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Abstract
We propose a benchmark for comparing gap-filling techniques used on global time-variable gravity field time-series. The
Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On missions provide products to study the
Earth’s time-variable gravity field. However, the presence of missing months in the measurements poses challenges for
understanding specific Earth processes through the gravity field. We reproduce, adapt, and compare satellite-monitoring and
interpolation techniques for filling these missing months in GRACE and GRACE Follow-On products on a global scale.
Satellite-monitoring techniques utilize solutions from Swarm and satellite laser ranging, while interpolation techniques rely
on GRACE and/or Swarm solutions. We assess a wide range of interpolation techniques, including least-squares fitting,
principal component analysis, singular spectrum analysis, multichannel singular spectrum analysis, auto-regressive models,
and the incorporation of prior data in these techniques. To inter-compare these techniques, we employ a remove-and-restore
approach, removing existing GRACE products and predicting missing months using interpolation techniques. We provide
detailed comparisons of the techniques and discuss their strengths and limitations. The auto-regressive interpolation technique
delivers the best score according to our evaluation metric. The interpolation based on a least-squares fitting of constant, trend,
annual, and semi-annual cycles offers a simple and effective prediction with a good score. Through this assessment, we
establish a starting benchmark for gap-filling techniques in Earth’s time-variable gravity field analysis.

Keywords Variable gravity field · Gap filling · Interpolation · GRACE · Swarm

1 Introduction

Our planet is a dynamic system where various processes
affect the distribution of mass in the Earth and produce vari-
ations in its gravity field on a wide range of spatial and
temporal scales. Measurements of the Earth’s gravity field
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from space make it possible to understand the processes that
shift masses within the Earth, and on and above its surface.
For more than 20 years two emblematic missions have mea-
sured nearly continuously the gravity field.

The Gravity Recovery and Climate Experiment (GRACE)
satellite mission and its follow-on, GRACE-Follow On
(GRACE-FO), enable precise measurements of Earth’s time-
variable gravity field (Tapley et al. 2004; Landerer et al.
2020). For the sake of concision, the notation GRACE(-FO)
refers to both GRACE and GRACE-FO missions. GRACE(-
FO) measurements have been used to study mass variations
in various Earth’s system components, including regional to
global scale terrestrial water storage (TWS) changes, mass
changes of polar ice sheets and glaciers, global mean ocean
mass changes, solid Earth mass changes, deep Earth’s sig-
nals, and others (Chen et al. 2022a).

Time-variable gravity field solutions of GRACE(-FO) are
delivered as multiple products with a monthly temporal reso-
lution. In the following, the term “product” refers to a Stokes
coefficients estimation of the gravity field for onemonth (cor-
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responding to Level 2), while the term “solution” refers to
an ensemble of products delivered by one processing center.
The first product of the GRACE mission covers April 2002
and the last product covers June 2017. The GRACE-FOmis-
sion was launched in May 2018; its first product covers June
2018 up to the present. An 11-month gapwithout any product
exists then between the two missions. Throughout the life-
times of the two missions, testing procedures and technical
problems have led to a total of 22 missing months (excluding
the 11-month gap) as of the time of this article.

In order to continue the measurement of Earth’s time-
variable gravity field, a new satellite mission is needed prior
to the end of the GRACE-FO mission. The next satellite
gravimetry mission is called GRACE-Continuity and is also
referred to as the Mass Change Mission (MCM). The antici-
pated launch of GRACE-Continuity is set for 2028 (Landerer
2023), hopefully before the end of the GRACE-FO mission.
However, the possibility of a gap between GRACE-FO and
the following satellite mission cannot be omitted even if it
would not be optimal.

Themissingmonths inGRACE(-FO) solutions represent a
challenge for diverse applications andusers. Theuneven sam-
pling of the gravity-field time-series can introduce biases in
trend and inter-annual cycle estimations (Santamaría-Gómez
and Ray 2021; Yi and Sneeuw 2021). The spectral analysis
of irregularly sampled data is a problem in widespread appli-
cations (Babu and Stoica 2010). Monitoring sub-monthly
and monthly events, such as floods or earthquakes, becomes
impossible if gaps occur during the time period of the event.
For instance, accurately quantifying terrestrial water storage
changes requires a procedure for interpolating GRACE esti-
mates when GRACE or GRACE-FO data are unavailable
(Argus et al. 2022). Some users might choose to accept the
biases created by these gaps to minimize modifications to
the time-series, while others might apply simple or sophisti-
cated methods to fill in the data gaps and reduce these biases.
In the near future, product producers might also consider
distributing Level 3 or Level 4 data without gaps that are
easier to handle for end-users without strong knowledge of
the GRACE(-FO) solutions. For example, products with a
flag indicating the possible interpolation process.

The time-variable gravity field can be recovered by var-
ious spatial techniques other than GRACE(-FO). Precise
orbit determination of low Earth’s orbit satellites can be
used to generate monthly gravity field solutions (Chen et al.
2022b). Since the 1980s, satellite laser ranging (SLR) deliv-
ers products on the lowest-degree coefficients of the Earth’s
gravity field (Couhert et al. 2020). Weigelt (2019) proposes
to use gravity field products based on high-low satellite-to-
satellite tracking and SLR to bridge the gap between the two
GRACE(-FO) missions. Löcher and Kusche (2020) compute
empirical orthogonal functions of the monthly gravity field
based on GRACE(-FO) observations and extend the estima-

tion of these functions with SLR data for low degrees and
on months with missing GRACE(-FO) products. These two
determinations of the gravity field can be used to fill the gaps,
although they are noisier than GRACE(-FO) products. They
can also be used as an external reference to be compared with
gap-filling techniques assessed in this work.

Another mission providing the needed measurements
to describe the gravity field is Swarm. This mission is
ESA’s first constellation mission for Earth Observation pro-
gram and consists of three identical satellites, launched on
November 22, 2013, into a near-polar orbit. Swarm provides
high-precision and high-resolution measurements of the
Earth’s magnetic field, complemented by precise navigation,
accelerometer, and electric field measurements. Important
for our study is the possibility offered by Swarm to deliver
stand-alone time-variable gravity field solutions operable
at low-degrees (≤ 12) (Friis-Christensen et al. 2006). The
orbital perturbations of the three Swarm satellites enable us
to measure the gravity field (Jäggi et al. 2016; Lück et al.
2018), although the resulting products contain more noise
than those of GRACE(-FO). The first gravity field variation
product of the Swarm mission covers December 2013, and
thereafter, the products are available over the 11-month gap
between GRACE and GRACE-FO (Fig. 1).

Multiple works available in the literature propose differ-
ent techniques to fill the missing months in GRACE(-FO)
solutions. The aim of this paper is to reproduce, adapt, and
compare a specific category of these techniques. We restrict
our comparison to techniques that estimate global monthly
products on an Earth-wide scale. Some other works, not
reproduced here, propose predictions at the local scale of
hydrological basins. A large number of them are referenced
in the reviewproposed byBimal et al. (2022). TheEarth-wide
techniques can be categorized in three groups (as proposed in
Gu et al. (2024)): data-driven methods, satellite-monitoring
methods, and interpolation methods. In our comparison, we
narrow our focus to satellite-monitoring and interpolation
methods. Data-driven methods encompass machine-learning
techniques that use non-gravitational data related to sur-
face displacement (e.g., Rietbroek et al. 2014 with Global
Positioning System (GPS)/ Global Navigation Satellite Sys-
tem) and/or to climate variables (e.g., Humphrey et al. 2017;
Li et al. 2020 with precipitation, temperature). However,
comparing data-driven methods requires manipulating an
excessively large number of datasets. This excludes neu-
ral networks predictions from our comparison, as they use
GRACE(-FO) solution along with various other variables,
such as climate data, to have a sufficient training dataset (e.g.,
Sun et al. 2020; Mo et al. 2022).

Satellite-monitoring methods are based on time-variable
gravity field solutions from SLR, Swarm or high-low
satellite-to-satellite tracking. These solutions can serve as
substitutes for missing GRACE(-FO) months, but they can
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Fig. 1 Monthly calendar of the
availability of GRACE(-FO) and
Swarm time-variable gravity
field products

also be used in conjunction with interpolation methods
to estimate interpolated products. The estimation of the
interpolated months can be made through the fitting of
constant, trend, annual, and semiannual (CTAS) compo-
nents using least-squares methods. Alternatively, sophisti-
cated approaches involve decomposing the time-series using
principal component analysis (PCA) (Gu et al. 2024), or auto-
regressive (AR) model (Lenczuk et al. 2022) techniques.
The interpolation can be based on GRACE(-FO) solution
and on other satellite solutions (Lück et al. 2018; Forootan
et al. 2020; Richter et al. 2021). Other interpolation meth-
ods are exclusively based on GRACE(-FO) solution. These
include decomposing the time-series using singular spectrum
analysis (SSA) (Yi and Sneeuw 2021) or multichannel SSA
(MSSA) (Wang et al. 2021) techniques. Within the scope of
our assessment, somemethods also incorporate a priormodel
to reduce the data variance. Richter et al. (2021) achieve
this by removing CTAS components from the data. Alterna-
tively, the use of a hydrological loading model is proposed
by Lenczuk et al. (2022) and Gu et al. (2024) for the same
purpose.

With this panel of gap-filling techniques, achieving con-
sensus on the most optimal approach remains elusive. This
article has a pioneering role by establishing a benchmark
with the first inter-comparison of numerous gap-filling tech-
niques using satellite-monitoring and interpolation methods
on a global scale. In this context, a benchmark refers to a
standardized evaluation to compare and assess the perfor-
mance of gap-filling techniques. This article distinguishes
itself from prior works, such as the review by Bimal et al.
(2022), which explores numerous techniques but focuses on
hydrological basins and does not propose a unified metric to
compare the results of different studies. Similarly, the work
of Qian et al. (2022) provides a more in-depth comparison

but only for three techniques, also at large spatial scales. To
assess and compare the different techniques, we first intro-
duce the datasets employed in our study. We outline our
methodology based on a remove-and-restore approach. This
ensures the comparison of technique estimations with real
data by removing existing GRACE products from the dataset
and predicting these removed months. Then, we present in
detail the techniques that are compared here, pointing out
the differences between our implementation and the original
methodologies. Finally,we conduct a comparison, discussing
the techniques alongside their associated statistical results in
our assessment.

2 Data andmethodology

2.1 Spherical harmonics (SH)

For the self-consistency of the paper we introduce the classi-
cal way to describe the Earth’s gravity field. The gravitational
potential V (λ, φ) at longitude λ and co-latitude φ at the
Earth’s surface (mean radius R = 6.371 × 106 m) can be
expressed in a spherical harmonics (SH) expansion as

V (λ, φ) = −GM

R[ ∞∑
l=0

l∑
m=0

(
Cl,m cosmλ + Sl,m sinmλ

)
P̄l,m(cosφ)

]
,

(1)

where M = 5.972 × 1024 kg is the Earth’s mass, G =
6.67430 × 10−11 m3 kg−1 s−2 is the gravitational constant,
Cl,m and Sl,m are the Stokes coefficients (dimensionless) of
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degree l and order m, and P̄l,m(cos θ) are normalized asso-
ciated Legendre polynomials (Wahr et al. 1998).

Assuming that mass variations in the Earth system are
caused by surface processes, the time-variable gravity field
can be represented as changes in surface mass expressed in
equivalent water height (EWH), �Hw(λ, φ), as

�Hw(λ, φ) = Rρ̄

3ρw

∞∑
l=0

l∑
m=0

2l + 1

1 + kl[
�Cl,m cos(mλ) + �Sl,m sin(mλ)

]
P̄l,m(cosφ),

(2)

where ρ̄ = 5515 kgm−3 is the mean density of the Earth,
ρw = 1000 kgm−3 is the density of water, and kl is the load
Love number of degree l (Wahr et al. 1998).

2.2 Time-variable gravity field products

2.2.1 GRACE(-FO)

Various analysis centers deliver monthly time-variable grav-
ity field products in SH representation, each using an
independent processing strategy. We use the combined
GRACE(-FO) monthly gravity fields solution provided by
the International Combination Service for Time-variable
Gravity Fields (COST-G) center (Meyer et al. 2020) to
cover the period from April 2002 to December 2022. This
solution is estimated from a weighted combination of the
SH solutions from various centers using variance compo-
nent estimation (VCE) (Jean et al. 2018). It results from
the combination of the AIUB-RL02, GFZ-RL06, GRGS-
RL04, ITSG-GRACE2018, and CSR-RL06 solutions for
the GRACE period and AIUB-GRACEFO_op, GFZ-RL06,
GRGS-RL05, ITSG-Grace_op, LUH-GRACE-FO, CSR-
RL06, and JPL-RL06 for the GRACE-FO period. This
combination of solutions has the advantage to reduce the
noise level of the time-series compared to the other stand-
alone solution as well as the individual biases (Jäggi et al.
2020).

We use COST-G with the SH time-series corrected such
that the average of each coefficient is null. This average is
computed over the available months of the COST-G solution
between April 2002 and December 2022. As recommended,
Technical notes TN-14 solution based on SLR data is used
to correct C2,0 (Loomis et al. 2019) and C3,0 after Octo-
ber 2016 (Loomis et al. 2020). Geocenter coefficients C1,0,
C1,1, and S1,1 are not included as they cannot be measured
accurately byGRACE(-FO). COST-G products are corrected
from the atmospheric and oceanic loading by the atmosphere
and ocean de-aliasing Level 1B (AOD1B) model (Dobslaw
et al. 2017). To be consistent with the Swarm solution we use
SH coefficients from degree 2 to degree 12. However, we also

consider the SH up to degree 40 after applying a Gaussian
filter with 400km radius, as detailed in the appendix.

As we truncate the SH representation at degree 12, we
choose a SH and not a mascon solution. SH solutions are
global,whereasmascons are designed to access higher spatial
resolution with pre-established grids that are an a priori of
the mass distribution (Scanlon et al. 2016). For the sake of
comparing gap-filling techniques, the choice of theGRACE(-
FO) time-series is not important. Changing from COST-G to
another GRACE(-FO) solution does not significantly change
the final results (not shown here).

2.2.2 Swarm

The Swarm time-variable gravity field is also a weighted
combined solution usingVCE generated byCOST-G (Encar-
nacao et al. 2019). It results from the combination of
individual solutions from the AIUB, ASU, IfG, and OSU
centers, and it spans the period from December 2013 to
December 2022. This combination also reduces the noise
level of the time-series in comparison to the other stand-alone
solution (Teixeira da Encarnação et al. 2020).

Swarm products have large root-mean-square (RMS) dif-
ferences with GRACE products in 2014 attributed to a
maximum in solar activity and a problem with the Global
Positioning System (GPS) receivers’ onboard software (van
den IJssel et al. 2016; Dahle et al. 2017). To reduce the effect
of this low quality, we consider the Swarm products between
April 2015 and December 2022. The SH decomposition of
Swarm products goes up to degree 40. However, we only
keep SH coefficients from degree 2 to degree 12, as they
contain most of the geophysical signal recovered by Swarm;
moreover, higher degrees are affected by noise (Teixeira da
Encarnação et al. 2020).

Swarm products are corrected from sub-monthly atmo-
spheric and oceanic loading effects using the AOD1B as for
GRACE(-FO) products. In order to reduce the biases between
GRACE(-FO) and Swarm, each SH coefficient of Swarm is
corrected from the monthly mean of the difference between
the two solutions. Because of this correction, our assessment
does not evaluate the capacity of the gap-filling techniques
to correct these potential biases.

2.3 Hydrological loadingmodel

Hydrological loading models can be used to reduce the vari-
ance of the time-variable gravity field caused by hydrological
surface loading. In the following, we use the Global Land
Data Assimilation System (GLDAS) Catchment Land Sur-
face Model 2.1 (Rodell et al. 2004) that solves the vertical
watermass balance but does not account for the lateral fluxes.
We produce an average of GLDAS variations for each month
in SH coefficients up to degree 12. The model might then
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be converted to a grid with a spatial resolution of 1o per 1o.
The gravitational potential changes induced by hydrological
mass redistribution and loading (Newtonian attraction and
mass redistribution associated with elastic deformation) are
computed as detailed in Petrov and Boy (2004) and Gegout
et al. (2010). The permanently ice-covered areas have been
masked out as the model does not include ice sheets (Rodell
et al. 2004).

2.4 Methodology to compare gap-filling techniques

In order to compare and evaluate various gap-filling tech-
niques for interpolating missing months in a solution, a sys-
tematic methodology is applied. This methodology proposes
a benchmark to assess the different approaches capabilities to
predict the content of missing month(s). To do this, we apply
a remove-and-restore approach in which we I) randomly
remove the contents of certain GRACEmonths, II) run a gap-
filling technique to predict the data for these months, and III)
compare them with the removed original time-segment. This
process is repeated a certain number of times to retrieve some
statistics (bootstrapping). The whole workflow is schema-
tized in Fig. 2.

With this methodology, we employGRACE as a reference
to evaluate the gap-filling techniques. This choice can be
questioned as other gravity field products exist. However,
SLR solutions cannot, currently, be exploitable at degrees
higher than 5 and the accuracy of a Swarm solution does not
stand the comparison with a GRACE(-FO) solution. Cross-
validation methods based on the sea level change or other
independent data can alsobe considered, andwediscuss these
aspects afterward.

2.4.1 Evaluation metrics

The difference between the removed and the restoredmonths
is quantified as the RMS difference, which is a measure of
the difference between two values.

RMS difference =
√∑

i [xi − yi ]2
n

, (3)

where xi is the observed value at the i-th data (through time
and/or latitude, longitude), and yi is the predicted value at the
i-th data. The variable n denotes the total number of data.

The estimation of thismetric can bemadeonvarious forms
of data. When the products are expressed as SH, the RMS
difference of each coefficient over time highlights which
coefficients are the best retrieved. Once we project the prod-
ucts on a grid in EWH (1◦ × 1◦ degrees), we can compute
the total RMS difference between the grids, weighted by the
cosine of the latitude. We can also create a map of the RMS

differences by calculating the RMS difference at each point
of the grid.

The total RMS difference between the grids, weighted
by latitudes, provides an estimation of the accuracy of each
technique in EWH. Alongside this, the RMS difference for
each SH coefficient or each spatial point allows us to gather
more details on which coefficients or spatial regions are the
most problematic for each gap-filling technique.

2.4.2 Choice of the removedmonths

The GRACE(-FO) solution suffers from two different types
of gaps: the 11-month continuous gap and the 22 individual
missing months (Fig. 1). We need to estimate the accuracy of
each technique for these two specific kinds of gaps with our
remove-and-restore approach. Furthermore, the noise level
of the GRACE(-FO) solution varies depending on the time
period. The noise level increased by a factor two after August
2016 by the end of the GRACE mission lifetime, due to the
accelerometer failure of one of the two GRACE satellites
(Chen et al. 2022a).

We have selected two time-slices in GRACEmission life-
time to perform the estimation of the accuracy. The first one
covers the period from January 2004 to December 2011 and
corresponds to GRACE mission optimal period; however,
this period does not cross Swarm lifetime. The techniques
basedon theSwarmsolution cannot be evaluatedon this time-
slice. The accuracy estimation for an 11-month gap during
the first time-slice is referred to as ‘Gy’ (for GRACE-only
period year-like gap), and the estimation for individual miss-
ing months during the first time-slice is referred to as ‘Gm’
(for GRACE-only period monthly gaps).

The second time-slice covers the period from May 2015
to August 2016. It corresponds to the period before GRACE
accelerometer failure and starts one month after the begin-
ning of the period covered by the Swarm solution. The
accuracy estimation for an 11-month gap during the second
time-slice is referred to as ‘Sy’ (for Swarm period year-like
gap), and the estimation for individualmissingmonths during
the first time-slice is referred to as ‘Sm’ (for Swarm period
monthly gaps).

Then, we randomly pick a certain number of months or
one 11-month period in the whole time-slice where we can
remove the GRACE products, and then apply a gap-filling
technique. This testing procedure is repeated a certain num-
ber of times, and the RMS difference metrics are averaged to
obtain a better estimation (keeping in mind that some tech-
niques are computationally demanding). The dispersion is
discussed with the results (section 4). For Gm, we randomly
pick 10 months in the whole time-slice and we repeat the
operation 8 times. For Gy, we randomly pick one 11-month
gap in the whole time-slice and we repeat the operation 8
times. For Sm, we randomly pick 3 months in the whole
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time-slice and we repeat the operation 5 times. For Sy, we
randomly pick up one 11-month gap in the whole time-slice
and we repeat the operation 3 times. The number of repeti-
tions for Sm and Sy is limited due to the reduced length of
the time-segment.

3 Gap-filling techniques

We consider the gap-filling techniques proposed in the liter-
ature corresponding to satellite-monitoring and interpolation
methods on an Earth-wide scale. These techniques interpo-
late a GRACE solution with missing individual months and
an 11-month gap on the whole Earth’s surface, possibly also
using a Swarm solution or GLDAS model. Each technique
has been implemented independently from the original arti-
cle in a Python script.

3.1 Swarm replacement

One simple technique is to replace missing GRACE(-FO)
months with those from Swarm. It suffers from the noise
of the Swarm data, but it can serve as a reference for more
complex gap-filling techniques, which should achieve better
results. In this approach, the evaluation metrics simply cor-
respond to the RMS difference between GRACE and Swarm
products.

3.2 Constant trend annual and semiannual (CTAS)
estimation

Lück et al. (2018) investigated the potential of estimating
constant, trend, annual, and semiannual (CTAS) components
based on aSwarmsolution to bridge the gapbetweenGRACE
and GRACE-FO, technique also called “6-parameter model”
or sometimes “climatology fit.” The interpolation of CTAS
can also be donewith theGRACE(-FO) solution.Our estima-
tion of CTAS terms is performed by an iterative least-square
fitting. The estimation of CTAS components is equivalent
when done on the SH representation or on a projected grid;
however, the computation is much more efficient in the SH
domain as it requires fewer computations. For this reason, we
estimate CTAS for Swarm and GRACE(-FO) on SH coeffi-
cients.

This technique relies on simple a priori assumptions about
the solutions, suggesting that most variations in the time-
series can be explained by CTAS terms. For GRACE(-FO),
the evaluationmetrics essentially represent theRMSvariance
of the signal that deviates from CTAS. Estimating CTAS
with the GRACE(-FO) solution benefits from the low noise
level of the products but is limited by missing data in certain
months. Estimating CTAS with the Swarm solution benefits

from the complete time coverage but is limited by a higher
noise level.

Rateb et al. (2022) propose to use a Bayesian framework
to predict missing months by estimating CTAS components
as well as a long-term variability (only for individual missing
months) but is not reproduced in the scope of this paper. The
Bayesian estimation includes an associated uncertainty.

3.3 Principal component analysis (PCA) with Swarm
prior

Richter et al. (2021) proposed to reconstruct a GRACE-like
time-variable gravity field using principal component anal-
ysis (PCA) with a Swarm solution as extra information. For
this, Swarm andGRACE(-FO) solutions need to be projected
onto a grid in EWH of size (nλ, nφ , nt ) where nλ corresponds
to the number of longitudes, nφ to the number of latitudes
and nt to the number of months. Based on a grid, we can cre-
ate a matrix X with a size (nt , nλ × nφ). We note this matrix
XGRACE for the GRACE(-FO) solution and XSwarm for the
Swarm solution. Unlike Richter et al. (2021), we normalize
X by the cosine of the latitude associated with the row. This
scales each row according to an approximation of the area of
the grid point. Results are slightly better with the normaliza-
tion than without, with a reduction of 0.2 cm EWH for the
total RMS difference metric, according to our analysis (not
shown here).

The PCA is the decomposition of X (equivalent to a sin-
gular value decomposition),

X = USVT , (4)

where the matrix U with a size (nt , nt ) contains the temporal
modes (principal components), S is the diagonal matrix of
the squared singular values, and V has a size (nλ × nφ , nt )
and contains the spatial patterns of the decomposition (eigen-
vectors). Each row of U corresponds to a temporal mode and
each column of VT to a spatial pattern and they are ordered
by the squared singular values.

Richter et al. (2021) decompose XGRACE using PCA to
estimateUGRACE,SGRACE, andVGRACE. Then, they compute
a modified version of (US)Swarm = XSwarmVT

GRACE based on
GRACE decomposition.

Then, XSwarm reconstruct = (U1:3S1:3)SwarmVT
1:3 GRACE

using only the first three rows of (US)Swarm and of VGRACE.
The first three temporal modes explain ∼ 90% of the sig-
nal. This cut is recommended by Richter et al. (2021) as it
reduces the noise of Swarm products. Finally, we can substi-
tute missing months with these new reconstructed ones.

Richter et al. (2021) proposed a second technique that
works analogously, referred to as PCAresidual. The first step
is to removeCTAS components fitted on thewholeGRACE(-
FO) period to both Swarm and GRACE(-FO) solutions. We
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Fig. 2 Schematic workflow of the methodology to assess gap-filling techniques efficiency

then reconstruct the signal as described above and add back
the CTAS components. We have a small divergence with
Richter et al. (2021) as they remove CTAS components fitted
to Swarm from the Swarm solution, while we remove CTAS
components fitted on GRACE(-FO). Without this adjust-
ment, the reconstructed products from the PCA using the
Swarm prior exhibit the same bias as the Swarm solution
(not shown here). Another divergence is due to the fact that
we use GRACE(-FO) solution up to degree 12, while Richter
et al. (2021) goes up to degree 60 and apply a Gaussian filter
with a radius of 500km. We show in Appendix C the results
when we go up to degree 40.

3.4 PCAwith GLDAS prior

Gu et al. (2024) proposed an application of the PCA on
SH coefficients of GRACE(-FO) products with the use of
GLDAS as extra information. Hydrological loading vari-
ations of the gravity field from GLDAS are converted to
SH and used along GRACE(-FO) products coefficients.
Before applying the PCA, the GRACE(-FO) solution and
the GLDAS model are detrended through using a least-
squares fitting on the available products. Missing months
in the GRACE(-FO) solution are estimated with a linear
interpolation. The matrix X used for the PCA has a size
(2nl,m , nt ) where nl,m corresponds to the number of Cl,m

and Sl,m coefficients (nl,m = 165 for a maximum degree of
12, excluding coefficients of degrees 0 and 1), and nt corre-
sponds to the number of months. The matrixX is constructed
by concatenating the time-series of SH coefficients from the

GRACE(-FO) products and those from the GLDAS model
along the rows.

X is decomposed with the PCA and Xreconstruct =
(UkSk)VT

k using the k first rows of (US) and V. k is chosen
so that the k first rows explain 95% of the signal variance.
Reconstructed values of GRACE(-FO) SH coefficients are
then replaced in the originalXmatrix for themissingmonths,
and the reconstruction is iterated three times (Gu et al. 2024).

In Gu et al. (2024) methodology, a maximal degree of
60 is used so the matrix X has more rows (7434 instead of
330 for degree 12). The PCA is then applied on SH coeffi-
cients without Gaussian filtering so that north–south stripes
of GRACE(-FO) solution are part of the variance. Gu et al.
(2024) apply a scale factor of 3 to the hydrological model
Stokes coefficients, that we do apply too, due to the noise in
GRACE data and not documented (Y. Gu, personal commu-
nication, March 5, 2024). The use of the PCA with GLDAS
prior technique was originally proposed to close the 11-
month gap. By testing this technique also on single missing
months, we go further than Gu et al. (2024)’s primary focus.

3.5 Iterative independent component analysis (ICA)

Forootan et al. (2020) proposed an iterative reconstruc-
tion approach based on the independent component anal-
ysis (ICA). ICA is used to separate a multivariate signal
into additive, independent components. This approach is
known to perform better at separating signal from noise,
and these signals can be more accurately related to physi-
cal phenomena (Forootan et al. 2020). Two approaches are
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described in their article. However, we have implemented
only one (called Approach 2 in their paper), evaluated as less
noisy and providing more homogenized results (Forootan
et al. 2020). As for the PCA, we compute XGRACE and
XSwarm matrices. Following Forootan et al. (2020), XICA =
sort([XT

GRACE,XT
Swarm], time) where sort(., time) is an

operator that sorts the matrix by ascending time values. X
rows are weighted by the inverse of the covariance matrices.
X columns are also weighted by the cosine of the latitude
(Forootan et al. (2020) mentions this possible scaling but
does not mention whether it is applied).

XICA is decomposed as for a PCA but using an additional
matrix of rotation R, so that VR columns are as independent
as possible,

XICA = URRTSVT (5)

where R is computed using the JADE ICA algorithm (Car-
doso 1999).

As for the PCA, we compute X̂ = UkRkRT
k SkV

T
k using

only the first k rows. k is chosen so that it represents a part
of the variance of XICA. The values of X̂ that correspond to
the Swarm rows replace the initial values of X, and then we
loop on the ICA decomposition. This iteration stops when
the total RMS difference between modes is less than 10−6.

It is worth mentioning that Forootan et al. (2020) does not
exactly use the same GRACE(-FO) and Swarm solutions.
They use SH products up to degree 96 for GRACE(-FO) and
up to degree 40 for Swarm. They apply an isotropic Gaus-
sian filter with the radius of 500km for GRACE(-FO) and
a Gaussian smoothing filter with 1000km half-wavelength
radius for Swarm (Jekeli 1981). To deal with this difference,
we reduce k, the used rows for the reconstruction, so that the
part of the variance explained with the PCA is 90% (instead
of 95% in Forootan et al. (2020)). By applying this change
to the explained variance, the total RMS difference metric
is reduced by 0.5 cm EWH, corresponding to a significant
improvement (not shown here). By using more variance, the
ICA prediction converges to the Swarm solution.

3.6 Iterative singular spectrum analysis (SSA)

Yi and Sneeuw (2021) proposed a gap-filling technique
using singular spectrum analysis (SSA) on SH coefficients
of a GRACE(-FO) solution. In the following, our notations
differ from that of Yi and Sneeuw (2021). Each SH coeffi-
cient is transformed into a uniformly sampled time-series,
[z1, z2, . . . , znt ], with nt the total number of months (=
249) and where months with no data are set to 0. In the SSA

decomposition, this time-series can be accounted for to build
the trajectory matrix Y,

Y =

⎡
⎢⎢⎢⎣

z1 z2 · · · zL
z2 z3 zL+1

...
. . .

...

zM zM+1 · · · znt

⎤
⎥⎥⎥⎦ , (6)

where L = nt +1− M is the number of columns, arbitrarily
chosen. It corresponds to the number of months used in the
SSA.

The SSA consists of decomposing Y with a PCA in order
to obtain L eigenvectorsVY . Then, the spatio-temporal prin-
cipal components are

PCk(t) =
L∑

i=1

zt+i−1.VY
i,k , (7)

with t ∈ [1, M], k ∈ [1, L] and VY
i,k corresponds to the i-th

row and l-th column of V.
The time-series VY and PC allow to create the recon-

structed components, ordered on k in descending order of
their singular value,

RCk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
t

t∑
i=1

PCk(t − i + 1).VY
i,k if 1 ≤ t ≤ L − 1

1
L

L∑
i=1

PCk(t − i + 1).VY
i,k if L ≤ t ≤ nt − L + 1

1
nt−t+1

L∑
i=L−nt+t

PCk(t − i + 1).VY
i,k if N − L + 2 ≤ t ≤ nt

(8)

The original time-series is then reconstructed as zt =∑L
k=1 RC

k(t), with t ∈ [1, nt ]. By choosing an arbitrary
K , one can compute the time-series of the original SH coef-
ficient on a limited number of reconstructed components to
remove the noisier parts.

In Yi and Sneeuw (2021), an iterative approach is applied
where the SSA estimates months without data. It starts with
K = 1 and when the estimation of the month is stable
enough, a new iteration starts with K = 2. K increases in
a second iterative loop up to Kmax chosen arbitrarily for the
SH coefficient. Yi and Sneeuw (2021) apply this technique
twice with different M and Kmax values, first, to estimate
individual missing months and second, to fill the 11-month
gap. For the first round, the parameters are set to M = 24,
corresponding to a context of 2 years around the missing
month, and Kmax = 12. For the second round, the optimal
parameters are M = 48 and Kmax = 7. The authors also
expose a cross-validation algorithm to obtain the best M and
Kmax for each coefficient (not considered in our study, as
computationally demanding).
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Our implementation of the SSA algorithm is based on the
MATLAB code of Yi and Sneeuw (2021) translated into a
Python code and computationally optimized for Python.

3.7 Improvedmultichannel SSA (MSSA)

Wang et al. (2021) proposed to fill the gap by applying the
improvedmultichannel SSA (MSSA).This technique is close
to SSA but uses the information of all SH coefficients during
the reconstruction. As with SSA, each coefficient is trans-
formed into a uniformly sampled time-series. However, once
the trajectory matrix Yl,m is constructed for each SH coef-
ficient of degree l and order m, YMSSA is the concatenation
of all the Yl,m along the columns with a size of (M , nl,m).
Where M is the arbitrarily chosen number of rows and nl,m
is the number of SH coefficients used (nl,m=165).

Then, YMSSA is decomposed using a singular value
decomposition on the covariance matrix detailed in Wang
et al. (2021), considering the missing data. The coefficients
are recomposed similarly to the SSA, following Wang et al.
(2021). This non-iterative reconstruction predicts each SH
coefficient time-series. The two parameters of the improved
MSSA are defined with M = 60 and Kmax = 12. The time-
window of the method corresponds to 60 months and the
reconstruct order of 12 has been validated by an analysis of
the w-correlations of the first modes (see Fig. 1 from Wang
et al. (2021)). As for the PCAwith hydrological prior, impos-
ing a maximal degree of 12 instead of 60 for Wang et al.
(2021) reduces the ability of MSSA to extract common vari-
ance between SH coefficients.

Gauer et al. (2023) proposes to useMSSA to predict miss-
ing months and to filter GRACE(-FO) solutions but is not
reproduced in the scope of this paper. They used an iterative
MSSA to replace missing data combined with spatial filter-
ing. However, the channel components of the MSSA from
Gauer et al. (2023) correspond to different SH products pro-
jected onto a grid, and the technique is applied to the grid.
Given our decision to use only products from COST-G solu-
tion, adapting Gauer et al. (2023) to our assessment would
make it correspond to the SSA technique fromYi andSneeuw
(2021) applied to a grid.

3.8 Auto-regressive (AR)

Lenczuk et al. (2022) proposed a remove-and-restore tech-
nique combinedwith an auto-regressive (AR) prediction. For
this, GRACE(-FO) solution needs to be projected on a grid
in EWH with a size (nλ, nφ , nt ). The GLDAS hydrological
model is also used as projected on a grid. The first step is
to subtract from GRACE(-FO) product the hydrological sig-
nal with GLDAS and then to remove the remaining CTAS
components.

The residuals time-series of each point of the grid,
[r1, r2, . . . , rnt ], are needed to estimate anARmodelwhere
ri is expressed as

ri = a1ri−1 + a2ri−2 + · · · + aMri−M + ε , (9)

where a1, a2, . . . , aM are the AR coefficients, M is the
AR order that is chosen arbitrarily, and ε is the residual that
statistically corresponds to a white noise.

AR coefficients are estimated using the following equa-
tion:

⎛
⎜⎜⎜⎝
a1
a2
...

aM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

c0 c1 · · · cM−1

c1 c0 cM−2
...

. . . cM−1

cM−1 cM−2 · · · c0

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎝
c1
c2
...

cM

⎞
⎟⎟⎟⎠ , (10)

where ck = 1
nt

∑nt−k
i=1 riri+k is the biased auto-covariance

estimate (Lenczuk et al. 2022).
From the AR model, Lenczuk et al. (2022) predict recur-

sively the missing months in the 11-month gap using an AR
order of M = 24. The AR model is used in a classic forward
approach and a backward approach where the i index from
equation (9) is incremented. The forward and backward pre-
dicted time-series are artificially modified so that they join
each other in the middle of the gap. Before the middle, the
forward time-series is used and after the middle, the back-
ward one (Lenczuk et al. 2022).

A few things need to be mentioned here. The technique
is proposed to interpolate the 11-month gap on continental
regions only and is not designed to fill the individual gaps. It
has been modified to fill individual gaps by training forward
and backward predictions on the whole time-series. Missing
months are considered as zero for the estimation of the auto-
covariance and when they are needed in the interpolation.
We also employ the AR technique to predict the time-series
of grid points over the oceans. It was originally meant to be
handled on the GRACE(-FO) with a spatial resolution of the
order of a few hundred kilometers. Its usage for a product
projected on a grid from a SH product truncated at degree
12 is at the border of the technique’s original purpose. The
GLDAS hydrological model used by Lenczuk et al. (2022) is
GLDASNoah2.1; however,weuseGLDASCatchmentLand
Surface Model 2.1. This modification does not significantly
change the reconstruction (not shown here).

3.9 Summary of the techniques

It is important to emphasize that all the tested techniques
were slightly modified and taken out of their initial design
framework in order to be comparable in our benchmark.
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Table 1 Summary of the
different gap-filling techniques
applied in this paper

Technique Apply to Residual Extra data References

Swarm replacement SH No Swarm

CTAS GRACE SH No

CTAS Swarm SH No Swarm Lück et al. (2018)

PCA Swarm Grid No Swarm Richter et al. (2021)

PCA Swarm residual Grid Yes Swarm Richter et al. (2021)

PCA GLDAS SH No GLDAS Gu et al. (2024)

PCA GLDAS residual SH Yes GLDAS

ICA Grid No Swarm Forootan et al. (2020)

ICA residual Grid Yes Swarm

SSA SH No Yi and Sneeuw (2021)

SSA residual SH Yes

MSSA SH No Wang et al. (2021)

MSSA residual SH Yes

AR Grid Yes GLDAS Lenczuk et al. (2022)

Based on the residual approach from Richter et al. (2021),
we propose to evaluate PCA, ICA, SSA, and MSSA tech-
niqueswith an analog residual approach. It consists of remov-
ing CTAS components fitted on GRACE(-FO) products for
the whole time period (2002–2022) to both GRACE(-FO)
and Swarm or GLDAS (if used) products. Then, we recon-
struct the signal via the technique and we add back the CTAS
components. With this twist, the technique is just asked to
predict changes that are not trend, annual, and semi-annual
signals and less information is needed to predict the expected
time-series.

All the gap-filling techniques are summarized in the
Table 1.

Variance decomposition techniques (PCA, ICA, SSA, and
MSSA) involve defining a parameter (k or Kmax, the num-
ber of rows used for the reconstruction of the signal) linked
with the part of the variance explained in the decompo-
sition. Choosing this parameter requires an understanding
of the signal being decomposed. The portion of the vari-
ance used depends on the noise level of the time-series.
Using too much variance implies that some noise is used for
the reconstruction, while using not enough variance implies
missing some true variation in the signal. It is even more
complex for decomposition with additional data (GLDAS
model or Swarm products) where using a too large por-
tion of the variance will make the techniques reconstruct
with additional noise coming from the extra data. However,
GRACE(-FO) products are provided only with uncertain-
ties corresponding to the formal errors of the inversion from
orbit arcs to SH coefficients. The formal errors are not
related to the uncertainty of the variousmeasurement compo-
nents of GRACE(-FO) missions (K-band Ranging System,
accelerometers, global navigation satellite system position-
ing). As a user, the choice of the portion of the variance

to use in the variance decomposition is already a deliberate
commitment.

4 Results

4.1 Assessment workflow

All the presented techniques have been evaluated via our
benchmark methodology to estimate the total RMS dif-
ference with the GRACE months (truncated at degree
12), removed-and-restored projected to a grid in cm EWH
(Table 2). Techniques partially based on the Swarm solution
are not evaluated with Gm and Gy procedures as the corre-
sponding time period contains no Swarm products. As the
metric estimation is repeated and averaged, it includes the
standard deviation of the total RMS differences. This stan-
dard deviation can reach up to 0.2 cmEWH. In the following,
we assume that 0.2 cm EWH is the threshold for statistically
significant differences. As a validation of our evaluation,
we estimated the total RMS difference with the GRACE
months removed-and-restored on continent and ocean where
no anomalies are found (Appendix B, Table 3).

Thegap-fill techniques employingSwarmproducts to sub-
stitute for GRACE(-FO) products have the higher total RMS
differences with values of 7.4 cm EWH for Sm and 7.6
cm EWH for Sy. This is due to the higher noise level of
the Swarm products compared to GRACE(-FO). Total RMS
differences are higher for all the techniques after 2015 for
Sm and Sy. Despite that the techniques demonstrate a cer-
tain performance to predict GRACE(-FO)-like time-series,
they are not able to predict the noisy behavior at the end of
GRACE mission, resulting in an increase of the total RMS
differences. The CTAS estimation performs better with fit on
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Table 2 Evaluation of the accuracy of the gap-filling techniques
measured as the total RMS difference with the GRACE months
removed-and-restored projected to a grid in cm EWH. GRACE and
Swarm products are truncated at degree 12

GRACE(-FO) time-series than with fit on Swarm time-series
(themissingmonths inGRACE(-FO) time-series perturb less
the estimation than the noise of Swarm products). It is worth
mentioning that the total RMS difference with CTAS using
GRACE(-FO) solution, of 2.0 cm EWH on the 2004–2011
period, is less than twice larger than the total RMS difference
with other techniques.

Residual approaches exhibit better performance compared
to their non-residual counterparts. However, the improve-
ment attributed to the residual approach is not statistically
significant (≤ 0.2 cm EWH) for ICA, SSA andMSSA. In the
residual approach, the technique is asked to predict changes
that exclude trend, annual and semi-annual signals. Because
of this, less information is needed to predict the expected
time-series. However, the part of the variance correspond-
ing to noise is also increased as we reduce the coherent
signal by removing CTAS. The parameters of ICA, SSA
and MSSA (the number of iterations, the number k/Kmax of
principal components that explain a part of the variance and
the size M of the context window) have not been fine-tuned
specifically for the residual approach, and it is plausible that
such fine-tuning could improve their score. Using the vari-
ance decomposition techniques (PCA, ICA, SSAandMSSA)
requires an understanding of the signal to find optimal param-
eters. For instance the choice of the parameters k/Kmax is
contingent upon the noise level of the data. Moreover, as the
quality of GRACE(-FO) changes through time, the optimal
values of the parameters are also evolving. This explains, in
addition to the noise, the degraded score of the SSA technique
on the Sy procedure.

According to our assessment criteria, the AR technique is
the one with the best score in terms of total RMS difference
between the predicted monthly products and the removed
ones. AR scores are between 0.9 and 1.7 cm EWH with the

four procedures. The difference is not statistically significant
with SSA on individual months (Gm and Sm) but is statis-
tically significant for 11-month gap (Gy and Sy). The AR
process requires one parameter, the auto-regressive order,
which defines the spectral content of the predicted signal.
Its optimal value will hence be influenced by the filtering of
data and their noise. The AR technique is also using a double
residual approach by first removing hydrological variations
fromGLDASmodel and then removingCTAS. TheAR score
is two to three times larger than the GRACE(-FO) solution
uncertainty. The score of a gap-filling technique cannot be
interpreted if its value is below the solution uncertainty. The
lower bound of the GRACE(-FO) solutions uncertainty at
degree 12 has been estimated at 0.4 cm EWH under similar
conditions, using Gaussian spatial filtering with a radius of
1200km, which cancels the SH amplitude beyond degree 12
(Lecomte et al. 2023).

The total RMS differences are higher for the techniques
using Swarm solution than for the others. They are the tech-
niques (CTASSwarm,PCASwarmand ICA)with the highest
RMSdifferences on ocean (AppendixB, Table 3).While they
benefit from additional information from the complementary
dataset, these techniques also suffer from the noise of Swarm
products.

The understanding of the RMS differences of the tech-
niques can be strengthened by examining their behavior over
specific SH coefficients. The coefficient S4,2 does have a
strong annual cycle with amplitude variation (Fig. 3). The
coefficient C4,2 lacks an annual cycle but displays inter-
annual behavior that is irregular and not dominated by any
particular sinusoidal cycle (Fig. 3). Examples of five 11-
month predictions from AR, SSA and MSSA techniques on
C4,2 and S4,2 explain the score differences between the tech-
niques. AR demonstrates adaptability to amplitude variation
in the S4,2 annual cycle in 2006, 2007 or 2010, while SSA
and MSSA are less successful. Predictions for C4,2 further
highlight why AR total RMS differences are smaller than
those of MSSA, which are also smaller than those of SSA
in the Gy procedure. SSA predictions are smoother over the
11-month gap, while AR and MSSA are able to be closer to
the behavior ofC4,2. As the SSA technique is run twice, once
on individual months with specific parameters and another
one on the 11-month segment with other parameters, it may
explain the difference of scores between monthly (Gm, Sm)
and 11-month (Gy, Sy) procedures.

We have also conducted our assessment methodology
on GRACE products truncated at degree 40 and Gaussian
filtered with a radius of 400km (Appendix C). For the
techniques using Swarm solution, theywere usedwith a trun-
cation at degree 12. Total RMS differences scores given in
Appendix C, Table 4, are statistically close to the ones given
in previous studies when available. The Gy procedure gives
a score of 1.9 cm EWH for MSSA that is slightly smaller
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Fig. 3 SH coefficient time-series from GRACE between 2004 and 2011 and 11-month prediction from AR, SSA and MSSA techniques predicted
with the remove-and-restore workflow

than the score of 2.1 cm EWH in Wang et al. (2021). The
Gy procedure gives a score of 2.1 cm EWH for PCA using
GLDAS prior that is slightly larger than the score of 2.05 cm
EWH in Gu et al. (2024).

4.2 Spatial RMS differences of the gap-filling
techniques

We show here that examining the spatial distribution of
RMS differences for each assessment procedure is preferable
(Fig. 4). When considering CTAS fitted on GRACE(-FO)
solution, spatial errors are similar betweenGm andGy. This
is expected as the prediction of CTAS remains consistent
between the two procedures. Consequently, the spatial RMS
differencesmaps forCTASdepict the spatial amplitude of the
GRACE(-FO) products for variations excluding trends and
annual or semi-annual cycles. These non-CTAS time varia-
tions are noticeable on the East coast of North America, the
West coast of South America, around the Filchner-Ronne Ice
Shelf in Antarctica, Indian Ocean, South of Africa, Middle
of Asia, and Northern Europe and Russia. These locations
with large differences also coincide with areas exhibiting
larger RMS differences for other techniques. This is illus-
trated in Fig. 4with the PCAusingGLDASprior and residual
approach for the Gm procedure and with the MSSA or SSA
for the Gy procedure. These two sub-figures show similar
spatial patterns to the CTAS ones but with lower amplitudes,
indicating that non-CTAS time variations are hard to predict

using these techniques. The AR spatial distribution of RMS
differences for theGy procedure exhibits a pattern consistent
with non-CTAS time variations but with a lower amplitude
than other techniques.

The amplitude of the RMS differences is lower with SSA
and AR for the Gm procedure (please note that the color
scale stops at 1cm, while for other subplots it stops at 3cm in
Fig. 4).While these two techniques outperform the others for
individualmissingmonths,we aim to facilitate the discussion
of the spatial distribution of RMS differences. Some areas
with non-CTAS time variations, such as the Indian Ocean,
show larger RMS differences. The geographic North Pole
region appears problematic for SSA and AR, potentially due
to specific SH coefficients, although the degree 1 coefficients
are set to zero. This pattern might also be present in other
techniques but hidden by the larger color-map scale. Despite
visible spatial patterns, RMS differences are more spatially
homogeneous than those of the other techniques.

Spatial RMS differences for the Sm and Sy procedures
are predominantly influenced by sectorial SH patterns at
low degrees, resulting in significant north–south errors. This
effect is attributed to the higher noise levels observedbetween
May 2015 and August 2016. Not much information can be
extracted for these spatial differences on the period, leading
to their omission from Fig. 4 for Sm and Sy. Each technique
struggles in predicting the noisy behavior of GRACE prod-
ucts during this period, reflected in total RMS difference
scores ranging between ∼ 1.5 and 2.5 cm EWH.
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Fig. 4 Spatial RMS differences
in cm EWH on
removed-and-restored months
for CTAS based on
GRACE(-FO), PCA with
GLDAS prior residual, MSSA,
SSA and AR techniques. The
left column corresponds to
remove-and-restore approach
with Gm procedure and the
right column with Gy
procedure. The scale of the two
maps on the bottom-left is
modified for readability

4.3 Spectral analysis of the techniques

Gap filling a time-series alters its spectral content in most
cases. The uneven sampling of the gravity-field time-series
introduces biases in trend and inter-annual cycle estimations
(Santamaría-Gómez and Ray 2021), which can be demon-
strated by a periodogramanalysis (Fig. 5). TheLomb-Scargle
periodogram of gravity field variations at a point located at
45◦N, 19◦W in the Atlantic Ocean reveals both annual oscil-
lations and inter-annual power (location selected for its rich
spectral content).We show here the periodogram of the time-
series gap-filled with CTAS (based on GRACE(-FO)), AR
and MSSA techniques. CTAS being the simplest and AR
and MSSA achieving the best scores for 11-month gap. The
periodograms of the other techniques are similar to the show-
cased ones, and our selection does not alter the presentation
of the results and the discussions. A comparison between
the periodogram of the GRACE(-FO) solution with gaps and
the periodograms of the gap-filled time-series indicates an
underestimation of power at the annual period by 20%. The
periodogram power is misestimated at inter-annual scales.
The periodograms derived from the gap-fill using CTAS, AR
and MSSA techniques show overall agreement, with excep-
tions noted for the 3-yr period where the MSSA spike is
closest to the original time-series spike and at the 7.5-yr
period.

Fig. 5 Lomb-Scargle periodogram of a GRACE(-FO) time-series with
gaps (blue solid line) and the same GRACE(-FO) solution gap-filled
with CTAS, AR and MSSA techniques (respectively, in green dash-
dotted, orange dashed and red dashed lines). The time-series correspond
to the gravity field variations at a point located at 45◦N, 19◦W in the
Atlantic ocean

4.4 Comparison of predictions with low Earth’s orbit
satellites products

To enhance the assessment of the gap-filling techniques, we
compare their predictions with two existing monthly time-
variable gravity field solutions based on low Earth’s orbit
satellites orbits and presented in the introduction. The solu-
tion from Löcher and Kusche (2020), corresponding to the
Ensemble Mean solution, is denoted as IGG-SLR. The solu-
tion fromWeigelt (2019), corresponding to the 2023 solution
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with an applied Kalman filter, is denoted as HLSST-SLR.
IGG-SLR and HLSST-SLR with a maximum SH degree
12 have been compared with the predictions of the differ-
ent gap-filling techniques on GRACE(-FO) missing months.
The used metric is the total RMS difference weighted by lati-
tude, and spatialmaps of theseRMSdifferences are produced
(Fig. 6).

The total RMS difference between IGG-SLR and the gap-
filling techniques is stable, ranging from 2.6 to 3.0 cm EWH.
Over the continents, the total RMS difference ranges from
4.2 to 4.4 cm EWH, while over oceans, it varies between 1.6
and 1.7 cm EWH. This stability in total RMS difference with
the various techniques suggests that the noise level of IGG-
SLR is larger than the estimated accuracy of the gap-filling
techniques. The variations in total RMS difference between
continents and oceans may be due to the dependency of IGG-
SLR error on signal amplitude because of its construction
based on empirical orthogonal functions. A similar pattern is
observed for HLSST-SLRwith total RMS difference ranging
between 3.3 and 3.6 cm EWH. Over continents, difference
between HLSST-SLR and the gap-filling techniques ranges
from 4.6 to 4.9 cm EWH and between 2.6 and 2.8 cm EWH
over oceans. The stability in total RMS difference with the
panel of gap-filling techniques indicates that the noise level in
HLSST-SLR is larger than the estimated accuracy of the gap-
filling techniques. The total RMS difference can be reduced
to 3.1-−3.4 cm EWH by using a Gaussian filter with a radius
of 700km, similarly to Weigelt (2019).

The techniques with the closest scores to the low Earth’s
orbit solutions are AR and PCA with GLDAS prior and
residual approach. Their total RMS differences correspond
to the lowest values between all the techniques. Spatial maps
of RMS differences are quite similar for each technique.
As an example, spatial differences are presented for the
AR technique (Fig. 6). HLSST-SLR appears slightly nois-
ier than IGG-SLR over oceans. Areas with the largest RMS
differences correspond to regions with large gravity field
variations. Additionally, IGG-SLR shows more differences
on Greenland compared to HLSST-SLR, while HLSST-SLR
exhibits more differences at the poles.

5 Discussions and conclusions

Different gap-filling techniques have been compared in a
benchmark using a remove-and-restore methodology. We
have considered gap-filling techniques corresponding to
satellite-monitoring and interpolation methods on a global
scale. We have applied these techniques to the COST-G SH
solution up to degree 12 and to degree 40 with a Gaussian fil-
ter of radius 400km. The evaluation metrics used to estimate
the errors associated with each technique are the RMS differ-
ences between the removed-and-restoredmonths. According

to such metrics, AR is the most accurate to estimate both
the individual missing months and the 11-month gap. SSA
is the second most accurate technique to estimate individual
months, whileMSSA is the second most accurate to estimate
the 11-month gap. Additionally, the most accurate technique
to estimate individual months and the 11-month gap using
the Swarm solution is PCA with a residual approach.

Based on the metrics, we have obtained a ranking of
the presented methods. Nevertheless, other criteria might
be taken into account when choosing the gap-filling tech-
nique to apply to a GRACE(-FO) solution. For example, one
might consider the criteria of simplicity and computational
speed. Depending on the weights assigned to the decision-
making criteria, the CTAS technique might be chosen for its
easy implementation and fast computational time. However,
CTAS estimations are less accurate than the AR technique,
with a total RMS difference less than twice as large. One
might also consider a criteria based on the ability to monitor
sub-monthly “non-predictable” events, such as earthquakes.
In this case, the inclusion of some additional data is needed,
with a data-driven method (not studied in this paper) or with
a satellite-monitoring method.

We note that the noise levels observed in the IGG-SLR
and HLSST-SLR products are higher than the assessed accu-
racy of the gap-filling techniques. They do not rely on direct
observations from GRACE(-FO) during missing-months but
instead use observations from other low Earth’s satellites
orbits. In contrast, the gap-filling techniques deduce miss-
ing months from GRACE(-FO) observations, and even with
some uncertainty, they align more closely to the original
data. We point out that the IGG-SLR and HLSST-SLR solu-
tions have other advantages, as they are based on real data,
allowing them to account for hardly predictable events (e.g.,
earthquakes). IGG-SLR also has the advantage of providing
a time-series that goes back to 1993.

In the future, global interpolationmethods for a GRACE(-
FO) solution should be compared to existing methods to
assess their reliability and their relevance. Variance decom-
position techniques achieving more adaptability to the data
noise level changing over time might offer a pathway
to achieve better scores. The extensive family of auto-
regressive models suggests that alternatives can be explored,
such as auto-regressive-moving-average or auto-regressive
integrated moving-average models. Additionally, alongside
interpolation techniques, new gravity-field solution made
by combining tracking of satellite orbits with better accu-
racy may emerge as alternatives for accessing low-degree
variations in the gravity field. Nonetheless, our capacity to
interpolate missing months in GRACE(-FO) solution is also
limited by the product-accuracy itself. The accuracy of our
predictive techniques cannot achieve a lower value than the
uncertainty of GRACE(-FO) products. Lecomte et al. (2023)
estimated the lower bound of this uncertainty at 0.4 cm EWH
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Fig. 6 Spatial RMS differences
on GRACE(-FO) missing
months between predictions
from the AR technique and two
low Earth’s orbit satellites,
IGG-SLR in (a) and
HLSST-SLR in (b)

in a similar condition with a Gaussian spatial filtering of
radius 1200km that cancels the SH higher than degree 12.

To go further in the evaluation of the different gap-filling
techniques, other approaches might be considered too. We
can use a synthetic solution of the time-variable gravity field
to better separate the errors introduced by the interpolation
techniques from those inherent in the GRACE(-FO) data.
We can take advantage of known properties of the prod-
ucts such as RMS values over the oceans to estimate the
resulting artificial noise created in the prediction of the miss-
ing months. Investigation of cross-validation using external
datasets is also a path to explore. We can compare the esti-
mates from the techniques based on their capability to predict
the mean sea level over several months or on specific large
hydrological basins. The taken-side of this study is a clear
choice to evaluate the gap-filling techniques ability to predict
GRACE-like products (without considering their noise level
variability through time). For hydrological basins, the assess-
ment can bemadewith, for example, water-balance variables
available from climate models or field measurements. Such
alternative assessment method would verify the performance
of gap-filling techniques in predicting mass changes derived
from climate models or field measurements.

The obtained results highlight the challenges and diffi-
culties created by temporal gaps in a gravity-field solution.
For example, spectral analysis methods like periodograms
are sensitive to data gaps. Ensuring continuity in the time-
variable Earth’s gravity field measurements is crucial. While
no discontinuities have been detected between GRACE and
GRACE-FO products so far (e.g., (Landerer et al. 2020;
Velicogna et al. 2020)), this might partly explain the non-
closure of the global mean sea-level budget after 2016
(Barnoud et al. 2021). To ensure observational continu-
ity between satellite gravimetry missions, inter-comparison
periods are preferable. The end of the GRACE-FO mis-
sion is scheduled for 2028 (Landerer 2023) and, hopefully,
the following GRACE-Continuity mission will be launched
before then. The Mass Change and Geoscience International
Constellation (MAGIC) (Heller-Kaikov et al. 2023), by its
construction, is the swagger of inter-comparison between

satellite gravimetry missions. However, the future beyond
MAGIC remains uncertain but might be illuminated by the
development of an operational mission for the time-variable
Earth’s gravity field measurements.

Appendix A Acronyms

AIUB Astronomical Institute of the University of
Bern

AOD1B atmosphere and ocean de-aliasing Level 1B
ASU Astronomical Institute Ondrejov
AR auto-regressive
COST-G International Combination Service for Time-

variable Gravity Fields
CSR Center for Space Research
CTAS constant, trend, annual, and semiannual
ESA European Space Agency
EWH Equivalent water height
GFZ German Research Centre for Geosciences
GLDAS Global Land Data Assimilation System
GPS Global Positioning System
GRACE Gravity Recovery and Climate Experiment
GRACE-FO GRACE-Follow On
GRGS Groupe de Recherche de Géodésie Spatiale
ICA Independent component analysis
IfG Institute of Geodesy Graz
JPL Jet Propulsion Laboratory
LUH Leibniz Universität Hannover
MAGIC Mass Change and Geoscience International

Constellation
MSSA Multichannel SSA
OSU Ohio State University
PCA Principal component analysis
RMS Root-mean-square
SH Spherical harmonics
SLR Satellite laser ranging
SSA Singular spectrum analysis
TWS Terrestrial water storage
VCE Variance component estimation
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Appendix B RMS differences over continents
and oceans

All the techniques have been evaluatedwith ourmethodology
to estimate the total RMSdifferencewith theGRACEmonths
(truncated at degree 12) removed-and-restored, projected to
a grid in cm EWH for continental and oceanic areas.

The hierarchy of the technique scores remains unchanged
for continental and oceanic areas. The AR technique has the
best score in terms of total RMS difference for both. For
continents, the scores have increased because the amplitude
of the signal is larger on average. For oceans, the scores have
increased because the amplitude of the signal is smaller on
average.

Swarm replacement technique shows similar total RMS
difference on continents and oceans, indicating poor results
due to the noise of the Swarm products, as expected. The
other techniques show a higher total RMS difference over
continents than over oceans within a scale factor of differ-
ence. This can be interpreted as the techniques struggling
more on areas with higher-amplitude signals, which is an
expected behavior.

Appendix C Assessment of gap-filling tech-
niques for degrees up to 40

To extend our assessment of the techniques, we have esti-
mated the total RMS difference with the GRACE months
removed-and-restored methodology, truncated at degree 40
(instead of 12) and Gaussian filtered with a radius of 400km.
The total RMS difference over oceans and continents has
also been tested and agreed with the results obtained in
Appendix B (not shown here).

The hierarchy of the technique scores remains unchanged,
with AR having the best score in terms of total RMS differ-
ence between predicted monthly products and the removed
ones. Each score is however increased compared to the
assessment of the techniques with truncation at degree 12.
This increase is expected, as the products contain signals
between degrees 12 and 40 that are added, even though
a part of this signal is filtered. Nevertheless, the increase
in score is not uniform across the techniques. The largest
increases correspond to the scores of the techniques that use
Swarm solution. This is anticipated since they do not ben-
efit from additional information from the Swarm products
beyond degree 12 Teixeira da Encarnação et al. (2020). The
score of SSA for theSm procedure is relatively high, possibly
indicating a non-optimal choice of the M and Kmax parame-
ters, which can be further optimized through cross-validation
following the approach proposed by Yi and Sneeuw (2021).
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Table 4 Evaluation of the accuracy of the gap-filling techniques
measured as the total RMS difference with the GRACE months
removed-and-restored projected to a grid in cm EWH. GRACE prod-
ucts are truncated after degree 40 and smoothed with a Gaussian filter
of radius 400km. Swarm products are truncated after degree 12

Acknowledgements We thank Professor Ehsan Forootan for answer-
ing our questions about the details of the implementation for the ICA
(Forootan et al. 2020). We thank Yanchao Gu for answering our ques-
tions related to his use of GLDAS model and his PCA technique. The
authors thank three anonymous reviewers for their numerous and high-
quality comments, which improved the manuscript.

Author Contributions HL helped in conceptualization, formal analy-
sis and investigation, writing—original draft preparation; HL, SR were
involved in methodology; HL, SR, MM contributed to writing—review
and editing; SR, MM helped in funding acquisition, resources, super-
vision.

Funding Open access funding provided by Université Toulouse III -
Paul Sabatier. This work is supported by the Centre national d’études
spatiales (CNES) and by the Doctoral School Earth and Environmental
Sciences (ED 413) of the University of Strasbourg in the Institut Terre et
Environnement de Strasbourg (ITES, CNRS UMR7063). This project
was financially supported by CNES as an application of the GRAVI
mission. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (GRACEFUL Synergy Grant agreement No
855677).

Data availability GRACE and GRACE-FO missions are sponsored by
the National Aeronautics and Space Administration and the Deutsches
Zentrum für Luft-und Raumfahrt. GRACE and GRACE-FO Level-2
temporal solutions were obtained from http://icgem.gfz-potsdam.de for
COST-G products. Release 01 has been used for the GRACE period
and Release 02 for the GRACE-FO period. GLDAS Catchment Land
Surface Model 2.1 can be downloaded from https://daac.gsfc.nasa.gov/
datasets.

CodeAvailability The Python 3.8 code used for this publication is based
on a Github project by Tyler Tsutterley (https://github.com/tsutterley/
read-GRACE-harmonics, https://doi.org/10.5281/zenodo.8075728).The
adapted version can be found on https://github.com/hulecom/read-
GRACE-harmonics repository. JADE algorithm from Gabriel Beck-
ers https://github.com/gbeckers/jadeR. SSA original code https://doi.
org/10.18419/darus-807.

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose. The authors have no Conflict of interest
to declare that are relevant to the content of this article.

Consent for publication All authors consent for the publication of this
article

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Argus DF, Martens HR, Borsa AA et al (2022) Subsurface water flux
in California’s central valley and its source watershed from space
geodesy. Geophys Res Lett 49(22):e2022GL099583. https://doi.
org/10.1029/2022GL099583

Babu P, Stoica P (2010) Spectral analysis of nonuniformly sampled
data—a review. Digit Signal Process 20(2):359–378. https://doi.
org/10.1016/j.dsp.2009.06.019

Barnoud A, Pfeffer J, Guérou A et al (2021) Contributions of altimetry
and Argo to non-closure of the global mean sea level budget since
2016. Geophys Res Lett 48(14):e2021GL092824. https://doi.org/
10.1029/2021GL092824

Bimal G, Ahmed MM, Murgulet D et al (2022) Filling temporal gaps
within and between GRACE and GRACE-FO terrestrial water
storage records: an innovative approach.Remote Sens 14(7):1565–
1565. https://doi.org/10.3390/rs14071565

Cardoso JF (1999) High-order contrasts for independent component
analysis. Neural Comput 11(1):157–192. https://doi.org/10.1162/
089976699300016863

Chen J, Cazenave A, Dahle C et al (2022) Applications and challenges
ofGRACEand grace follow-on satellite gravimetry. SurvGeophys
43(1):305–345. https://doi.org/10.1007/s10712-021-09685-x

Chen Q, Wang F, Shen Y et al (2022b) Monthly gravity field solu-
tions from early LEO satellites’ observations contribute to global
ocean mass change estimates over 1993–2004. Geophys Res Lett
49(21):e2022GL099917. https://doi.org/10.1029/2022GL099917

Couhert A, Bizouard C, Mercier F et al (2020) Self-consistent deter-
mination of the Earth’s GM, geocenter motion and figure axis ori-
entation. J Geodesy 94(12):113. https://doi.org/10.1007/s00190-
020-01450-z

Dahle C, Arnold D, Jäggi A (2017) Impact of tracking loop settings of
the Swarm GPS receiver on gravity field recovery. Adv Space Res
59(12):2843–2854. https://doi.org/10.1016/j.asr.2017.03.003

DobslawH,Bergmann-Wolf I, Dill R et al (2017)Anewhigh-resolution
model of non-tidal atmosphere and ocean mass variability for de-
aliasing of satellite gravity observations: AOD1B RL06. Geophys
J Int 211(1):263–269. https://doi.org/10.1093/gji/ggx302

123

http://icgem.gfz-potsdam.de
https://daac.gsfc.nasa.gov/datasets
https://daac.gsfc.nasa.gov/datasets
https://github.com/tsutterley/read-GRACE-harmonics
https://github.com/tsutterley/read-GRACE-harmonics
https://doi.org/10.5281/zenodo.8075728
https://github.com/hulecom/read-GRACE-harmonics
https://github.com/hulecom/read-GRACE-harmonics
https://github.com/gbeckers/jadeR
https://doi.org/10.18419/darus-807
https://doi.org/10.18419/darus-807
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2022GL099583
https://doi.org/10.1029/2022GL099583
https://doi.org/10.1016/j.dsp.2009.06.019
https://doi.org/10.1016/j.dsp.2009.06.019
https://doi.org/10.1029/2021GL092824
https://doi.org/10.1029/2021GL092824
https://doi.org/10.3390/rs14071565
https://doi.org/10.1162/089976699300016863
https://doi.org/10.1162/089976699300016863
https://doi.org/10.1007/s10712-021-09685-x
https://doi.org/10.1029/2022GL099917
https://doi.org/10.1007/s00190-020-01450-z
https://doi.org/10.1007/s00190-020-01450-z
https://doi.org/10.1016/j.asr.2017.03.003
https://doi.org/10.1093/gji/ggx302


  107 Page 18 of 19 H. Lecomte et al.

Encarnacao J, Visser P, Jaeggi A et al (2019) Multi-approach gravity
field models from swarm GPS data. GFZ Data Serv. https://doi.
org/10.5880/ICGEM.2019.006

Forootan E, SchumacherM,Mehrnegar N et al (2020) An iterative ICA-
based reconstruction method to produce consistent time-variable
total water storage fields using GRACE and swarm satellite data.
Remote Sens 12(10):1639. https://doi.org/10.3390/rs12101639

Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: a constellation to
study the Earth’s magnetic field. Earth Planets Space 58(4):351–
358. https://doi.org/10.1186/BF03351933

Gauer LM, Chanard K, Fleitout L (2023) Data-driven gap filling and
spatio-temporal filtering of the GRACE and GRACE-FO records.
J Geophys Res: Solid Earth 128(5):e2022JB025561. https://doi.
org/10.1029/2022JB025561

Gegout P, Boy JP, Hinderer J et al (2010) Modeling and observation of
loading contribution to time-variable GPS sites positions. In: Mer-
tikas SP (ed) Gravity, geoid and earth observation. International
association of geodesy symposia. Springer, Berlin, pp 651–659.
https://doi.org/10.1007/978-3-642-10634-7_86

Gu Y, Huang F, Huang J et al (2024) Filling the gap between GRACE
and GRACE follow-on observations based on principal compo-
nent analysis. Geophys J Int 236(3):1216–1233. https://doi.org/
10.1093/gji/ggad484

Heller-Kaikov B, Pail R, Daras I (2023) Mission design aspects
for the mass change and geoscience international constellation
(MAGIC). Geophys J Int 235(1):718–735. https://doi.org/10.
1093/gji/ggad266

Humphrey V, Gudmundsson L, Seneviratne SI (2017) A global recon-
struction of climate-driven subdecadal water storage variabil-
ity. Geophys Res Lett 44(5):2300–2309. https://doi.org/10.1002/
2017GL072564

Jäggi A, Dahle C, Arnold D et al (2016) Swarm kinematic orbits
and gravity fields from 18months of GPS data. Adv Space Res
57(1):218–233. https://doi.org/10.1016/j.asr.2015.10.035

Jäggi A, Meyer U, Lasser M et al (2020) International combination
service for time-variable gravity fields (COST-G). In: Freymueller
JT, Sánchez L (eds) Beyond 100: the next century in geodesy.
Internadtional association of geodesy symposia. Springer, Cham,
pp 57–65. https://doi.org/10.1007/1345_2020_109

Jean Y, Meyer U, Jäggi A (2018) Combination of GRACE monthly
gravity field solutions from different processing strategies. J Geod
92(11):1313–1328. https://doi.org/10.1007/s00190-018-1123-5

Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field.
The Ohio State University, Technical report

Landerer F (2023) The value and need of continuous global satellite
gravimetry measurements for earth system science. MAGIC Sci-
ence and Applications Workshop 2023

Landerer FW, Flechtner FM, Save H et al (2020) Extend-
ing the global mass change data record: GRACE follow-on
instrument and science data performance. Geophys Res Lett
47(12):e2020GL088306. https://doi.org/10.1029/2020GL088306

Lecomte H, Rosat S, Mandea M et al (2023) Uncertainty of low-degree
space gravimetry observations: surface processes versus earth’s
core signal. J Geophys Res: Solid Earth 128(7):e2023JB026503.
https://doi.org/10.1029/2023JB026503

Lenczuk A, Weigelt Matthias, Kosek Wieslaw et al (2022) Autore-
gressive reconstruction of total water storage within GRACE
and GRACE follow-on gap period. Energies 15(13):4827–4827.
https://doi.org/10.3390/en15134827

Li F, Kusche J, Rietbroek R et al (2020) Comparison of data-driven
techniques to reconstruct (1992–2002) and Predict (2017–2018)
GRACE-like gridded total water storage changes using climate
inputs. Water Resour Res 56(5):e2019WR026551. https://doi.org/
10.1029/2019WR026551

Löcher A, Kusche J (2020) A hybrid approach for recovering high-
resolution temporal gravity fields from satellite laser ranging. J
Geod 95(1):6. https://doi.org/10.1007/s00190-020-01460-x

Loomis BD, Rachlin KE, Luthcke SB (2019) Improved earth oblate-
ness rate reveals increased ice sheet losses and mass-driven sea
level rise. Geophys Res Lett 46(12):6910–6917. https://doi.org/
10.1029/2019GL082929

Loomis BD, Rachlin KE, Wiese DN et al (2020) Replac-
ing GRACE/GRACE-FO with satellite laser ranging: impacts
on Antarctic ice sheet mass change. Geophys Res Lett
47(3):e2019GL085488. https://doi.org/10.1029/2019GL085488

Lück C, Kusche J, Rietbroek R et al (2018) Time-variable gravity fields
andoceanmass change from37months of kinematic Swarmorbits.
Solid Earth 9(2):323–339. https://doi.org/10.5194/se-9-323-2018

Meyer U, Jaeggi A, Dahle C, et al (2020) International combination ser-
vice for time-variable gravity fields (COST-G) Monthly GRACE
Series. https://doi.org/10.5880/ICGEM.COST-G.001

Mo S, Zhong Y, Forootan E et al (2022) Bayesian convolutional neural
networks for predicting the terrestrial water storage anomalies dur-
ing GRACE and GRACE-FO gap. J Hydrol 604:127244. https://
doi.org/10.1016/j.jhydrol.2021.127244

Petrov L, Boy JP (2004) Study of the atmospheric pressure loading
signal in very longbaseline interferometryobservations. JGeophys
Res: Solid Earth. https://doi.org/10.1029/2003JB002500

Qian A, Yi S, Li F et al (2022) Evaluation of the consistency of three
GRACE gap-filling data. Remote Sens 14(16):3916. https://doi.
org/10.3390/rs14163916

Rateb A, Sun A, Scanlon BR et al (2022) Reconstruction of
GRACE mass change time series using a Bayesian framework.
Earth Space Sci 9(7):e2021EA002162. https://doi.org/10.1029/
2021EA002162

Richter HMP, Lück C, Klos A et al (2021) Reconstructing GRACE-
type time-variable gravity from the Swarm satellites. Sci Rep
11(1):1117. https://doi.org/10.1038/s41598-020-80752-w

Rietbroek R, FritscheM, Dahle C et al (2014) Can GPS-derived surface
loading bridge aGRACEmission gap? SurvGeophys 35(6):1267–
1283. https://doi.org/10.1007/s10712-013-9276-5

Rodell M, Houser PR, Jambor U et al (2004) The global land data
assimilation system. Bull Am Meteor Soc 85(3):381–394. https://
doi.org/10.1175/BAMS-85-3-381

Santamaría-Gómez A (2021) Chameleonic noise in GPS position time
series. JGeophysRes: SolidEarth 126(3):e2020JB019541. https://
doi.org/10.1029/2020JB01954

Scanlon BR, Zhang Z, Save H et al (2016) Global evaluation
of new GRACE mascon products for hydrologic applications.
Water Resour Res 52(12):9412–9429. https://doi.org/10.1002/
2016WR019494

Sun Z, Long D, Yang W et al (2020) Reconstruction of GRACE data
on changes in total water storage over the global land surface and
60 basins. Water Resour Res 56(4):e2019WR026250. https://doi.
org/10.1029/2019WR026250

Tapley BD, Bettadpur S, Ries JC et al (2004) GRACEmeasurements of
mass variability in the earth system. Science 305(5683):503–505.
https://doi.org/10.1126/science.1099192

Teixeira da Encarnação J, Visser P, Arnold D et al (2020) Descrip-
tion of the multi-approach gravity field models from Swarm GPS
data. Earth Syst Sci Data 12(2):1385–1417. https://doi.org/10.
5194/essd-12-1385-2020

van den Ijssel J, Forte B, Montenbruck O (2016) Impact of Swarm
GPS receiver updates on POD performance. Earth Planets Space
68(1):85. https://doi.org/10.1186/s40623-016-0459-4

Velicogna I, Mohajerani Y, Geruo A et al (2020) Continuity of
ice sheet mass loss in Greenland and Antarctica from the
GRACE and GRACE Follow-on missions. Geophys Res Lett
47(8):e2020GL087291. https://doi.org/10.1029/2020GL087291

123

https://doi.org/10.5880/ICGEM.2019.006
https://doi.org/10.5880/ICGEM.2019.006
https://doi.org/10.3390/rs12101639
https://doi.org/10.1186/BF03351933
https://doi.org/10.1029/2022JB025561
https://doi.org/10.1029/2022JB025561
https://doi.org/10.1007/978-3-642-10634-7_86
https://doi.org/10.1093/gji/ggad484
https://doi.org/10.1093/gji/ggad484
https://doi.org/10.1093/gji/ggad266
https://doi.org/10.1093/gji/ggad266
https://doi.org/10.1002/2017GL072564
https://doi.org/10.1002/2017GL072564
https://doi.org/10.1016/j.asr.2015.10.035
https://doi.org/10.1007/1345_2020_109
https://doi.org/10.1007/s00190-018-1123-5
https://doi.org/10.1029/2020GL088306
https://doi.org/10.1029/2023JB026503
https://doi.org/10.3390/en15134827
https://doi.org/10.1029/2019WR026551
https://doi.org/10.1029/2019WR026551
https://doi.org/10.1007/s00190-020-01460-x
https://doi.org/10.1029/2019GL082929
https://doi.org/10.1029/2019GL082929
https://doi.org/10.1029/2019GL085488
https://doi.org/10.5194/se-9-323-2018
https://doi.org/10.5880/ICGEM.COST-G.001
https://doi.org/10.1016/j.jhydrol.2021.127244
https://doi.org/10.1016/j.jhydrol.2021.127244
https://doi.org/10.1029/2003JB002500
https://doi.org/10.3390/rs14163916
https://doi.org/10.3390/rs14163916
https://doi.org/10.1029/2021EA002162
https://doi.org/10.1029/2021EA002162
https://doi.org/10.1038/s41598-020-80752-w
https://doi.org/10.1007/s10712-013-9276-5
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1029/2020JB01954
https://doi.org/10.1029/2020JB01954
https://doi.org/10.1002/2016WR019494
https://doi.org/10.1002/2016WR019494
https://doi.org/10.1029/2019WR026250
https://doi.org/10.1029/2019WR026250
https://doi.org/10.1126/science.1099192
https://doi.org/10.5194/essd-12-1385-2020
https://doi.org/10.5194/essd-12-1385-2020
https://doi.org/10.1186/s40623-016-0459-4
https://doi.org/10.1029/2020GL087291


Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques Page 19 of 19   107 

Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s
gravity field: hydrological and oceanic effects and their pos-
sible detection using GRACE. J Geophys Res: Solid Earth
103(B12):30205–30229. https://doi.org/10.1029/98JB02844

Wang F, Shen Y, Chen Q et al (2021) Bridging the gap between
GRACE and GRACE follow-on monthly gravity field solutions
using improved multichannel singular spectrum analysis. J Hydrol
594:125972. https://doi.org/10.1016/j.jhydrol.2021.125972

Weigelt M (2019) Time series of monthly combined HLSST and
SLR gravity field models to bridge the gap between GRACE and
GRACE-FO: QuantumFrontiers_HLSST_SLR_COMB2019s.
https://doi.org/10.5880/ICGEM.2019.008

Yi S, Sneeuw N (2021) Filling the data gaps within GRACE mis-
sions using singular spectrum analysis. J Geophys Res: Solid Earth
126(5):e2020JB021227. https://doi.org/10.1029/2020JB021227

123

https://doi.org/10.1029/98JB02844
https://doi.org/10.1016/j.jhydrol.2021.125972
https://doi.org/10.5880/ICGEM.2019.008
https://doi.org/10.1029/2020JB021227

	Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques
	Abstract
	1 Introduction
	2 Data and methodology
	2.1 Spherical harmonics (SH)
	2.2 Time-variable gravity field products
	2.2.1 GRACE(-FO)
	2.2.2 Swarm

	2.3 Hydrological loading model
	2.4 Methodology to compare gap-filling techniques
	2.4.1 Evaluation metrics
	2.4.2 Choice of the removed months


	3 Gap-filling techniques
	3.1 Swarm replacement
	3.2 Constant trend annual and semiannual (CTAS) estimation
	3.3 Principal component analysis (PCA) with Swarm prior
	3.4 PCA with GLDAS prior
	3.5 Iterative independent component analysis (ICA)
	3.6 Iterative singular spectrum analysis (SSA)
	3.7 Improved multichannel SSA (MSSA)
	3.8 Auto-regressive (AR)
	3.9 Summary of the techniques

	4 Results
	4.1 Assessment workflow
	4.2 Spatial RMS differences of the gap-filling techniques
	4.3 Spectral analysis of the techniques
	4.4 Comparison of predictions with low Earth's orbit satellites products

	5 Discussions and conclusions
	Appendix A Acronyms
	Appendix B RMS differences over continents and oceans
	Appendix C Assessment of gap-filling techniques for degrees up to 40
	Acknowledgements
	References


