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Article 

Frequency and Sample Size to Minimize the Cost of a Rapidly 
Evolving Infectious Animal or Plant Disease 
Jean-Philippe Terreaux 

Environment, Territories in Transition, Infrastructures, Societies (ETTIS) Research Unit, French National Institute for 
Agriculture, Food, and Environment (INRAE), 33612 Cestas, France; jean-philippe.terreaux@inrae.fr 

Abstract: One of the major effects of global change is the spread of animal and plant diseases on farms. 
Besides the impact on the farms themselves, it is the whole rural world that is affected, through the possible 
disruption of value chains. Combating these diseases is therefore a crucial but costly problem. So, when faced 
with an infectious animal or plant pathology, how can we minimize the cost of the disease and of the sampling 
and analyses testing required to monitor its progress? First, we calculate the imprecision of the results as a 
function of the sample size and the prevalence of the disease. Then, depending on the desired precision and 
the prevalence of the disease, we calculate the required sample size. Finally, in the case of iterative sampling, 
depending on the cost of each sampling and testing event and the costs associated with the spread of the disease, 
we show on a quantitative example that there is an optimum, i.e. a relationship between the frequency and the 
sample size (number of samples) that allows the cost of the disease to be minimized. We show the optimum 
relationship between sample size and frequency, the relationship between minimum total cost and frequency, 
and finally, we show on a 3-dimensional graph, how the total cost evolves as a function of frequency and 
sample size. 

Keywords: sampling; epidemic; epizootic; epiphytic; pathology; dynamics; economics; cost; risk; probability 

1. Introduction
International communities are increasingly aware of the importance of both farm animal and 

crop health, as evidenced by the publications of the International Plant Protection Convention (see 
IPPC Secretariat, 2023) and of the World Organization for Animal Health (see World Organization 
for Animal Health, 2023). The subject of this paper is sampling to control the occurrence of rapidly 
spreading infectious animal or plant diseases: how many measurements should be taken, and how 
often, to minimize the cost of the disease plus the cost of the measurements? Each measure is costly, 
and too many would be prohibitive. On the other hand, if monitoring is too lax, there is a risk that 
the disease will develop and spread, with catastrophic consequences. 

This multi-disciplinary work contributes to a whole range of studies and results, combining 
epidemiology, economics, and modeling, with the aim of not systematically seeking to eradicate 
pathologies, but to assess their costs in order to minimize them. In the same line of thought, Silal 
(2021) shows how multidisciplinary operational research can contribute to the efficient manage-
ment of infectious diseases, with a particular emphasis on minimizing the costs of pathology de-
tection. These studies include for example Han et al. (2020) on the bovine viral diarrhea virus for 
dairy and beef cattle herds. 

The financial implications of our work are significant. To give just two examples, avian in-
fluenza, which mainly affects poultry farms, has cost the French government around 1.5 billion 
euros in 2022 alone (compensation for farmers, requisitions, euthanasia of animals, cleaning and 
disinfection...); not to mention the losses incurred by professionals in the processing industry. An-
aplasmosis in cattle (see Railey & Marsh, 2021) raises the same kind of economic consequences 
and therefore induces the same sampling problems for early detection. 

As far as plants are concerned, the estimated damage of Citrus “greening” disease (citrus 
Huanglongbing, or HLB) over the past 5 years before 2020 amounts in Florida alone, to over $1 
billion per year, with nearly 5000 jobs lost annually (Li et al., 2020). In many countries, plum pox 
(or sharka) is a viral pathology affecting stone fruits. Surveillance and detection procedures are 
currently evolving in line with EU Regulation 2016/2031 (see Terreaux, 2023). It is therefore nec-
essary to reorganize the monitoring of this disease. The continued production of these fruits (apri-
cots, peaches, nectarines, etc.) in France is at stake. Other pathologies affecting cultivated plants 
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that are the subject of similar questions include Xylella fastidiosa (see Burbank, 2022). Many other 
animal and plant diseases raise the same issues, but in the remainder of this article, we will use 
avian influenza as an example for application and illustration. 

In a previous article (Terreaux, 2022), we calculated the sample size (number of animals to 
be tested) required on a farm to know with 99% or 95% confidence whether or not it is infected or 
not. Here, we complement this approach by taking into account the fact that the disease can emerge 
on the farm at any time, e.g. following poor biosecurity and contamination by a human vector, from 
infected premises, or from wildlife. Actually, the biosecurity measures implemented may vary 
greatly from one farm to another, depending on the specifications, objectives, and challenges of 
each farmer (see Fountain et al., 2023). On the other hand, we do not simply want to know with 
any degree of accuracy (99% or 95%) whether the farm is infected. Our aim is to minimize the total 
cost of the disease, i.e. the cost of sampling and testing, plus the cost of culling infected flocks, plus 
the cost of allowing disease to spread that may be asymptomatic, particularly if only a few animals 
are infected and shedding virus (e.g. ducks can shed virus for five days before the first symptoms 
appear). 

The methods used to calculate these costs are very different: firstly, the costs are uncertain 
because the disease will spread in a non-deterministic way. The decision criterion can then be, as a 
first approximation, the minimization of the mathematical expectation of the costs: thus, if for a 
given farm at a given time, the probability of disease occurrence is p, it is not assumed that a pro-
portion p of the animals are systematically infected. The situation is dichotomous: either all the 
animals are disease-free, or some are infected, in which case the disease spreads throughout the 
farm. The prevalence (proportion of infected animals) is therefore generally zero, but sometimes it 
becomes strictly positive (following infection) and then increases. The prevalence is assumed to 
increase asymptomatically until the disease is detected by sampling, the parameters of which – 
sample size (number of animals tested) and frequency (or periodicity) of testing - must be carefully 
chosen. The animals are then euthanized. Alternatively, sampling is inadequate, and the disease 
remains undetected until the number of affected animals is sufficient (prevalence exceeds a certain 
threshold) for some of them to die, or for the feed consumption of the herd to drop significantly, 
etc., and the disease becomes symptomatic. The herd is then culled. But the problem with the latter 
situation is that the disease will have been able to spread for longer and more widely outside the 
farm under investigation, at a much higher collective cost (via other farms) than would have been 
the case if the disease had been detected early. 

The prevalence is therefore likely to change over time. In a previous article (Terreaux, 2022), 
we calculated the minimum sample size (minimum number of animals to be tested) for a prevalence 
of 5%. In section 2, we calculate the accuracy obtained as a function of sample size and prevalence. 
In section 3, we calculate the number of tests to be performed as a function of the prevalence to 
achieve 99% or 95% accuracy. 

In section 4, we explicitly introduce the dynamics of pathology in the herd and assume that 
sampling is iterative: For the same observation duration T, instead of testing M animals once, we 
repeatedly test N animals p times, with M = pN. Again, the aim is no longer to achieve a given 
accuracy of measurement but to minimize the overall cost of the disease.  

Sections 4.1. and 4.2. describe the model and show the arbitrary values chosen for the different 
parameters. Section 4.3. shows that, as expected, the longer the duration T, the larger the sample 
size required. In section 4.4. we show how the total cost reaches a minimum for a given duration T 
(associated with a number of animals to be tested – or sample size – calculated in section 4.2.). 
Finally, in section 4.4., we show how the total cost evolves as a function of the periodicity T (= 1/ 
frequency) of the measurements and of the sample size. 

The model set up in Section 4, a simplified representation of reality with a set of parameters 
chosen for illustrative purposes, represents the dynamics of the disease within the farm under study. 
The occurrence of the disease and the detection or non-detection of the disease in the farm, if it is 
affected, are randomized by two nested Monte Carlo processes. 

2. Measurement Imprecision as a Function of Sample Size and Prevalence 
In Terreaux (2022) we showed that for a prevalence of prev, the sample size N (number of 

animals to be tested) to have an accuracy of at least α (e.g. α = 95%), considering a number y of 
animals in the herd, is so that (see too Wonnacott & Wonnacott, 1990; Mann, 2010; Weiss, 2011): 
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We will now assume that y = 8000 animals in the herd. We can calculate the precision of the 
measurement as a function of N (sample size). This is shown in Figure 1 for a prevalence of 5% 
and in Figure 2 if we vary this prevalence between 1% and 10%. 

 
Figure 1. Measurement imprecision for 5% prevalence as a function of sample size. X-axis: sample size;  
Y-axis: imprecision (1- α) obtained. 

Example: With 20 samples, the measurement imprecision is 36%; i.e. if the disease is present 
in the herd, there is a 36% risk of not detecting it. 

 
Figure 2. Measurement imprecision as a function of sample size for different prevalences. From top to bottom: 
prevalence of 1%, 2% … 10%. 

Example: With 20 samples and a prevalence of 2%, the measurement imprecision is 67%; in 
other words, if the pathology is present in the herd, there is a 67% risk of not detecting it. 

3. Sample Size as a Function of Prevalence 
Using the same formula, we can calculate the number of samples needed to achieve 99% or 

95% accuracy, depending on the prevalence. This is shown in Figure 3. We still assume that y = 
8000. 

 
Figure 3. Sample size required to achieve a given accuracy: upper curve: 99%, lower curve: 95%. X-axis: 
prevalence; Y-axis: sample size. 
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Example: With a prevalence of 5%, 89 samples are required for 99% accuracy and 58 samples 
for 95% accuracy. 

4. Iterative Sampling 
Given that contamination of the farm with the disease can occur at any time, it seems inter-

esting not to determine precisely whether or not this contamination has occurred at a given time t 
and, because of the prohibitive cost involved, not to repeat this measurement soon afterward, but 
to carry out periodic tests, albeit with a smaller sample size. The aim is therefore no longer to ensure 
the absence of the disease, but to minimize costs, both in terms of sampling and testing costs, and 
in terms of the costs associated with the spread of the disease (by preventing the prevalence from 
becoming too high, or the disease from becoming symptomatic). For example, for a large herd, 
instead of testing 60 individuals at once (see Terreaux, 2022: these 60 are sufficient to know 
whether a herd of size 8000 individuals, as in the numerical example above, or smaller, is affected 
by the pathology with 95% accuracy when the prevalence is 5%), we can repeatedly test, every T 
time steps, N individuals, with n < 60, N and T still to be calculated. 

4.1. Iterative Sampling to Reduce Costs 
Figure 4 shows the situation considered: sampling of N individuals every T time steps (here 

in days). The dotted arrow represents the time of onset of the disease. From this point on, the num-
ber of affected animals and their prevalence increase exponentially. This corresponds to a standard 
representation of the onset of the evolution of an infectious disease: a SIR model (see Murray, 2002; 
Terreaux, 2017) without R, i.e. without remission for some individuals. 

 
Figure 4. Schematic diagram showing the onset of the disease and the various sampling events separated by 
T. 

We then apply a Monte Carlo procedure (see, for example, Fishman, 1995): starting from the 
initial time (t = 0), we simulate an initial trajectory over a horizon H: at each date t, the disease can 
appear on the farm with probability p, or else the herd remains healthy. From its onset at time t, it 
evolves exponentially with a coefficient δ (at each time step, i.e. for example every 24 hours, the 
number of infected individuals is multiplied by δ). This automatically increases the prevalence and 
therefore the probability of detecting the disease at the next sampling. If the disease is detected, the 
herd is culled at a cost of C1. The barn is then left empty for a quarantine period Q before a new 
herd is established. However, a sample size of only N animals, a low prevalence, and bad luck may 
mean that the disease is present but goes undetected. It will then continue to develop at the rate 
dictated by δ. If the prevalence exceeds Pmax, the disease becomes symptomatic and the herd is 
culled; the cost is C2, which is higher than C1 because the disease has spread in the meantime. This 
is followed by a quarantine period of the same duration before a new herd is established. 

In total, this trajectory generates different costs over the time horizon considered: the cost of 
sampling and possibly one or more C1 costs and one or more C2 costs. Adding these together gives 
the total cost of this trajectory. By repeating the generation of such trajectories a large number of 
times (in practice 100,000 times) over a time horizon H, we deduce the average cost of these tra-
jectories, which is nothing other than the mathematical expectation of the cost as a function of the 
numerical values chosen for each of the parameters. 

This method therefore involves two intertwined random elements: the onset of the disease and 
whether it is detected or not. The two main parameters we adjust here are N, the size of each sample, 
and T, the time between two sampling events. The other parameters depend on the type of problem 
we are dealing with. We have not carried out a precise econometric study of the value of these 
parameters, so the results presented here are of qualitative interest only. 
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Figure 7 uses 2100 (i.e. 30 × 70) parameters sets, with the possibility of the disease occurring 
over 100 time steps. Therefore, 21 billion (30 × 70 × 100 × 100,000) draws of pseudo-random 
numbers are required to simulate the possible onset of the disease. A problem related to the recy-
cling of these numbers could arise: the number generator used is the one presented in Terreaux 
(2000), which does not present this risk. 

4.2. The Various Parameters of the Model 
The parameters considered here, together with the numerical values adopted, are presented in 

Table 1. It should be remembered that the values are arbitrary and must be adapted for their quan-
titative application to a specific situation. 

Table 1. Parameter values for numerical simulations. 

Parameter Symbol Numerical value 

herd size y 8.000 

cost if disease is detected by testing C1 30.000 € 

cost if disease is detected by symptoms C2 300.000 € 

cost of sampling and testing one animal  20 € 

“entry cost” of sampling (see text)  150 € 

time step  1 day 

calculation horizon H 100 days 

probability of disease occurrence at each time step p 0.0005 

prevalence leading to symptomatic detection Pmax 40 % 

pathology evolution coefficient δ 1.6 

duration of quarantine Q 20 days 

number of individuals per sample N variable to be optimized 

time between two sampling events T variable to be optimized 

The cost of a sampling event is defined by its “entry cost” (i.e. the fixed cost whatever the 
sample size N) plus the sample size N multiplied by the “cost of sampling and testing an animal.” 

4.3. Sampling: Optimal Size as a Function of the Number of Days Between Two Sampling Events 
We have two variables, N and T, whose values we can choose, and which will determine the 

total cost (sampling, testing, culling, and dissemination to other farms) of controlling the disease. 
Our objective is: 

 ( )
,

min
N T

Overallcost  (2) 

If T is fixed, this leads to a value of N that allows this minimum to be achieved. We show N 
as a function of T in Figure 5. 

On this graph, the slight decrease observed when T = 9 is not significant; it is due to the still 
low number of trajectories generated, which is still 100,000 for each set of parameters N and T. 
Increasing this number would eliminate this artifact and make the surface shown in Figure 7 
“smoother.” 

Note that the minimum cost for a period T greater than 7 days corresponds to a sample size 
greater than 60, i.e. that obtained with a prevalence assumption of 5% and a desired accuracy of 
95% for a single sampling event (see Terreaux, 2022). 
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Figure 5. N (sample size, y-axis) as a function of T (sampling periodicity in days, x-axis) to minimize total 
cost. 

Example: To minimize the total cost (cost of testing + cost of euthanasia if positive + impact 
of spreading the disease if not detected in time), if we sample every 4 days (x-axis = 4), the number 
of animals to be tested (sample size) is 19 (y-axis = 19). 

Another example: If T = 5, then N = 32; beyond 11 days, the optimum for the chosen param-
eter values is around 70. 

4.4. Minimum Cost as a Function of Sampling Periodicity 
We now show the evolution of this minimum cost (i.e. by adjusting N, the sample size, as 

much as possible) as a function of sampling periodicity. Figure 6 shows that, beyond T = 3, the 
total cost increases with the sampling periodicity. The minimum cost is obtained for T = 3 and 
corresponds (see Figure 5) to a sample size of N = 9. 

 
Figure 6. Evolution of total cost (y-axis, in €) as a function of sampling periodicity T (in days). 

Beyond three days, the higher the sampling periodicity T, the higher the cost. 
The minimum corresponds to sampling every 3 days, which, according to Figure 5, corre-

sponds to 9 animals tested every 3 days with these data. 

4.5. Cost as a Function of Periodicity and Sample Size 
The evolution of the total cost as a function of N and T is shown below in a three-dimensional 

perspective graph. 
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Figure 7. Evolution of total cost (z-axis, in €) as a function of sampling periodicity (T, in days) and sample 
size (N).  

Note that the z-axis scale starts from zero: an error in the numerical values assigned to N or T 
can be costly, potentially multiplying the total cost of the disease by much more than 5. 

5. Conclusion 
In practical terms, the results of this research show how it is possible to significantly reduce 

the costs associated with pathology by replacing a single sampling to test for its presence on the 
farm with successive samplings of smaller size: We have shown here that instead of carrying out a 
single sampling (T → ∝), or a small number of samplings (T large), it may be more interesting to 
carry out regular sampling events of smaller size (fewer animals or plants tested each time). In this 
case, a trade-off between sampling periodicity and sample size has to be made. Optimal values 
depend on the estimation of the different parameters, and therefore on the animal or plant disease 
under investigation and in particular the economic conditions and the stakes of the agricultural 
production in question, the fixed and variable costs of sampling, the probability of the pathology 
appearing on the farm and, if present, its dynamics. Monte Carlo methods have proved their worth 
here, making it possible to calculate numerically and illustrate graphically the economic benefits 
of choosing the right sampling parameters. 

The scientific breakthrough lies in the fact that, in the sampling problem addressed here, we 
take into account both the costs and benefits associated with earlier detection of the pathology and 
the fact that sampling is not carried out once and for all to find out whether the disease is present 
on the farm, but is repeated periodically over time. Its characteristics—sampling frequency and size 
—are determined by a multidisciplinary approach (economics, epidemiology, probability calcula-
tion, Monte Carlo modeling). Further work could take into account the fact that the interest of each 
individual farmer is not the same as that of the farmers as a whole, nor that of the processing and 
marketing chain, nor that of the State (see Terreaux, 2017, on a similar issue in beekeeping, or 
Terreaux, 2023, on plumpox virus for some fruit orchards). In certain cases, this could make it 
possible to replace regulatory constraints with incentive instruments, in everyone’s interest. 

Moreover, following Giral-Barajas et al. (2023), our model could be extended to multistage 
epidemiological dynamics, when, for some diseases, it is possible to distinguish different clinical 
stages. Another development of our work on sampling could be to take into account the possibility 
of vaccinating, or at least reducing the incidence of the pathology on, for example, part of the herds 
or orchards susceptible to the disease; this would make our results more precise when this possibil-
ity is real (see the extension of epidemiological models in this regard in Ramponi & Tessitore, 
2024). 

Another line of research would be to extend our work with an economic objective to farms 
made up of different herds, orchards, or more generally different subsets when the prevalence of 
pathology differs from one subset to another (see an example of such a situation in Clement et al., 
2023). Still, another area of research could be to combine the costs studied here with those of bi-
osecurity measures, bearing in mind that these measures may be taken by the farmer in his own 
interest, with an externality effect on the spread of the pathology to other farmers (see Hennessy & 
Rault, 2023). Finally, coming back to sampling, it would be useful to be able to take into account 
the possibility, when it occurs, of false positives and false negatives when testing individuals for 
the presence of the pathology (see Vasiliauskaite et al., 2021). 
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