calcium-binding
protein from the bovine intestine (PDB: 3ICB, an all-α, the X-
ray structure),51 and the third SH3 domain of the Cin85
adapter protein (PDB: 2K9G, an all-β, the NMR structure).
The structures of these three proteins are shown in Figure 1B−
D, and their fluctuation profiles are shown in Figure 7A−C.

Figure 7. Experimental (X-ray or NMR; red lines) and calculated by
UNRES-flex (light blue line), UNRES-DSSP-flex (green line), and
CABS-FLEX (yellow line). NOLB (blue line) RMSFN profiles for the
truncated structures of proteins with PDB IDs 1A6S, 3ICB, and 2K9G

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00754
J. Chem. Theory Comput. 2024, 20, 7667−7681

7677

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00754/suppl_file/ct4c00754_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00754?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00754?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The first example (Figure 7A) is the NMR structure of an α-
helical protein. Its RMSFN profile calculated with NOLB
differs considerably from that determined from the NMR
ensemble. The respective rp and rs correlation coefficients are
low, which places this case among those of the left lobe in the
NOLB rp distribution of the left upper panel of Figure 5C,D.
The reason for this is the presence of a RMSFN maximum in
the N-terminal part of the NOLB profile, which is not present
in that from the NMR ensemble. Conversely, the maximum
present in the C-terminal section of the NMR RMSFMN
profile is absent in the NOLB profile. The profiles from
UNRES-flex, UNRES-DSSP-flex, and CABS-flex are confluent
with that from NMR ensemble, the CABS-flex profile being in
better agreement with the NMR ensemble profile owing to
more pronounced differences between the maxima and the
background.
The second example (Figure 7B) is the X-ray structure of an

α-helical protein. In this case, the NOLB RMSFN profile
conforms better with that calculated from the B-factors, which
is reflected in the correlation coefficients. The reason for this is
that UNRES-flex, UNRES-DSSP-flex, and CABS-flex predict
increased fluctuations around residue 18, where the B-factors
are low. Additionally, CABS-flex exaggerates the extent of
fluctuations in the middle of the chain.
Generally, CABS-flex has a tendency to predict focused

fluctuation regions, while these regions are predicted as diffuse
by UNRES-flex and UNRES-DSSP-flex. In most cases, this
feature of CABS-flex is beneficial, but it can also lead to poor
predictions. An example is shown in Figure 7C, in which the
RMSFN profiles of a β-protein, NMR structure, are shown.
CABS-flex exaggerated the fluctuations in the middle of the
chain, which has resulted in very poor correlation between the
respective RMSFN profiles and those from the NMR
ensemble, as opposed to the other methods.

4. DISCUSSION AND CONCLUSIONS
UNRES, CABS-flex, and NOLB are methods used for
fluctuations prediction and analysis, but they differ in their
approaches to predicting protein flexibility. UNRES25 is a
physics-based method, and CABS-flex uses a knowledge-based
coarse-grained force field, while NOLB is based on the elastic
network concept. CABS-flex34 is designed to predict protein
flexibility and understand their function. In contrast, NOLB17

is designed to predict the motions by normal modes
corresponding to the biologically relevant motions and the
most likely flexibility of a protein based on experimental data.

In this work, we evaluated the ability of each of these four
methods to predict protein fluctuations depending on the
source of a structure (X-ray or NMR ensemble) and secondary
structure class (α, β, or α + β).
Because we found that, particularly for NMR structures, the

fluctuation profiles determined for the whole structures are
dominated by outstandingly high fluctuations at the ends (as
illustrated in Figure 2A), which are usually biologically
irrelevant, the fluctuation profile analysis was carried out for
the truncated structure, from which these terminal regions
were removed. For X-ray structures, the experimental
fluctuation profiles were calculated from the B-factors (eq 6),
while for the NMR structures, the profiles were calculated from
NMR ensembles deposited in the PDB (eq 5). Except for
NOLB, which is an analytical method, the predicted
fluctuation profiles were calculated as averages over three
independent MC (CABS-flex) or MD (UNRES-flex and
UNRES-DSSP-flex) simulations. Since the primary concern is
the similarity of the predicted and experimental fluctuation
profiles irrespective of the fluctuation magnitude, we selected
the Pearson (rp; eq 7) and Spearman (rs; eq 8) correlation
coefficients as descriptors.
For the X-ray structures, NOLB gives the best fluctuation

predictions, this feature being clearly manifested in the
respective cumulative distribution plots of the rp and rs
coefficients in Figure 6C,D, in which the curves corresponding
to NOLB are most shifted to the right. The difference in both
correlation coefficients from NOLB is statistically significant
with respect to those from UNRES-flex and UNRES-DSSP-flex
for α + β proteins and in the Pearson coefficient from NOLB
with respect to that from UNRES-flex irrespective of the
secondary structure. This feature of NOLB probably results
from its elastic network basis because the freedom of a protein
molecule in a crystal is effectively confined to the
neighborhood of a local energy minimum. Moreover, the
simple elastic network Hamiltonian with the force constant
dependent on distance is a good approximation to the energy
surface around the structure because of tight crystal packing.
The other three methods assume that a protein molecule (or
oligomer) is in solution and, consequently, is not restricted in
motion. This situation corresponds to the conditions of NMR
experiments. It should also be noted that the variant of the
UNRES force field used in this work was calibrated with the
ensembles of protein structures determined by NMR.25

For NMR structures, the ranking of the magnitude of the
correlation coefficients on average is CABS-flex > UNRES-
DSSP-flex > UNRES-flex > NOLB, as seen from the respective
cumulative distribution plots in Figure 6A,B, the difference
between NOLB and the other three methods being statistically
significant (Figure 4C,D). As mentioned, this difference
probably results from the fact that proteins in solution are
not confined and, consequently, the simple elastic network
Hamiltonian that does not differentiate the character of
interactions (which depend on residue hydrophobicity in the
first place). The difference of the correlation coefficients from
CABS-flex and those from UNRES-flex is statistically
significant for α + β proteins but not for proteins irrespective
of the structural class (Figure 4A). The difference between
CABS-flex and UNRES-DSSP-flex is not statistically significant
except for that of the rp coefficient and α + β proteins, which
exhibits weak statistical significance (Figure 4A). It should be
noted that CABS-flex and UNRES-DSSP-flex implement
restraints on the geometry of the elements with a well-defined

Figure 7. continued

proteins. The profiles from UNRES-flex, UNRES-DSSP-flex, and
CABS-flex averaged over three independent simulations. The
secondary structure is indicated below the graphs corresponding to
each of the proteins with a wave-shaped green line (α-helix) or a
straight orange line (β-strand). Frames have been put around the
regions in which different extents of fluctuations are predicted by
different methods (see the text). The Pearson and Spearman
coefficients for the respective proteins are as follows: 1A6S: rp =
0.34 and rs = 0.52 (UNRES-flex), rp = 0.56 and rs = 0.53 (UNRES-
DSSP-flex), rp = 0.81 and rs = 0.75 (CABS-flex), rp = −0.08 and rs =
0.17 (NOLB); 3ICB: (UNRES-flex: rp = 0.13 and rs = 0.15, UNRES-
DSSP-flex: rp = 0.30 and rs = 0.31, CABS-flex: rp = 0.19 and rs = 0.33
and NOLB: rp = 0.56 and rs = 0.68), and 2K9G: (UNRES-flex: rp =
0.80 and rs = 0.78, UNRES-DSSP-flex: rp = 0.61 and rs = 0.61, CABS-
flex: rp = 0.52 and rs = 0.71 and NOLB: rp = 0.31 and rs = 0.39).
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secondary structure; consequently, it can be concluded that
including such restraints is beneficial with regard to fluctuation
prediction. The better performance of CABS-flex could result
from less aggressive coarse graining of CABS (four centers)
compared to UNRES (two centers). Even though only Cα
atoms are considered in quantifying fluctuations, the presence
of a greater number of centers indirectly influences the results.
Moreover, the representation of interactions becomes more
accurate (at the expense of increased computation cost) as
more centers are included in a model. The smaller number of
interaction sites in UNRES is compensated by a more refined
representation of interactions in UNRES, which included
nonspherical side chain−side chain potentials, more elaborate
representation of local interactions, and the presence of more
kinds of terms that couple backbone local and backbone
hydrogen bonding interactions.25

In summary, the best agreement of NOLB fluctuation
profiles with the X-ray B-factors suggests that it is the method
of choice for predicting the fluctuation profiles of proteins in a
crowded environment, both with regard to accuracy and to
speed. Conversely, for proteins in solution, which are best
represented by NMR ensembles, it is advisable to run both
CABS-flex and UNRES-DSSP-flex. CABS-flex gives overall
better agreement between the calculated and experimental
fluctuation profiles but happens to predict high fluctuations in
regions where they are low (see Figure 7C as an example). On
the other hand, UNRES has been parallelized,22 including the
application in the UNRES server that runs UNRES-DSSP-
flex.22,32 In single-processor mode, the recently optimized
UNRES code, which is implemented in the current version of
the UNRES server,31 appears to be faster than CABS. For the
71-residue 1VIG protein, the computations with CABS-flex
required 169 wall-clock seconds, as compared to 95 wall-clock
seconds for UNRES-DSSP-flex (both programs were run on
the same Intel i5-4570, 3.2 GHz node); with 4 cores, the
UNRES-DSSP-flex required 45 wall-clock seconds. It should
be noted that 200,000 conformations are generated by
UNRES-flex and UNRES-DSSP-flex, as opposed to the
100,000 conformations for CABS-flex. Therefore, UNRES-
DSSP-flex seems to be preferable for bigger proteins (for which
the computations take full advantage of parallelization)
because of speed. Details of the performance and scalability
of the optimized parallel implementation of UNRES, in
comparison with the coarse-grained (MARTINI53 imple-
mented in GROMACS55) and all-atom approaches
(AMBER54 and AMBER implemented in GROMACS55),
can be found in our recent work.22
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80-308 Gdanśk, Poland; orcid.org/0000-0002-2426-
3644

C. Czaplewski − Faculty of Chemistry, University of Gdansk,
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