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Damiano Franzò(1), Adrien Merlini(2), Clément Henry(2), and Francesco P. Andriulli(1)

(1) Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
(2) Microwave Department, IMT Atlantique, Brest, France

Abstract—In this work, we present a fast direct solver for
integral equations-based electromagnetic scattering that is com-
patible with spatial discretization of arbitrary order. The pro-
posed approach leverages a suitably preconditioned combined
field formulation and involves the regularization of the elliptic
spectrum through the extraction of a specifically chosen equiv-
alent circulant problem. The procedure yields a compressed
representation of the inverse system matrix in the form of a
matrix amenable to fast inversion and a single-skeleton low-rank
perturbation. In addition to proposing the fast direct solution
framework, this contribution presents the algorithms and ex-
plores the intricacies that enable the high-order discretization of
the underlying integral equations and is supported by numerical
results illustrating its effectiveness.

I. INTRODUCTION

Integral equation (IE) methods are widely used to solve
radiation and scattering problems across a wide range of
frequencies and common equations are the electric, magnetic,
and combined field integral equations (EFIE, MFIE, and CFIE
respectively). One of their attractive features is that they only
require the discretization of the boundary of the scatterer.
Nonetheless, the matrices that result from the discretization
procedure are dense and ill-conditioned in several regimes.
Solving classical IE schemes typically has a computational
complexity greater than quadratic for high frequency regimes.
One way to lower this computational complexity are fast
matrix-vector products (MVP) used with iterative solvers for
efficient solutions. Nevertheless, this approach becomes less
attractive when the matrix systems need to be solved for
numerous right-hand sides (RHS), as is required, for instance,
in computing backscattering cross-sections. To overcome this,
different fast-direct solver (FDS) methods have been imple-
mented, such as [3] or references therein. Recently, a new FDS
based on a preconditioned combined field integral equation
(CFIE) and that enhances compressibility of the system matrix
by extracting a circulant matrix, has been presented [1]. The
overall scheme yields a single skeleton form to be stored
for the whole extracted part, such that accurate solutions
for multiple RHSs can be obtained efficiently. This method
however, did not allow for high order discretization, thereby
limiting its ability to harness their faster convergence rates.

Our work extends the previously introduced fast direct
solver scheme [1], expanding its capabilities to include high-
order functions. The new scheme yields a representation of
the inverse system matrix in the form of a matrix amenable
to fast inversion and a single-skeleton low-rank perturbation.
The new algorithms and corresponding theoretical framework

are presented in this contribution and are accompanied by
numerical results, showing the effectiveness of the high-order
scheme.

II. BACKGROUND AND NOTATION

Consider a perfectly electrically conducting (PEC) object
delimited by a 2-dimensional convex contour γ, excitated by
a TE time-harmonic incident electromagnetic field (Einc,Hinc)
of angular frequency ω. This object is situated within a
medium characterized by a permittivity ε, permeability µ,
impedance η =

√
µ/ε, and wavenumber k = ω

√
µε. The

CFIE that establishes the relationship between the induced
tangential current density j on the surface γ and the incident
electric and magnetic fields is
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0 indicates the Hankel function of the first kind. The

boundary elements used to expand the current density jt are
scalar piecewise polynomials λp

i , forming a complete space
of order p, in which cell-to-cell continuity is appropriately
enforced. After Galerkin testing, the discrete system reads
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III. METHODS

The matrix system (2) can be preconditioned with a mod-
ified version of the preconditioner proposed in [2], which
results in the following discrete system

Cj = − ik
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with
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where k̃ := k + 0.4ik1/3a−2/3, and a is a suitable average of
the radii of curvature along γ.



The FDS scheme is based on the separation of the system
matrix C into a main part for which some fast algebra arith-
metic is available, and a compressible rank-deficient reminder.
The main part arises from the discretization of an equivalent
circular problem generating a matrix Cc that entails the com-
putation of the same operators appearing in (4) on a circular
curve γc of the same perimeter as γ. Finally, Ce := C − Cc

represents the remaining extracted part that exhibits a rank
deficiency.

Because Cc is built out of products and linear combination
of matrices with structured circularity, generically designated
as Oc in the following, it can be stored an multiplied to a vec-
tor in quasi-linear complexity. In particular, when discretized
with order one functions, Oc is circulant, which enables fast
matrix operations through the fast Fourier transform (FFT).
However, for higher basis order p, these matrices are no longer
circulant. To recover fast manipulations of Oc, we organize the
matrix elements into a matrix composed of circulant blocks

Oc =
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. . .
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c Opp
c

 , (5)

where each block Oij
c is internally circulant. Despite not being

exactly circulant, with suitable generalization, this structure
can be exploited to enable fast matrix operations via FFT
operations performed at a block level. The main idea stems
from the possibility to diagonalize Oc in quasi linear time
with the following expression
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where Bij ∈ Cp×p, K(p,n) is the commutation matrix, n is the
number of vertices, and F̃p = Ip⊗F, with F being the discrete
Fourier transform matrix, ⊗ the Kronecker product and Ip an
identity matrix with p diagonal elements. The matrix F̃p can be
implicitly manipulated using the FFT. Consequently, by noting
also that K(p,n) benefits from permutation matrix properties
(such as K−1

(p,n) = KT
(p,n)).

To finalize the scheme, the extracted part is compressed
into a non-hierarchical low-rank form Ce ≈ UVT , and the
inversion of C is performed through the Woodbury identity

C−1 = C−1
c − C−1

c U
(
I+ VTC−1

c U
)−1

VTC−1
c , (7)

which can efficiently computed by exploiting the low-rank
form and the fast algebra operations described above.

IV. NUMERICAL RESULTS

To validate the new direct solution scheme, it is applied
on an ellipse of with a semi-major axis a = cosh(1)
and a semi-minor axis b = sinh(1). The numerical results
reported in Fig. 1 and Fig. 2 show (i) for an appropriate
compression threshold ε the proposed scheme delivers high
accuracy solution and (ii) that increasing the order p does not
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Fig. 1: Current accuracy for k = 40 m−1, where ε is the
compression threshold set on Ce ≈ UVT.
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Fig. 2: ε-rank of Ce ≈ UVT for ε = 10−2 and k = 40 m−1.

significantly impact the ε-rank (and compressibility) of the
extracted part This shows that our FDS scheme is capable
of preserving the better accuracies of high order schemes,
while maintaining a reduced complexity, and simplicity of the
compressed representation.
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