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Abstract: 

Magnetic particles dispersed among living cells and subjected to a variable magnetic field can 

exert mechanical stimulation on the cells, inducing physiological responses. Studies have 

shown that this low-frequency mechanical stimulation (between 2 and 20Hz) can induce cell 

death in cancer cells and trigger insulin secretion from pancreatic cells. In the field of neurology, 

on-going studies are also focused on the influence of magneto-mechanical stimulation against 

neurodegenerative diseases. A key advantage of this magneto-mechanical approach lies in the 

ability to adjust mechanical stress on cells remotely, via the applied magnetic field, producing 

differentiated effects depending on the cell type. This innovative concept opens promising 

avenues in mechanobiology and related biomedical applications, particularly for treating 

diseases such as cancer, diabetes, and against neurodegeneration.  
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Introduction: 

Magnetic nanoparticles (MNPs) are gaining increasing interest in the fields of diagnostics and 

therapy [1-6]. They are utilized in various medical imaging techniques, particularly as contrast 

agent in magnetic resonance imaging (MRI), offering enhanced sensitivity and improved spatial 

resolution compared to traditional contrast agents [7]. They are also used as tracers for tissue 

or tumor monitoring in Magnetic Particles Imaging (MPI) [8-10]. They enable early detection 

of diseases such as cancer, cardiovascular diseases, and neurological disorders. Regarding 

therapies, developments are underway in hyperthermia, a therapeutic approach against certain 

cancers involving the heating of biocompatible magnetic nanoparticles dispersed among cancer 

cells under the influence of a high-frequency alternating magnetic field (~100kHz). The 

resulting heating of the cells close to the particles leads to reduced resistance to chemotherapy 

when the cell temperature reaches 43°C and cell death when the temperature reaches ~45°C 

[11-14]. Current research aims to increase the heating efficiency of the particles [15] and 

improve targeting of cancer cells to avoid affecting healthy tissues. Another application of 

magnetic nanoparticles in therapy is targeted drug delivery, particularly in the context of 

chemotherapy [16,17]. The goal is to reduce the side effects of chemotherapy by reducing the 

dose of injected toxic drug in the bloodstream. This can be achieved using dual-functionalized 

magnetic nanoparticles designed to recognize cancer cells and to transport the toxic treatment 

molecules. Once the particles reach their destination, the local release of these toxic molecules 

can be induced directly at the tumor site through the heating of the magnetic particles under an 

alternating field [18].  

The most commonly used nanoparticles for the aforementioned applications are iron oxide 

nanoparticles (mostly magnetite, Fe3O4), referred to as SPIONs (Superparamagnetic Iron Oxide 

Nanoparticles). These particles, ranging in size from a few nanometers to several tens of 

nanometers, are biocompatible and approved by drug agencies for use in the human body [7]. 

 

Magneto-mechanical stimulation of cells: 

More recently (since around 2010), other therapeutic approaches against cancer, diabetes, and 

for neuroregeneration have emerged, based on the mechanical stimulation of cells under the 

influence of low-frequency vibration (2-20Hz) of magnetic particles dispersed among the cells 
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[19-29]. A major advantage of magnetism in these approaches is the ability to non-invasively 

control the intensity of the mechanical stress exerted on cells, by adjusting the characteristics 

of the applied magnetic field (frequency, amplitude, direction). Tuning the level of mechanical 

stress allows triggering a range of cellular responses, differentiated based on the nature of the 

cells [24]. 

The SPIONs are not the most suitable for this magneto-mechanical stimulation (MMS) of cells 

due to the fact that, given their nanometric size, they can only generate very low forces in the 

range of tens of fN  using magnetic fields easily accessible in laboratories or hospitals (field 

range of 10mT to 1T). Figure 1 compares the forces involved in various biological processes 

with the forces that can be generated by two types of magnetic particles: the SPIONs and 

anisotropic magnetic vortex microdiscs which were used in earlier studies of MMS of cells 

[19,20]. The forces involved in biological processes are in the range of picoNewtons (pN) to 

hundreds of pN [26,27]. The forces generated by superparamagnetic iron oxide nanoparticles 

(SPIONs) are typically in the range of tens or hundreds of femtonewtons. To achieve higher 

forces, larger and magnetically anisotropic particles are preferable. Such particles can be 

actuated by altering the direction of the magnetic field (e.g., using a rotating field), while 

isotropic particles can only be moved by a magnetic field gradient, which diminishes more 

rapidly with distance from the field source than the field itself. A practical method to render a 

magnetic particle anisotropic is to shape it non-spherically, such as in a disc form. Due to 

magnetostatic considerations, the magnetization of the particle tends to remain within its plane. 

Consequently, when a magnetic field is applied perpendicular to this plane, the particle will 

tend to rotate to align its plane with the direction of the field [19,20]. The experiments presented 

in this article were conducted using disc particles with a diameter of 1.3 microns and a thickness 

of 60nm made of permalloy alloy (Ni80Fe20) (see Fig 2a,d,e,f). They are coated with a 10nm 

layer of gold (Au) to make them biocompatible due to gold's chemically inert nature and easy 

to functionalize, for example, to render them fluorescent or to target specific cells. The particles 

are also designed so that their magnetic properties mimic superparamagnetic behavior, meaning 

they have zero magnetization at zero field to prevent aggregation once dispersed in solution or 

in tissues, while being easily polarizable under a magnetic field [31]. This is the case for the 

used NiFe microdiscs (Fig. 2a) that possess a vortex micromagnetic configuration at zero field 

(as shown by micromagnetic simulations in Fig. 2d and by electron holography in Fig. 2e) and 

high polarizability under field (See the hysteresis loop of these microdiscs characteristic of 
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vortex particles -Fig. 2f)” [19,20,32]. Other types of particles can also be used, as illustrated in 

Fig. 2b and 2c such as magnetite particles of much larger sizes than SPIONs. 

Those in Fig. 2b are obtained by mechanical milling of magnetite powder (mechano-synthesis) 

[33]; those in Fig. 2c are produced by chemical synthesis of hematite (Fe2O3) particles, 

subsequently reduced under hydrogen to magnetite [29]. The advantage of these latter 

fabrication techniques is the ability to produce these particles in large volume for future 

biomedical applications, whereas vortex particles, produced by cleanroom technologies 

(lithography, deposition, lift-off), are only produced in small quantities (a few mg per wafer). 

  

Figure 1 : Comparison of the force ranges involved in different biological phenomena [25] and 

those that can be created by SPIONs (Superparamagnetic Iron Oxide Nanoparticles) and 

anisotropic mesoscopic particles, such as magnetic vortex microdiscs. For magneto-

mechanical stimulation of cells, mesoscopic anisotropic particles appear more suitable than 

SPIONs, which generate forces that are too weak due to their nanoscale size. 

Particles based on Magnetic shape-memory Heusler alloys such NiMnGa have also been 

studied for biomedical applications based on caloric or magneto-mechanical effects. It was 

shown for instance that they can promote the adhesion and proliferation of human fibroblasts 

without eliciting any cytotoxic effect [34]. Carbone nanotubes filled with Fe nanoparticles have 

also been used for mechanical nanosurgery of chemoresistant glioblastoma [35]. In all these 

examples, the magnetic particles are magnetically anisotropic enabling an efficient conversion 

of the magnetic torque exerted on the particles magnetization into a mechanical torque exerted 

on the particles’surrounding environment. 
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Figure 2 : Different types of anisotropic particles mimicking superparamagnetism that can be 

used for magneto-mechanical stimulation of cells: a) Permalloy (Ni80Fe20) discs coated with 

Au [19,20]. b) Micron-sized magnetite (Fe3O4) particles obtained by ball-milling of magnetite 

powder [33]. c) Mesoscopic magnetite particles obtained by chemical synthesis exhibiting a 

magnetic vortex configuration [29]. d) Schematic representation of the micromagnetic 

configuration evolution of a magnetic vortex under increasing magnetic field. e) Electron 

holography imaging (credit A. Masseboeuf) of a vortex particle at zero field showing the 

cylindrical magnetization configuration of the particle (zero magnetization at zero field). f) 

Hysteresis cycle of vortex particles (magnetization as a function of applied field) 

In-vitro experiments: 

The non-toxicity of the Au/NiFe/Au microdiscs and magnetite particles was verified on U87 

glioblastoma cells (brain cancer tumor) through various tests, including the WST (Water 

Soluble Tetrazolium) test, which assesses the metabolic activity of cells [36], and the LDH 

(lactate dehydrogenase) test [37], which verifies the integrity of the cell membrane (Fig. 3a and 

3b) [20]. Both tests confirmed the non-toxicity of the magnetic particles up to concentrations 

50 times higher than those used in magneto-mechanical stimulation (MMS) experiments. Not 

only are the magnetic particles non-toxic to the cells, but the U87 cells also show a great affinity 

for these particles, as illustrated in Fig. 3c. In a Petri dish, after 12 hours of cell incubation in 

the presence of the particles, it became evident that the cells had absorbed all encountered 

particles within their exploration zone. Furthermore, in these in-vitro 2D experiments, within 

48 hours, most of the particles had been internalized into the cells despite their micron-sized 

dimensions (Fig.3d) [20]. The uptake of large particles is typically associated with macrophage 
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cells, due to their capacity to perform phagocytosis or macropinocytosis. In contrast, non-

phagocytic cells are generally thought to rely primarily on clathrin- or caveolin-mediated 

mechanisms for the internalization of smaller particles [38,39,40]. The process of 

internalization is complex and influenced by various physicochemical properties of the 

particles, including size, shape, aspect ratio, and surface charge [41,42]. However, the uptake 

of particles as large as 3 µm by non-macrophage cells, through multiple pathways, has also 

been reported [43,44]. 

 

Figure 3 : Non-toxicity of magnetic vortex particles for U87 cancer cells (glioma cells from 

brain cancer) in the absence of applied magnetic field. a) WST-1 test measuring cell metabolic 

activity as a function of magnetic particles concentration. The blue arrow indicates the 

concentration typically used in our experiments. b) LDH test assessing cell membrane integrity. 

Both toxicity tests demonstrate that Au-coated magnetic particles are non-toxic to cells as long 

as the magnetic field is not applied. c) U87 cancer cells were incubated for 24 hours with the 

particles (in black) in cell culture box. It appears that U87 cells exhibit a strong affinity for the 

magnetic particles and absorb them throughout the area explored by the cells within 24 hours. 

d) In these in-vitro experiments, within 48 hours, the particles are internalized by the cells. 
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Once the magnetic particles come in close proximity with the cancer cells, or after their 

internalization, a low-frequency rotating magnetic field (typically between 2 and 20Hz, 

amplitude 400mT, exposure duration 30-45 minutes in these experiments) is applied to the cell 

culture using a system of rotating permanent magnets (Halbach cylinder). This vibrates the 

magnetic particles, which, in turn, mechanically stimulate the cells. The effect of this magnetic 

stimulation on U87 cancer cells is dramatic, as illustrated in Figure 4. Over 80% of the cancer 

cells are destroyed by the MMS (Fig. 4d, green bars). Moreover, it appears that the surviving 

cells become nearly spherical (Fig. 4c), indicating a profound alteration of their cytoskeleton. 

In addition, the surviving cells cease to divide for at least 2 days after treatment (see green bars 

in Fig.4d at times 0, 24h, 48h), while non-stimulated cells proliferate normally (Fig. 4a and blue 

bars in Fig. 4d; Fig. 4b and red bars in Fig. 4d). Similar results were obtained using magnetite 

particles prepared by mechanical milling, as well as on different types of cancer cells 

(glioblastoma, kidney cancer, melanoma) [24] 

 

Figure 4 : In-vitro tests of MMS on U87 glioma cells (brain cancer). a) Control sample: cells 

alone; b) Control sample: cells + magnetic particles; c) Sample: cells + magnetic particles 

(100g/ml) + alternating magnetic field (20Hz, 400mT, 45min); d) Evolution of the number of 

viable cells, immediately after magneto-mechanical treatment and at 24h, 48h post-treatment: 

blue bars=cells alone control (a)); red bars=cells + particles (b)); green bars= cells + 

particles + rotating magnetic field (c)). Note that control cells continue to proliferate (cell 

count increases at 24h and 48h) while magnetomechanical treatment halts proliferation for at 

least 48h. 
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Next, we demonstrated the strong impact of the MMS on the cell cytoskeleton (Fig.5). The 

cytoskeleton is composed of fibrous proteins present in the cytoplasm: actin microfilaments 

(colored green in Fig.5 C), intermediate filaments, and microtubules [45]. Its main role is to 

provide structure to the cell and to participate in essential cellular processes such as division, 

motility, intracellular transport, and cellular signaling. MMS of cells leads to a significant 

disorganization of the cytoskeleton (See Fig.5 MS=after magnetomechanical stimulation, 

compared to Fig.5 C, which corresponds to the control before stimulation). This cytoskeletal 

disorganization explains why cells contract, become nearly spherical after mechanical 

stimulation (Fig.4c), and cease to proliferate for at least a couple of days (Fig.4d). 

 

 

Figure 5 : Illustration of the disorganization of the cytoskeleton following MMS of U87 cells 

(C= non-stimulated control sample, MS= after magneto-mechanical stimulation). The actin 

fibers clearly visible in the control sample have completely disappeared after stimulation, and 

the cell has contracted significantly. 

Depending on the intensity of the mechanical stimulation, different effects can be observed. 

Mild stimulation only causes temporary cell contraction accompanied by a loss of motility and 

a temporary halt in mitosis (cell division). Stronger stimulation can trigger cell apoptosis 

[19,20]. Even stronger stimulation can rupture the cell membrane and lead to necrosis [46]. The 

latter regime is not desirable as it generates cellular debris, which can be sources of 

inflammation and potential metastasis in the case of cancer cells. The thresholds between these 

different regimes depend on the nature of the cells. For example, glioma cells are more sensitive 

to mechanical stimulation than healthy cells because they overexpress PIEZO 1 

mechanotransduction channels on their membrane [47]. Under the effect of mechanical 
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stimulation, these channels open and generate an influx of calcium into the cytoplasm, 

triggering cell apoptosis. Healthy cells that express fewer of these PIEZO1 channels are less 

sensitive to mechanical stimulation. This difference should allow for the identification of 

stimulation conditions that destroy cancer cells without causing lasting damage to healthy cells. 

In-vivo experiments: 

Based on these very encouraging in-vitro results, experiments were conducted in-vivo on mice 

bearing glioblastoma. A first set of experiments consisted in injecting glioma U87 cancer cells 

in the mice brain, let the tumor grow for 10 days. Subsequently, the magnetic particles were 

injected into the tumor using a syringe, followed by the application of the rotating magnetic 

field once a day for 5 days [48]. No inflammatory reactions were observed associated with the 

particles injection nor any macrophage activity around the particles in contrast to what is usually 

observed with SPIONs [49].  Following this experimental protocol, however, the survival test 

results did not show any benefit from MMS (Fig.6a). Subsequent analyses helped to understand 

the very significant differences between in-vitro and in-vivo experiments. On one hand, the 

particles poorly diffused within the tumor volume, so that only the area closest to the particle 

injection site was treated by mechanical stimulation (Fig.6c). As a result, the tumor continued 

to grow at its periphery. On the other hand, it was also observed that in these in-vivo 

experiments, the particles were not internalized but remained confined in the extracellular 

environment, which constitutes a significant difference compared to in-vitro experiments (see 

contrast between Fig.3d and Fig.5b) and may reduce the effectiveness of MMS. This highlights 

the importance of the microenvironment, particularly its rigidity and heterogeneity, in these 

experiments [48]. It is likely that smaller particles like those in Fig.2c (hexagonal discs of 

approximately 200nm) will be more easily internalized in-vivo than the 1.3-micron diameter 

microdiscs used in the experiments of Fig.6.  

In another set of in-vivo experiments performed by Cheng et al [50], a positive impact of the 

MMS on mice survival rate was observed. The difference between these two experiments is 

that in the latter one, the particles were injected in the mice brain at the same time as the cancer 

cells so that the particles were dispersed in the whole tumor. In contrast, in the former 

experiment, the particles were injected once the tumor was formed. This comparison supports 

the idea that the lack of increase in survival rate in the former experiment was primarily due to 

a lack of dispersion of the particles in the whole tumor. 
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Figure 6 : In-vivo experiments on mice bearing glioblastoma. a) Survival test showing that, 

with the followed protocol, MMS had no beneficial effect on survival; b) Transmission 

microscopy image showing that in in-vivo experiments, the particles are not internalized, they 

remain in the extracellular environment; c) Transmission microscopy image of the particle 

injection site in the tumor. The particles remain confined near the injection site, which did not 

allow for the treatment of the entire tumor in these initial in-vivo experiments 

The poor particles dispersion in the tumor volume is not necessarily an obstacle to their use in 

the treatment of glioblastoma. Indeed, when the oncologist performs tumor excision, there is 

always a risk that aggregates of cancer cells remain in place in the peritumoral area, and these 

particularly invasive peripheral cells can promote metastases. A possible solution could then 

consist in applying a biocompatible gel loaded with magnetic particles to the peritumoral zone 

during tumor excision. The application of the rotating field would then directly treat this 

peritumoral zone, the usual site of cancer invasion. This approach would circumvent the 

previously raised issue of poor particles diffusion over the whole tumor volume. 

MMS could also be applied synergistically with chemotherapy treatment. The cell contraction 

resulting from MMS (Fig.4c) implies that surviving cells become more individualized, whereas 

cancer cells usually interact and collectively develop resistance to chemotherapy treatments 

[51]. Therefore, chemotherapy effectiveness could be enhanced by synergizing with MMS of 

cells. 
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3D Spheroids: a more relevant in vitro model to increase the efficacy of in vivo 

translational research 

The clear differences observed between 2D in-vitro experiments in culture plates and in-vivo 

experiments have highlighted the importance of finding in-vitro models closer to in-vivo 

conditions. Such a model has been developed in the form of spheroids, which are self-organized 

cell clusters exhibiting textures similar to biological tissues [52]. These 3D cellular assemblies 

can be obtained by culturing cells in low-adhesion microtiter plates [53]. Thus, in Corning ® 

Elplasia® microstructured plates, they form within 24 hours, as illustrated in Figure 7 which 

shows, as example, the formation of spheroids and tumoroids derived from pancreatic cells. 

These 3D structures constitute a relevant model for drug screening [54] and can even be 

vascularized [55].  

Once the tumoroids are formed, the magnetic particles are dispersed among them. After 24h, 

they are internalized within the tumoroids. The MMS is then applied as under in-vivo 

conditions. The advantage is that the microenvironment here is much closer to that encountered 

in-vivo. 

Spheroids have been demonstrated to provide a highly relevant model for the development of 

novel anticancer strategies [56, 57, 58]. For instance, a critical aspect of these strategies is the 

ability to deliver therapeutic doses of anticancer drugs to the core of tumors, which is essential 

for optimizing nanoparticle-based therapies. This is especially challenging due to the 

disorganized vascular architecture, irregular blood flow, and tissue compression exerted by 

cancer cells, all of which contribute to reduced drug delivery efficiency [59]. 

Magnetic drug delivery is one promising technique to achieve therapeutic drug concentrations 

at tumor sites [60]. This approach utilizes the forces applied to magnetic nanoparticles (MNPs) 

via an external magnetic field to guide their movement within the body [61], and potentially 

enhance their perfusion into the tumor mass once localized at the tumor site [62]. However, the 

efficacy of this method is influenced by the scaling of magnetic forces with the volume of the 

particles, suggesting that smaller superparamagnetic iron oxide nanoparticles (SPIONs) may 

not be the optimal choice for this application. 

Numerical simulations that account for both the magnetic forces acting on MNPs and the 

rheological properties of the tumor microenvironment indicate that larger particles, ranging 

from 200 nm to 300 nm in diameter [63], or even up to 1 µm [64], are more effective than 

smaller SPIONs in delivering drugs to the core of tumors. In this context, the use of spheroids 
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as a 3D model provides a valuable tool to more accurately evaluate magnetic drug delivery 

strategies, particularly with respect to particle dispersion and cellular endocytosis. 

A key advantage is that they enable a reliable and meaningful exploration and optimization of 

many parameters in in-vitro experiments prior to translation to in-vivo experiments on animal 

models. 

 

Figure 7 : Experimental illustration of the formation of  pancreatic cancer PANC-1 cell-derived 

tumoroids and pancreatic healthy H6C7cell-derived spheroids in ELPLASIA plates. 

 

Furthermore, recent findings indicate that culturing cells on two-dimensional (2D) soft 

substrates, which mimic the mechanical properties of the native tissue, helps preserve the 

original cell phenotype. Such in-vitro models can be highly valuable as a preliminary step 

before transitioning to in-vivo experiments. They enable the generation of larger quantities of 

cells with relevant molecular characteristics, which is often challenging to achieve in three-

dimensional (3D) culture systems [65]. This technological advance opens up the possibility of 
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conducting more extensive biological analyses of the effect of nanoparticles under conditions 

that are relevant to in-vivo.  Combined with the analysis of spheroids, these approaches will 

make it possible to decipher the cell/particle interaction, which can then be optimised for 

medical application. 

The results presented in this paper, in conjunction with an increasing body of literature 

[24], strongly support the development of a new biomedical field utilizing MMS for therapy. 

This approach addresses significant biomedical needs, particularly for aggressive cancers that 

do not respond to conventional therapies, as well as for brain and chronic diseases that pose 

substantial medico-economic burdens worldwide [66]. 

For the success of this emerging strategy, it is essential to tailor the magneto-mechanical 

approach to the physical characteristics of pathological tissues. In addition to cellular and 

molecular abnormalities, physical abnormalities have been documented in glioblastoma, a 

paradigmatic deadly form of cancer that exemplifies the need for translation of this innovative 

therapy to clinical settings. The mechanical properties of the glioblastoma microenvironment 

are key determinants of invasion, proliferation, and resistance to radio-chemotherapy [67, 68, 

69]. These properties contribute to solid stress, which significantly influences tumor 

aggressiveness [70,71]. Tumor stiffness is highly heterogeneous and can be characterized by 

magnetic resonance imaging (MRI) and ultrasound [72, 73]. 

These mechanical abnormalities are also linked to molecular mechanical sensing abnormalities, 

which likely influence the response to mechanical therapy. For instance, the hyperexpression 

of PIEZO1 in glioblastoma may explain the heightened sensitivity of glioblastoma cells to 

MMS compared to healty tissues [74]. These physical characteristics will impact not only the 

response but also the diffusion of the effects of MMS. This underscores the need for precise 

mechanical dosimetry, analogous to that used in radiotherapy, which involves mapping the 

mechanical properties of the tumor at both the macroscopic and molecular levels to customize 

mechanical therapy. This new mechanical dosimetry requires rigorous validation using ex-vivo 

3D models as well as in-vivo models of pathologies. The challenge is to develop an innovative 

and personalized magneto-mechanical theranostic approach, which is urgently needed in 

clinical practice. 

So far, this article has described the effect of MMS within the context of cancer. 

However, MMS can have other biomedical applications, for instance in the fields of diabetes 

or neurology.  
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MMS stimulating insulin secretion from pancreatic cells: 

In the context of type 2 diabetes, it has been shown that MMS of INS1 pancreatic cells 

can lead to insulin secretion, as illustrated in Fig.8 [75]. Insulin regulates blood glucose levels 

by facilitating the uptake of glucose into cells for energy production or storage. It maintains 

balanced blood sugar levels by promoting glycogen storage in the liver and muscle while 

inhibiting hepatic glucose production. Additionally, insulin influences fat and protein 

metabolism, promoting fat storage and reducing lipolysis. Through these mechanisms, insulin 

helps prevent both hyperglycemia and hypoglycemia [76].  

In these experiments [75], the cells were grown on a suspended polymer membrane embedding 

magnetic particles. The membrane was set into vibrations at frequency between 10 and 40Hz 

by an alternating magnetic field, thus transmitting a mechanical stress to the INS1 cells.   

 

Figure 8 : Illustration of insulin secretion by mechanically stimulated INS1 pancreatic cells 

through magnetic particles vibration. a) INS1 pancreatic cells; b) Control experiment verifying 

insulin secretion by INS1 cells in the presence of a glucose solution; c) Observation of insulin 

secretion by the same INS1 cells, not in the presence of glucose, but under the effect of MMS 

50m
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with varying durations of magnetic field exposure from 1 to 30 minutes at 10Hz. A strong insulin 

secretion is observed for stimulations longer than 10 minutes; d) Insulin secretion depending 

on the concentration of magnetic particles (10; 20; or 50 µg/mL) and depending on the 

frequency (10; 20; or 40 Hz) 

A control experiments was first performed (Fig.8b) in which the pancreatic cells were exposed 

to a glucose solution at concentration between 2 and 40mM. A secretion of insulin was then 

observed which corresponds to the normal reaction of pancreatic cells. In a second experiment, 

the INS1 cells were submitted to MMS for different durations (Fig.8c) as well as different 

particle concentrations and oscillating field frequencies (Fig.8d) without any glucose exposure. 

A very significant secretion of insulin was then observed for MMS longer than 10 minutes [75]. 

This initial observation is highly stimulating and warrants further investigation to address the 

following questions: Was the secreted insulin pre-existing in the cells and released upon MMS 

exposure, or was its production stimulated by the mechanical stress? What are the underlying 

mechanisms driving MMS-induced insulin secretion? Would the same insulin production occur 

in INS-1 cells derived from patients with Type 2 diabetes? 

The use of magnetic nanoparticles to stimulate insulin secretion from INS-1 pancreatic cells 

may offer several potential advantages over traditional type 2 diabetes treatments. This 

approach may allow for precise, on-demand control of insulin release through external magnetic 

fields, potentially mimicking the natural secretion patterns of a healthy pancreas. By reducing 

the need for daily insulin injections, it may also improve convenience for patients, offering a 

less invasive and more targeted method of managing blood glucose levels.  

 

MMS in the context of neuronal disorders: 

In the field of neurology, the application of nanomagnetic forces to neuronal cells has 

garnered significant interest due to its potential to enhance drug delivery by facilitating the 

opening of the blood-brain barrier. Additionally, this technique holds promise for modulating 

axonal functions, particularly in the context of neurodegenerative diseases and 

neuroregenerative therapies. Of particular note is its potential for spinal cord repair, offering an 

alternative to optogenetic approaches [76] . Indeed, in the field of neuroregeneration , it has 

been shown that axons elongation and orientation, cytoskeleton dynamics or axonal transport 

can be induced by attaching magnetic particles to the axons and subjecting them to a magnetic 

field gradient [77]. The resulting force exerted on the axons allows them to grow in a specific 
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direction determined by the direction of the magnetic field gradient. This opens up very 

interesting perspectives for the reconstruction of neuronal connections. This is true both in the 

peripheral nervous system [78] and the central nervous system [77].  This feature opens up 

interesting ways to develop treatments for neuronal injuries or neurodegenerative diseases, 

when neuronal circuits need to be rebuilt. Major evidence have been brought up in-vitro using 

embryonic neuronal cultures. Indeed, Falconeri and colleagues  used 100nm diameter magnetic 

nanoparticles on hippocampal neuronal cultures to show that nanopulling induces microtubules 

stretch to sustain axon growth and associated local protein translation [77]. However, these 

results need to be validated in more disease relevant models and in-vivo. 

For diseases affecting the central nervous systems such as Alzheimer’s or Parkinson’s diseases,  

magnetic techniques not requiring the injection of magnetic nanoparticles are preferred such as 

transcranial magnetic stimulation (TMS). These methods are being explored for their potential 

to enhance brain plasticity, modulate neurotransmitters release, and improve cognitive and 

motor functions. TMS uses pulsed magnetic fields to induce electric currents in specific brain 

regions, potentially restoring normal activity in areas affected by neurodegenerative conditions 

[79, 80].  

Another development of magnetic nanoparticles is their use in conjunction of magnetic 

resonance imaging (MRI) as a new contrast agent. Indeed, the use of SPION shows increased 

MRI imaging efficiency to detect Alzheimer’s disease related cellular features, namely Aβ 

plaques. In this context, SPION are functionalized using Aβ1-42 peptide [81] to specifically 

target Aβ plaques.  

An alternative approach for treating neurological disorder is based on the use of 

magnetoelectric (ME) nanoparticles [82, 83, 84, 85]. They are capable of converting magnetic 

fields into electrical signals, useful for neural stimulation. These nanoparticles are made from 

multiferroic or core-shell materials of composition of BaTiO3-CoFe2O4 [83, 84, 85], which 

exhibit both magnetic and electric properties. Their shape and size influence how they interact 

with magnetic and electric fields, and their small size (~20 nm-30 nm) [82, 83] allows them to 

cross biological barriers in particular the blood-brain barrier. When injected into the brain, they 

can be actuated by external magnetic fields—either static (DC) or alternating (AC)—to generate 

localized electric fields. These fields can depolarize neurons, enabling remote, non-invasive 

brain stimulation. This approach can offer some control over neural activity and has potential 

for innovative treatments of neurological disorders such as Parkinson's disease, epilepsy, and 

depression, using deep brain stimulation or neuromodulation therapies. 



17 
 

Clearance or long-term impact of magnetic particles following injection in the body: 

Upon intravenous injection, the majority of magnetic nanoparticles (MNPs) are rapidly 

eliminated from the bloodstream. Larger particles, particularly those exceeding a few tens of 

nm, are primarily cleared through the liver and spleen via macrophage-mediated phagocytosis 

[86, 87]. In contrast, smaller nanoparticles (typically under 6-8 nm) are often filtered out and 

excreted via the renal system [88]. The clearance rates of these nanoparticles are influenced by 

their size and surface modifications, with smaller particles generally exhibiting more rapid 

clearance, whereas larger particles tend to have extended circulation times [89]. 

Notably, in certain contexts—such as the administration of vortex micro-disk particles into the 

brains of mice—macrophage activity was not detected, allowing these particles to persist in the 

tissue for extended periods [48]. This observation raises an intriguing question: can we retain 

such particles indefinitely within the body, functioning similarly to micro-prostheses that can 

be activated as needed? The potential retention of magnetic microparticles within the body 

presents a complex array of implications, which can be both beneficial and detrimental, 

depending on the specific application and properties of the nanoparticles. For instance, these 

particles may be advantageous in the context of repetitive applications of magnetic-mediated 

strategies, such as in the treatment of glioblastoma by MMS or targeted drug delivery, where 

they could serve as reservoirs for therapeutic agents.  

Nevertheless, the long-term retention of magnetic nanoparticles in the body raises several 

significant challenges and risks. The foremost concern is the long-term biocompatibility of the 

nanoparticles. While they may not provoke immediate adverse effects, chronic exposure could 

lead to immune responses, resulting in complications such as chronic inflammation, fibrosis, or 

activation of the immune system [90, 91]. Specifically, the reticuloendothelial system may 

continuously attempt to clear or degrade retained particles, potentially causing inflammation in 

organs such as the liver or spleen [92]. 

Moreover, many magnetic nanoparticles, particularly those that may degrade over time, risk 

releasing ions such as iron or nickel, which can exhibit toxicity at certain concentrations [93]. 

The likelihood of such toxicity escalates with prolonged retention, especially if the 

nanoparticles are not fully inert or if they lack appropriate biocompatible coatings [93]. 
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In summary, while the prospect of retaining magnetic nanoparticles in the body for therapeutic 

applications is compelling, it necessitates thorough investigation into their biocompatibility, 

long-term effects, and potential toxicity to ensure safe and effective utilization in medical 

contexts. 

Conclusion: 

In conclusion, MMS of cells represents a burgeoning field with significant potential for both 

fundamental mechanobiology studies and groundbreaking biomedical applications. The ability 

to externally manipulate mechanical stress on cells offers a unique advantage, enabling 

researchers to exploit differential responses between diseased and healthy cells. This approach 

has shown particular promise in addressing challenges within oncology, diabetes, and 

neurology. 

The versatility of MMS lies in its precision and controllability, which allows for the fine-tuning 

of mechanical forces to target specific cellular behaviors. This method can be employed to study 

cellular mechanotransduction pathways, elucidate the role of mechanical cues in disease 

progression, and ultimately develop targeted therapies that leverage these mechanistic insights. 

The potential to customize treatments based on individual cellular responses marks a significant 

step towards personalized medicine. 

This interdisciplinary research domain necessitates robust collaboration between physicists, 

biologists, and clinicians. Physicists bring expertise in the design and optimization of magnetic 

fields and mechanical devices, while biologists contribute a deep understanding of cellular 

responses and mechanisms. Both contribute to the understanding of the mechano-biological 

phenomena at play. Clinicians provide critical insights into the practical applications and 

therapeutic potential of these technologies, ensuring that laboratory findings are effectively 

translated into clinical practices. 

Despite the promising advances, several challenges remain. There is a need for comprehensive 

studies to validate the efficacy and safety of magneto-mechanical therapies across different cell 

types and disease models. Furthermore, the development of sophisticated tools and techniques 

to precisely measure and control mechanical forces at the cellular and subcellular levels will be 

crucial for advancing this field. 

Future research should focus on integrating MMS with other therapeutic modalities, such as 

chemotherapy and immunotherapy, to enhance treatment efficacy and overcome resistance 
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mechanisms. Additionally, expanding the understanding of the molecular and biophysical 

mechanisms underlying cellular responses to mechanical stimulation will be pivotal in refining 

and optimizing these therapies. 

Overall, MMS offers a transformative approach to disease treatment and mechanobiological 

research. By harnessing the interplay between physical forces and cellular behavior, this field 

holds the promise of innovative treatments and enhanced understanding of complex biological 

processes. Continued interdisciplinary efforts will be essential in realizing the full potential of 

this promising technology, paving the way for novel therapeutic strategies and improved patient 

outcomes. 
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