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Introduction 

Start by hydrogel -> bioS -> CNC 

Hydrogels are three-dimensional networks composed of either natural or synthetic hydrophobic 

polymers, possess the remarkable ability to retain significant volumes of aqueous solutions while 

maintaining their original structure. In general, hydrogels, which are highly hydrated cross-linked 

three-dimensional networks, can be prepared by either using chemical or physical cross-linking 

techniques and encompass a wide range of chemical compositions and structural forms.1,2 This 

characteristic renders them versatile for applications across various fields, including biomedicine 3–5 

and food industry, 6,7 where their biocompatibility, biodegradable, and unique rheological features are 

exploited. In this research, a composite system, where low-molecular weight gelators (LMWGs) serve 

as the hydrogel matrix, while cellulose nanocrystals (CNCs) function as insoluble fillers is investigated.  

 

Low-molecular-weight gelators (LMWGs) are small molecules with a molecular weight less than 

approximately 1 kDa, capable of forming self-assembled fibrillar network (SAFiN) hydrogels in water. 
8 The majority of SAFiN gels are characterized by an entangled network of self-assembled fibers, akin 

to a polymer in a favorable solvent. These LMWGs are engineered to exhibit intriguing self-assembly 

behavior driven by non-covalent interactions, allowing for a supramolecular assembly process that 

can be adjusted 9,10 to form a gel more or less reversibly. 8,11,12 This study focused on the SAFiN 

hydrogels made entirely from a bolaform glycolipid with an oleic acid (C18:1) backbone. The 

compound, G-C18:1, derived from fermentation of natural resources, exhibits a triple surfactant-lipid-

gelator nature (Erreur ! Source du renvoi introuvable.).13 Below neutral pH and at concentrations 

under 5 wt%, G-C18:1 form vesicle, displaying lipid-like behavior. 14,15 At pH levels above neutral, it 

transitions to micelle formation, demonstrating surfactant behavior.14,15 In the presence of micelles 

and metal ions, it can form either wormlike micelles or fibers, depending on the chemical nature of 

the ion.16 The micelle-to-fiber transition is triggered at pH levels above neutral through the addition 

of specific cations (Ca2+, Ag+, Mn2+) (Erreur ! Source du renvoi introuvable.).16 This cation-induced 



fibrillation is novel not only for this compound but also for other biosurfactants,17–19 and is generally 

unexpected in surfactant solutions, which typically exhibit micelle-to-cylinder,20–23 -wormlike,24 -

vesicle25 or -lamellar20 transitions when mixed with mono- or multivalent cations. 

 

In this study, SAFiN hydrogels have been investigated in the presence of cellulose nanocrystals (CNCs). 

These rod-like nanocrystalline cellulose particles have garnered extensive attention due to its unique 

features, such as high strength, high elastic modulus, hydrophilicity, and light weight. 26–32 The 

potential leading material of the green economy can be extracted from various renewable biomass 

(e.g., cotton, wood, bacteria, and sea tunicates, etc.) sources through acid hydrolysis process of 

cellulose fibers, resulted in varied surface charge and size of the nanocrystals ranging from hundreds 

of nanometers to several microns. 33–41 Importantly, CNCs are environmentally friendly (i.e., non-

toxicity, renewability, and biodegradability), abundant in nature, and inexpensive. 42 CNCs are typically 

extracted by acid hydrolysis using sulfuric acid which causes the crystal surface to be negatively 

charged due to the fact that a fraction of the surface hydroxyl groups is esterified to sulfate half-ester 

groups. 36,43,44 However, it is important to note that there are other acids employed for acid hydrolysis, 

including hydrochloric acid, nitric acid and phosphoric acid. 45–47 Additionally, alternative methods for 

obtaining CNCs exist, such as mechanical treatments, 35,48 ionic liquid hydrolysis, 49 vapor and gaseous 

acid hydrolysis. 50–52 It is noteworthy that the native cellulose surface is unstable and promote the self-

aggregation due to the hydrogen bonding between these -OH groups.29,53 Current strategies to 

improve cellulose particle dispersibility and isolation focus on increasing charge repulsion and steric 

hindrance through surface modification. 54,55 Nanocellulose surfaces have been modified through 

simple reactions, like oxidation, 56–58 esterification, 59–61 and acetylation, 62,63 among others. These 

modifications, which sometimes include grafting polymers 64,65 or other functional materials 66–68 or 

low-molecular weight such as surfactants 69–72 have attracted great attention across several 

applications, including biomedical devices, food modifiers and cosmetic materials. 73 

Over the past 15 years, cellulose nanocrystals (CNCs) have gained attention as reinforcement agents 

in hydrogels and nanocomposites, improving mechanical properties and stability. 74–77 CNCs have been 

incorporated into synthetic and natural polymer matrices, such as PVA, 78–80  PAM,81–83 PEG,84,85 

alginate,86 and gelatin,77 among others.76,87–92 Their good dispersibility and ability to enhance stress 

transfer make them effective in strengthening hydrogels,93,94 with applications in biomedical fields. 

95,96 

 

The aim of this research is to enhance our comprehension of how the incorporation of cellulose 

nanocrystals (CNCs) influences the structural and rheological characteristics of SAFiN hydrogels, 

particularly emphasizing the reinforcing impact introduced by cellulosic nanofillers (Erreur ! Source du 

renvoi introuvable.). From a practical perspective, this study endeavors to design novel eco-friendly 

hydrogels with superior mechanical properties. 

 

Materials and Methods 

Chemicals.  

Monounsaturated glucolipid G-C18:1 (molecular weight 461 g/mol) was obtained from Amphistar in 

Gent, Belgium, and produced at the Bio Base Europe Pilot Plant in Gent, Belgium, under batch No. APS 

F06/F07, Inv96/98/99. According to the supplier, the batch, with 99.4% dry matter, was predominantly 

composed of 99.5% G-C18:1. The molecule was synthesized through fermentation using the yeast 

strain Starmerella bombicola ΔugtB1, as per a previously established protocol. 97 It was used in its 



original form. To adjust the pH, sodium hydroxide and hydrochloric acid solutions (Sigma-Aldrich, 

Germany) were used. The gelation of G-C18:1 was trigged by CaCl2 (VWR).  Whatman 1 filter papers 

(Catalog No. 1001 150), were used as cellulose substrate. According to the manufacturer, these filter 

papers are primarily made from purified cotton linters, with a cellulose content exceeding 98%. 

Hydrochloric acid liquid (~37% concentration, Sigma-Aldrich) was used from a concentrated stock 

solution. HCl gas (99.8%, 10 dm3, 6 kg) was purchased from AGA (Sweden). High sulfur content 

cellulose nanocrystals (H2SO4-CNC), with widths of 10–20 nm and lengths of 300–900 nm, obtained 

from Nanografi in Turkey, were used as reference materials. For all dilution, washing, and rinsing 

steps, Milli-Q water was used. 

 

Hydrolysis with liquid HCl. The preparation of cellulose nanocrystals with liquid HCl (LCNC) in a 

conventional liquid-solid system followed the method described by Klemm et al.,.98 To start, 10 grams 

of Whatman 1 filter paper were mixed with 300 milliliters of pre-heated 3 M hydrochloric acid (HCl) 

solution, with continuous stirring at 1500 rpm at 80°C for 4 hours. The resulting suspension was then 

subjected to multiple rounds of centrifugation at 1460 g (2900 rpm) for 10 minutes each, until the pH 

reached between 4 and 5. Afterward, the solution was dialyzed for three days using a Spectra/Por® 

Dialysis Membrane (molecular weight cutoff 6-8 kD, part number 132665). 

 

Hydrolysis with gaseous HCl. CNCs hydrolysis with HCl gas (GCNC) was carried out in a custom-built 

reactor, following the method of Kontturi et al.,. 52 Ten grams of Whatman 1 filter paper were placed 

in the reactor, which was degassed to reach the HCl gas pressure of 1 bar. After 19 hours, the gas 

pressure in the reactor was released, and the sample was immediately weighed and washed with 

Millipore water (2 × 15 min, 300 ml). The sample was then dehydrated to a dry matter content of over 

90% by leaving it overnight in a fume hood at room temperature. 

 

Stabilized CNC after HCl hydrolysis. Both LCNCs and GCNCs require an additional isolation step, as 

these CNCs lack sufficient repulsive interactions, leading to aggregation. 29,53 First, a 10 mL solution of 

CNCs at the desired concentration was prepared and subjected to tip sonication (UP200Ht, Hielscher) 

at 100 W power and 20% amplitude for 10 minutes. Then, a specific amount of G-C18:1 powder was 

weighed (with CNC:G-C18:1 ratios of 1:1 or 1:0.2) and added to the pre-prepared CNC solutions. The 

mixture was tip-sonicated again at 10% amplitude for 5 minutes until a homogeneous solution was 

achieved. 

 

Gels preparation. A stock solution of G-C18:1 at 4 wt% and pH 8.3-8.5 was prepared. Various 

concentrations of CNCs were added to the G-C18:1 solution, and gelation was initiated by the final 

addition of CaCl2, with a Ca²⁺ to G-C18:1 ratio of 0.5. 

 

Rheology. An MCR 302 rheometer (Anton Paar, Graz, Austria) with sand-blasted plate-plate geometry 

(Ø: 25 mm) was used, maintained at a constant temperature of 25°C. A solvent trap containing water 

was employed to reduce evaporation. Approximately 0.5 mL of gel was carefully placed in the center 

of the plate with a spatula to avoid trapping air bubbles, and any excess gel was meticulously removed. 

 

SAXS. SAXS measurements were performed at the Sorbone using a Xenocs Xeuss 1.0 laboratory 

beamline. The instrument employed a Cu source with a wavelength of 1.54 Å and a detector distance 



of 310 mm and 2500 mm. High-resolution measurements were obtained with S1 = 0.8 and S2 = 0.5, 

and an exposure time of 1200 seconds was used. 

Rheo-SAXS. Small-Angle X-ray Scattering (SAXS) experiments combined with rheology (Rheo-SAXS) 

were conducted at the SWING beamline at Synchrotron Soleil, Saint-Aubain, France (Proposal No. 

20231446). The beamline operates at an energy of E = 12 keV, with sample-to-detector distances fixed 

at 2 m and 6 m. The raw data from the 2D detector are azimuthally integrated using the Foxtrot 

software available at the beamline to generate the typical scattered intensity I(q) profile. Here, q is 

the wave vector, defined as q = 4π/λ sin(θ), where 2θ is the scattering angle and λ is the wavelength. 

Each frame corresponds to a 500 ms exposure time followed by a 9500 ms resting period, resulting in 

one frame being captured every 10 seconds. A MCR 501 rheometer (Anton Paar, Graz, Austria) 

equipped with a Couette polycarbonate cell (10 mm diameter, 0.5 mm gap, V = 1.35 mL) was coupled 

to the beamline and controlled remotely from an external computer in the experimental hutch using 

Rheoplus/32V3.62 software. The experiments were conducted at 25 °C in a radial configuration, with 

the X-ray beam aligned along the center of the Couette cell. Rheology and SAXS data collection were 

manually synchronized, with a time synchronization error of less than 3 seconds. 

 

Results and discussions 

The gelation of G-C18:1 is triggered by Ca2+ ion. At 2 wt% and pH 8, G-C18:1 exist in the micelle form. 

With the presence of Ca2+, G-C18:1 self-assemby into fiber form, therefore having gelation.(ref) The 

optimal amount of CaCl₂ for the G-C18:1 gelation process is discussed elsewhere (ref), with a ratio of 
𝑛

𝐶𝑎2+

𝑛𝐺−𝐶18:1
= 0.5 deemed sufficient. Thus, 24 µL of CaCl₂ 1M is required to gel a 2 wt% G-C18:1 solution. 

A study investigating the gelation behavior of 2 wt% G-C18:1 solutions with varying amounts of CaCl₂ 

(10-30 mM) was conducted and the results are shown in Figure S1a. Measurements taken 7 days after 

preparation demonstrated that gelation did not occur at CaCl₂ concentrations below 20 µL. Based on 

these findings, a fixed CaCl₂ concentration of 27 µL was chosen for subsequent studies, ensuring gel 

formation. 

 

In some cases, gels become stiffer over time (ref). The mechanical properties of G-C18:1 gels were 

tracked over a 2-month period (Figure S1b). During the first 3 days, the storage modulus (G’) remained 

steady at around 35 Pa. However, when measured again 7 days after preparation, the G’ value 

increased to 115 Pa and remained stable for over a month, eventually rising to 275 Pa after 2 months. 

Therefore, in this study, the combination gels of G-C18:1 and different type of CNCs (from now on will 

be assigned as G-C18:1/[name]CNC) will be measured at 2 and 7 days. To ensure consistent gel quality, 

the G-C18:1 solution should be sonicated prior to each use. This is essential to prevent aggregation, 

which can lead to heterogeneity and affect the rheological properties of the gels (Figure S2). 

 

 

 

1. G-C18:1/LCNC and G-C18:1/GCNC 

Initially, the effect of the amount of G-C18:1 used to stabilize uncharged CNCs on the mechanical 

properties of the gels was investigated. According to our previous work, G-C18:1 exhibits two 

transition phases: from molecule-to-micelle at 0.025 mg/mL (CAC1) and from micelle-to-vesicle at 

0.47 mg/mL (CAC2).(ref) It was also found that G-C18:1 concentrations below 0.4 mg/mL are 

insufficient to stabilize 1 wt% CNC hydrolyzed by HCl, while 1 mg/mL is excessive.(ref) Therefore, in 



this study, a 1 wt% CNC solutions was prepared and then stabilized with either 0.2 mg/mL (S0.2) or 1 

mg/mL (S1) of G-C18:1 (Figure S3) to observe the effect of stabilized CNC on the viscoelastic properties 

of G-C18:1 gels. 

 

 
Figure 1. (a) Frequency sweep and (b) Oscillatory strain measurements at 1Hz show the storage G’ (full 

symbols) and loss G’’ (empty symbols) moduli for 2 wt% G-C18:1 gels without and with the presence of 

the same concentration of LCNC, except the different on stabilization of LCNC by G-C18:1; and (c) The 



complex shear modulus G* of G-C18:1/LCNC gels as a function of the ratio between G-C18:1 matrix 

(fixed at 2wt%) and LCNC reinforcement. 

 

Figure 1a and 1b depict the storage modulus (G') and loss modulus (G'') of a G-C18:1 gel and two G-

C18:1/LCNC combination gels, prepared using the same method but differing in the amount of G-

C18:1 used to stabilize LCNC (S0.2 and S1). These measurements were conducted at day 7. Across the 

entire frequency range tested (0.1 to 10 Hz), G' consistently exceeded G'', indicating gel-like behavior 

for all samples. Notably, G-C18:1/LCNC (S0.2) exhibited a consistently higher G' than G-C18:1/LCNC 

(S1) across all frequencies and strain amplitudes. At 1 Hz, the G' values of the G-C18:1/LCNC gels were 

177 Pa (S1) and 232 Pa (S0.2), significantly higher than the G-C18:1 gel (115 Pa) despite the 

introduction of a small amount of LCNC (ratio 1:0.05). Notably, varying G-C18:1 concentrations below 

and above the critical aggregation concentration (CAC) did not significantly alter the G' and G'' values. 

Interestingly, the G″ curves show one peak, and the increasing G″ values in the partial range indicate 

the increasing portion of deformation energy, which is spent to change the internal structure before 

the final break down of the gel structure.(Rheo handbook ref) 

 

To further explore the impact of LCNC concentration as reinforcement in the G-C18:1 gel, the complex 

modulus (G*) was measured after 7 days and is presented in Figure 1c, the oscillatory strain 

measurements represented in Figure 2a and all the data of G’ and G’’ were reported in Table S1. The 

complex shear modulus (G* = G′ + iG″), which reflects the rigidity of a gel under  deformation below 

its yield stress, was consistently higher for G-C18:1/LCNC (S0.2) gels compared to G-C18:1/LCNC (S1) 

gels. At a G-C18:1 : LCNC ratio of 1:0.25, the maximum G* value for G-C18:1/LCNC (S0.2) was three 

times greater than that of the G-C18:1 gel demonstrating the beneficial effect of LCNC reinforcement. 

However, exceeding this optimal ratio resulted in a decrease in gel rigidity, indicating that excessive 

reinforcement can disrupt the network structure. This reduction in rigidity could be attributed to 

increased steric hindrance, interference with G-C18:1 self-assembly, or the formation of dense 

aggregates. 

 

Similar rheological investigations were conducted for G-C18:1/GCNC gels (Figure 2b), with the results 

for G' and G'' summarized in Table S2. No significant differences were observed between G-

C18:1/LCNC and G-C18:1/GCNC gels, suggesting that the CNC hydrolysis protocol does not significantly 

impact the final gel properties. While the optimal matrix-to-reinforcement ratio was found to be 

1:0.25, hydrogel formation was achievable at ratios up to 1:1. However, gelation was not possible at 

a ratio of 1:2, indicating a limit to the amount of CNC that can be effectively incorporated into the 

hydrogel matrix. 

 

 

 



 
Figure 2. Oscillatory strain measurements for (a) G-C18:1/LCNC and (b) G-C18:1/GCNC gels at 1 Hz and 

various matrix-to-reinforcement ratios with G′ being shown with closed points and G′′ with open 

points; and (c) SAXS profiles recorded of GCNC, G-C18:1, G-C18:1/GCNC at different ratio. 

 

 

SAXS : See the trend of slope following the concentration of CNC in the gel 

 



2. G-C18:1/HCNC

 
Figure 3. (a) SAXS curves of HCNC, G-C18:1, the theoretical addition curve of these two components 

and experimental curve of the gel; and (b) Storage modulus G’ in function of oscillation strain for G-

C18:1/HCNC gels various matrix-to-reinforcement ratios. 

Slope of addition curve and measured curve different? 

 

Interestingly, the G’ of G-C18:1/HCNC gels are much higher than those of G-C18:1/LCNC and G-

C18:1/GCNC. All the oscillatory strain measurements were reported in Figure S4. 

-> it could due to the fact Ca2+ could also trigger the gelation of HCNC (ref) (see Figure S5) 

 

➔ Explore different concentrations of Ca2+ to HCNC, G-C18:1, G-C18:1/HCNC gels 

 
https://www.sciencedirect.com/science/article/pii/S0268005X24000730#fig1 

 

 

 
Figure 4 raport molaire Ca2+ : GC = x but how to do with the HCNC ? 

X = a b c  

 

20Mm Ca2+ always have the lowest G*. Why? =  Gelation of GC first, then Ca excess go to HCNC. 30 

mM -> jump to gelification of HCNC 

 

Rheo change temperature and pH (Figure S6) 

 

https://www.sciencedirect.com/science/article/pii/S0268005X24000730


 
Figure 5. G-C18:1, HCNC gels and mixed gels in function of temperature 

 



 
Figure 6 



 
Figure 7. 

 

 

3. Rheo-SAXS of G-C18:1/CNC gels 



 
Figure 8 

 

No change in SAXS curve for G-C18:1/Liq-HCl-CNC 

But G-C18:1/H2SO4-CNC also not really different 

 

About Rheo: same pattern, only the magnitude is different 

Also G’ and G’’ values higher than when measured Rheo only, may due to the geometries 

 

G-C18 :1/HCNC change shear rate (Figure S7) 

Tangential : G-C18 :1/LCNC 1-6m & G-C18 :1/HCNC 1m (Figure S8) 

 



Investigate again the G-C18:1/H2SO4-CNC, but with the shear rate increase to see the time evolution 

of SAXS curve.  

2023-seyrig : mesh size 

 

 
Figure 9 

 

The Ornstein-Zernike equation is (Eq. 1) 

𝐼(𝑞) =
I(0)

(1+q2ξ2)
          Eq.  1 

Which, rearranged, gives 

𝐼(𝑞) =
1

𝐼(0)
+ q2 ξ2

𝐼(0)
Eq.  2 

     

with ξ being the mesh size of the polymer gel and I(0) the scattering intensity at q= 0. Plotting Eq.  3 

as 
1

𝐼(𝑞)
 against q2, one could estimate ξ from the slope 

ξ2

𝐼(0)
, if I(0) is known. However, this is 

unfortunately seldom the case, as the scattering plateau at q= 0 is generally not achieved for many 

gel and colloidal systems. As it can be easily observed, none of the SAXS profiles reported in this 

work reaches a plateau at q= 0, making it impossible to unambiguously quantify ξ. Despite this major 

drawback, one could still compare the values of the slopes in a relative fashion, supposing that I(0) 

is comparable across samples of similar structure. Figure 9 and Table 1 provide the Ornstein-Zernike 

plots and corresponding 
ξ2

𝐼(0)
 values for the hybrid gelatin and alginate hydrogels, compared to the 



controls. The values of 
ξ2

𝐼(0)
 for the fiber-containing hydrogels, may them contain gelatin or alginate, 

are comparable to the respective controls within the incertitude of the fit. When it comes to micelle-

containing hydrogels, the gelatin structure shows a smaller 
ξ2

𝐼(0)
 if compared to the control. However, 

lacking the values of I(0), it is impossible to establish a quantitative correlation between 
ξ2

𝐼(0)
, the 

mesh size and the elastic properties of the hydrogel. 

 

Table 1 

Shear rate / % 𝐼(0)̅̅ ̅̅ ̅̅  St deviation ξ2

𝐼(0)⁄
̅̅ ̅̅ ̅̅ ̅̅ ̅

 St deviation ξ / Å 

0.1 510 15 69.6 0.6 188.6 

100 490 4 85.1 6.6 204.3 

0.1 500 13 101.4 1.1 225.3 

 

Perspective 

All tan g”/g’, G*, deformation point, G’-G’GC/G’GC (table S4) 

Furthermore, for all of the gels, the values of loss factor (tan δ = G″/ G′) were 

significantly smaller than 1, which suggested that elastic behavior dominated. 

 

Yield and G/G 

 

Conclusion 
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Figure S1. (a) Typical frequency sweep storage (full symbols) and loss (empty symbols) moduli 

for 2 wt% G-C18:1 with the addition of different concentrations of CaCl2 1M; and (b) Time-

dependent of the storage and loss moduli (f= 1 Hz, γ= 0.1 %) of G-C18:1 gels triggered by 27 µL 

CaCl2 tracked for a period of 2 months. 

 



 
Figure S2. The G-C18:1 solution is prone to aggregation over time, leading to inconsistencies 

in gel properties. Sonication prior to each use effectively disperses aggregates, ensuring 

consistent gel quality. 

 

 
Figure S3. The illustration of the GC/LCNC and GC/GCNC preparations. 

  



Table S1. Storage (G') and loss (G'') moduli (Pa) were measured for GC/LCNC (S0.2 and S1) 

gels at various LCNC concentrations after 2 and 7 days. 

GC/LCNC 
ratio 

1:0.05 1:0.25 1:0.5 1:1 

 G’ G’’ G’ G’’ G’ G’’ G’ G’’ 

S0.2 day 

2 
118.39 13.55 129.75 17.15     

S0.2 day 

7 
232.78 22.29 316.37 29.80 186.86 18.49 194.39 21.23 

S1 day 2 39.62 4.49 61.42 7.42 112.09 15.77 57.48 8.53 

S1 day 7 177.27 16.87 215.52 19.16 150.43 19.64 94.73 14.54 

 

 

Table S2. Storage (G') and loss (G'') moduli (Pa) were measured for GC/GCNC (S0.2 and S1) at 

various GCNC concentrations after 2 and 7 days. 

GC/ 

GCNC 

ratio 

1:0.05 1:0.25 1:0.5 1:1 

 G’ G’’ G’ G’’ G’ G’’ G’ G’’ 

S0.2 day 

2 

141.97 15.52 156.79 17.47 90.97 12.68 78.26 10.52 

S0.2 day 

7 

299.18 27.35 321.68 29.40 351.42 35.53 376.94 40.22 

S1 day 2 27.26 4.06 51.80 6.42 90.97 12.68 78.26 10.52 

S1 day 7 189.43 15.41 208.77 20.54 351.42 35.53 376.94 40.22 

 



 
Figure S4. Oscillatory strain measurements for G-C18:1/HCNC gels at 1 Hz and various 

matrix-to-reinforcement ratios with G′ being shown with closed points and G′ ′ with open 

points. 

 

 

 
Figure S5.  

 

 

Table S 3 

GC/ 

HCN

C 

ratio 

1:0.05 1:0.25 1:0.5 1:1 1:2 

 G’ G’’ G’ G’’ G’ G’’ G’ G’’ G’ G’’ 

Day 

2 

68.25 7.62 101.4

4 

11.1

8 

340.0

8 

62.5

0 

479.7

3 

91.49 2311.1

4 

380.4

0 

Day 

7 

140.2

8 

13.5

7 

265.9

2 

25.1

8 

663.6

0 

94.5

7 

828.0

6 

128.7

7 

2793.4

9 

362.7

2 

 

 

 ratio 



1:0.05 1:0.25 1:0.5 1:1 1:2 

GC/ 

LCNC 

tan δ 0.095 0.094 0.098 0.109  

|G*| 233.85 317.77 187.78 195.54  

Deformation 

point (%) 
21.6 29.9 36.8 36.7  

(G’-G’GC)/G’GC 1.02 1.75 0.62 0.69  

GC/ 

GCNC 

tan δ 0.091 0.091 0.101 0.106  

|G*| 300.43 323.03 353.21 379.08  

Deformation 

point (%) 
22.9 26.3 37.2 32.8  

(G’-G’GC)/G’GC 1.60 1.79 2.05 2.27  

GC/ 

HCNC 

tan δ 0.096 0.094 0.142 0.155 0.129 

|G*| 140.94 267.11 670.30 838.02 2816.94 

Deformation 

point (%) 
34.9 30.5 24.7 23.3 22.6 

(G’-G’GC)/G’GC 0.21 1.31 4.77 6.20 23.29 

 

  



 

 

 

 

 

Figure S6. SAXS profiles tangential 

 

 
Figure S7. G-C18:1/HCNC 1m long shear rate variation 

 

 

 
Figure S8. Could be used? 

 



 
Figure S9. Could be used? 

 


