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Abstract: 

Anionic Pt(0) and Pd(0) complexes with unprecedented trigonal bipyramidal geometry have been prepared 

and thoroughly characterized by experimental and computational means. Coordination of a -acceptor 

borane moiety supported by three phosphine buttresses enhances the electrophilicity of M(0) and triggers the 

binding of soft anions (X = Br, I, CN). 

Anionic [LnM(0)X]– complexes of the group 10 metals are considered as key species in various cross-coupling reactions.1 

Such ate complexes are however extremely challenging to study experimentally and only a few species have been isolated and 

unambiguously authenticated so far.2,3 In this area, the use of ambiphilic ligands4 has recently emerged as a powerful strategy 

for stabilizing such electron-rich complexes, the coordination of the -acceptor Z-type moiety enabling to withdraw electron-

density from the metal.3 Accordingly, we have recently leveraged a diphosphine-borane ligand to prepare and structurally 

characterize the first tetracoordinate anionic Pt(0) complexes (PhDPB)PtX– (Figure 1a).3e Soon after, Greb and co-workers 

extended the approach to a related Pd(0) complex using a bis(amidophenolato)silane as Z-type ligand (Figure 1b).3f 

 

Figure 1. Isolable square-planar Pt(0) (a) / Pd(0) (b) anions and trigonal bipyramidal Pd(0) / Pt(0) anions (c). 

 

Of note, these anionic tetracoordinate Pt(0) and Pd(0) complexes were found to adopt square-planar geometry contrasting 

with the nominal tetrahedral geometry of M(0)L4 complexes and square-planar geometry of M(II)L2X2 complexes (Figure 2). 

Bonding analyses suggest that the non-classical square-planar geometry of the anionic [M(0)L2ZX]‒ complexes results from the 

stabilization of an in-plane occupied dx2-y2 orbital via M→Z (Z = B, Si) dative interaction. 
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With the aim to further expand the variety of anionic Pt(0) and Pd(0) complexes, we became interested in pentacoordinate 

species deriving from triphosphine-boranes. Such tetradentate ligands RTPB (R = i-Pr, Ph) have proved versatile and powerful 

towards group 8-11 metals.4,5 The ensuing cage complexes have been extensively studied, mainly neutral and cationic species, 

scarcely anionic M(0) ones.6 

Here we report the synthesis and structurally characterization of anionic Pt(0) and Pd(0) complexes 1X and 2 (Figure 1c). 

The Z-type borane moiety enhances the electrophilicity of the metal center via M→B dative interaction and triggers the binding 

of soft anions to the metal. The [M(0)L3ZX]‒ complexes adopt trigonal bipyramidal (TBP) structures. This geometry is typical 

for pentacoordinate Pt(II) and Pd(II) complexes, but very rare for Pt(0) and Pd(0), and it has only been observed in neutral 

species.7 Hill and co-workers reported the first example in 2004 upon reaction of a trispyrazolyl borate with Pt.7a 

 

Figure 2. Classical / non-classical geometries for Pt(0) and Pt(II) complexes. 

 

As triphosphine-borane, we chose the PhTPB ligand4,5 whose phosphine arms are moderately -donating and sterically 

encumbering. Access to the targeted anionic Pt(0) complexes was envisioned by coordinating anions to the neutral precursor 

[(PhTPB)Pt] (3). The dichloro Pt(II) complex [(DPB)PtCl2] (4) was first synthesized by reacting PhTPB with (COD)PtCl2 

(Scheme 1).8 X-ray diffraction (XRD) analysis confirmed the structure of 4 (Figure 3a) with octahedral geometry, short Pt‒B 

distance [2.270(3) Å, comparable to the sum of the covalent radii 2.20 Å]9 and noticeably elongated Pt–Cl bond trans to the 

borane ligand [2.6820(7) Å versus 2.3829(7) Å for the other Pt‒Cl bond].4,10 The desired 16-electron Pt(0) complex 3 was then 

obtained by reduction of 4 with Li[BEt3H]. It adopts trigonal pyramidal geometry (Figure 3b) with the borane moiety in apical 

position, and slightly shorter Pt‒B distance (2.252(5) Å) than 4.8 It is worth nothing that DFT calculations suggest the presence 

of an accessible coordination site at Pt. The LUMO of 3 is mainly distributed over Pt trans to the borane ligand with significant 

6p-orbital contribution11 (Figure S8). It is lowered in energy by 0.75 eV when compared to that of the related boron-free trigonal 

Pt(0) complex Pt(PPh3)3 and by 0.19 eV with respect to [(iPrTPB)Pt].8 Consistently, some previous works have shown that the 

coordination of Lewis acids to low-valent metals may promote the trans-binding of L-type ligands.12 
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Scheme 1. Synthesis of the triphosphine-borane Pt and Pd complexes 1X-5. See Figure S15 for pictures showing the colors of 

solutions of complexes 1X-5.8 
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Figure 3. Molecular structures of the Pt and Pd complexes 4 (a), 3 (b), 1Br. (c) and 2 (d). Thermal ellipsoids are shown at 40% 

probability. For clarity, the [K(18-C-6)]+ cation and hydrogen atoms are omitted. 

 

Table 1. Key geometric data for the triphosphine-borane Pt and Pd complexes 1X-5 (bond lengths in Å, bond angles in º). 

Complex M‒B M‒X B‒M‒X ∑(PMP) 

4 2.270(3) 2.3829(7) 

2.6820(7) 

92.92(9) 

168.36(9) 

353.24(5) 

3 2.252(5) ‒ ‒ 355.42(6) 

1Br 2.257(4) 2.7037(4) 177.39(11) 356.16(5) 

1I 2.243(5) 2.8565(4) 176.85(14) 355.04(7) 

1CN 2.297(3) 2.101(3) 178.75(10) 351.19(4) 

5 2.334(11) 2.422(3) 176.2(3) 348.21(11) 

2 2.301(6) 2.123(6) 176.5(2) 351.74(9) 

 

 

 
The accessibility of the vacant site at Pt was confirmed by reacting 3 with PPh3, affording the corresponding PPh3 complex 

5 (the XRD structure is shown in Figure S7).8 Then, the synthesis of the corresponding chloro platinate complex was attempted 

by treating 3 with KCl in the presence of 18-crown-6 or [2.2.2]cryptand as for the corresponding diphosphine-borane Pt 

complex. However, no reaction occurred at ambient temperature and heating led to an intractable mixture.13 This is contrast 

with the previous observation that [(PhDPB)Pt] readily reacted with KCl under similar conditions to afford the anionic Pt(0) 

complex [(PhDPB)PtCl][K(18-crown-6)].3e Thus, a third phosphine buttress to Pt prevents Cl‒ binding, which is probably due to 

the metal center being more electron-rich and sterically hindered in 3 than in [(PhDPB)Pt].3e Next, the addition of softer Br‒ was 

investigated by employing KBr instead of KCl. Gratifyingly, the anionic bromo complex 1Br was thereby obtained. However, 

Pt‒Br binding proved labile. Complex 1Br gradually decomposed in the absence of KBr and 18-crown-6 to afford an intractable 

(a)                                                                                 

(b) 

(c)                                                              (d) 
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mixture including some neutral complex 3. Fortunately, single crystals suitable for XRD analysis (Figure 3c) could nevertheless 

be obtained by slow diffusion of n-hexane into a THF solution of 3, KBr and 18-crown-6.8 Accordingly, complex 1Br adopts 

trigonal bipyramidal geometry with the B and Br atoms in apical positions (Br‒Pt‒B 177.39(11)°), and the three P atoms in the 

equatorial plane (∑(PPtP) = 356.16(5)°). The iodo analogue 1I was then prepared similarly. It proved much more stable, no sign 

of decomposition being observed over a week in acetone solution in this case.14 The nature of the halide has thus a strong impact. 

The softer it is, the more accessible and stable is the anionic [Ph(TPB)PtX]– complex.15 To complete the series, another soft 

anion, CN‒, was employed. The corresponding anionic cyanide complex 1CN was obtained by reacting 3 with KCN in the 

presence of 18-crown-6. It proved also stable and could be isolated in pure form.16 The molecular structures of 1I and 1CN were 

confirmed by XRD analyses (Figures S1-2).8 The CN ligand in 1CN is coordinated to the K atom. Its IR stretching (2100 cm‒1) 

is comparable to that of [(DPB)Pt(CN)]‒ (2089-2091 cm‒1)3e whose X-ray diffraction analysis showed the absence of CN‒K 

binding. Excepted the Pt–X bond length, no significant geometric difference was observed in the series 1Br, 1I and 1CN (Table 

1). In particular, the Pt‒B distance varies very little with the X co-ligand (2.243-2.297 Å). The distances are also comparable to 

those of 3 (2.252(5) Å) and 4 (2.270(3) Å), suggesting that significant Pt→B interactions exist even in these neutral Pt systems. 

On the other hand, it is in all cases shorter than that found in the isoelectronic neutral Au(I) complex [(iPrTPB)AuCl]17 (2.318(8) 

Å) despite the same covalent radii of the two metals (1.36 Å).9  

Of note, all the anionic complexes 1X exhibit a well-resolved 31P NMR signal at  ~ 30 ppm with 195Pt satellite peaks.8 The 

corresponding 1JPt-P coupling constants (3666-3879 Hz) largely exceed those of referential Pt(II) complexes (2634.5 Hz for 

trans-(Ph3P)2PtCl2
18a). They actually fall in the lower range of those reported for neutral and anionic Pt(0) complexes (3829 Hz 

for Pt(PPh3)4, 4438 Hz for Pt(PPh3)3,
18b 3874Hz for [(PCP)Pt][Na], 4068-4296 Hz for [(DPB)Pt(X)] [K(18C6)]4e). 

The preparation of a related anionic Pd(0) complex was then pursued. Attempts to access the neutral precursor [(PhTPB)Pd] 

analogous to 3 failed. The slightly larger size of Pd versus Pt (covalent radii of 1.39 versus 1.36 Å)9 may make kinetic 

stabilization by the Ph groups at P less effective. We thus turned to in situ reactions between PhTPB, Pd(0) precursors and anions. 

Gratifyingly, complex 2, the Pd analog of 1CN, could be obtained thereby using Pd(dba)2, KCN and [2.2.2]cryptand. XRD 

analysis revealed close structural analogy between the two complexes (Fig. 3d).8 

The bonding situation in complexes 1X and 2 was then analysed to confirm they retain M(0) character despite the M→B 

interaction.5 Assigning the electronic configuration of metals engaged in M→Z interactions is not trivial and it is often based 

on theoretical data. Intrinsic Bond Orbital (IBO) analyses showed the presence of five doubly-occupied d(M)-centered orbitals 

in all cases (Figures S10-13).8 In molecular orbital analyses, the d(z2)-symmetry orbital shows in-phase combination with the 

2p(z) orbital at boron, in line with M→B interaction (Figure 4). It is found as the HOMO–2 (1Br, 1CN, and 2) or HOMO–4 (1I). 

The corresponding Natural Localized Molecular Orbital (NLMO) is mainly centered on the metal (57-75%), while boron 

contributes to only 22-32 % (Table S8). The d10 electronic configuration of the Pt complexes 1X was further corroborated by X-

ray photoelectron spectroscopy (XPS),8 an experimental technique enabling direct analysis of the metal electronic structure. 

Accordingly, the bonding energy of the Pt 4f7/2 orbital found for the anionic Pt complexes 1X (71.5 eV for 1Br, 71.3 eV for 1I, 

71.9 eV for 1CN) was very similar to that of the neutral precursor [(PhTPB)Pt] (3) (71.8 eV) and referential Pt(0) complexes 

(71.6 eV for Pt(PPh3)4 and Pt(PPh3)3,
19 71.5-71.7 eV for [(DPB)PtX][K(18-C-6)]4e). For comparison, a much higher value was 

found for the octahedral Pt(II) complex 4 (73.6 eV), in line with referential Pt(II) complexes (73.3 eV for cis-(Ph3P)2PtCl2
19a 

and 72.8eV for (Et3P)2Pt(H)(Cl)19b). 

 

 
HOMO-2 (-4.64 eV) 

 
HOMO-2 (-4.50 eV) 

 

Figure 4. Molecular orbitals accounting for the M→B interactions in the anionic Pt(0) complex 1CN (a) and Pd(0) complex 2 

(b). 
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Figure 5. XPS spectra: neutral and anionic Pt(0) complexes 3 (a) and 1CN (b) as well as neutral Pt(II) complex 4 (c). 

In conclusion, anionic Pt(0) and Pd(0) complexes adopting trigonal bipyramidal geometry were prepared and structurally 

authenticated for the first time. The neutral triphosphine-borane complex [(PhTPB)Pt] (3) proved to be a prime precursor. The  

accepting properties of the apical borane ligand enhances the electrophilicity of the Pt(0) center. Direct binding of soft anions 

is possible and provides straightforward access to anionic Pt(0) complexes [Ph(TPB)PtX]– complex 1X (X = Br, I, CN). The 

analogous anionic Pd(0) complex [(PhTPB)Pd(CN)]– complex 2 was prepared by direct complexation of Pd(dba)2 with the 

triphosphine-borane ligand PhTPB ligand in the presence of KCN. The d10 electronic configuration and M(0) oxidation state of 

the metal have been unequivocally ascertained by NMR spectroscopy, DFT calculations and XPS analyses. Future work will 

aim to apply further Z-type ligands to study low-valent metal complexes, in particular highly reduced species which may be 

stabilized thanks to M→Z interactions. 
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