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Abstract: In marine ecology, the most studied interactions are trophic, in networks called food webs. 1

Trophic modeling is mainly based on weighted networks, where each weighted edge corresponds 2

to a flow of organic matter between two trophic compartments, containing individuals of similar 3

feeding behaviors and metabolisms, and with the same predators. 4

To take into account the unknown flow values within food webs, a class of methods called Linear 5

Inverse Modeling has been developed. The total of linear constraints, equations and inequations, 6

defines a multidimensional convex bounded polyhedron, called a polytope, within which lie all 7

realistic solutions to the problem. To describe this polytope, a possible method is to calculate a 8

representative sample of solutions by using the Monte Carlo Markov Chain approach. 9

In order to extract a unique solution from the simulated sample, several goal (cost) functions –also 10

called Ecological Network Analysis indices– have been introduced in the literature as criteria of 11

fitness to the ecosystems. These tools are all related to information theory. Here are introduced new 12

functions that potentially provide a better fit of the estimated model to the ecosystem. 13

Keywords: Divergence; Entropy; Linear inverse modeling; Trophic systems 14

1. Introduction 15

The description of ecosystems is often based on networks of interactions, of different 16

types. For terrestrial ecosystems, recent developments concern different types of interac- 17

tions, sometimes gathered into a common model called multiplex [11]. In marine ecology, 18

the most studied interactions are trophic, i.e. interactions between predators. These highly 19

complex food webs have been described by numerous models widely used to describe the 20

impact of human activities on marine ecosystems; see [1] and [13]. They are also important 21

tools for the sustainable management of marine and coastal environments [19]. 22

There are many ways to model food webs. Flows from preys to predators can be 23

represented by non-quantified interactions and then the model is a graph (web) with 24

vertices (the species) and edges (the interactions). Trophic modeling for ecosystem-based 25

management of fisheries and other management questions is mainly based on weighted 26

networks; see for example the Ecopath-Ecosim-Ecospace model [5]. Each link corresponds 27

to a flow of organic matter between two trophic compartments, collecting individuals of 28

similar feeding behaviors and metabolisms, and with the same predators. 29

In ecology, field studies are often associated to laboratory experiments to estimate 30

some flows within food webs, and many flow values remain unknown, which the Linear 31

Inverse Modeling (LIM) takes into account; see [22]. LIM relies on the principle of steady 32

state for the biomass of all compartments, i.e., the sum of the inflows and outflows through 33

the components of the system equals the rate of change in their standing stocks, most 34

often considered negligible or null. This yields a set of linear equations, the Mass Balance 35
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Equations (MBE), describing the steady state or mass balance. Then, constraints are added 36

from field measurements of mass transfers like local estimations of primary production, 37

respiration or diet contents, etc.. Additional constraints come from experiments or study of 38

other ecosystems. All these constraints constitute a set of linear inequalities that impose 39

linear combinations of flows to be between certain values. The total of MBE and inequalities 40

defines a bounded multidimensional polyhedron, called a polytope, within which lie all 41

realistic solutions to the problem. 42

A first idea to describe the polytope was to select a single solution inside this space 43

of possible solutions, assuming a least square of the flows; see [31]. Then, methods were 44

developed to describe the solution space by calculating a representative sample of all 45

possible solutions by the Monte Carlo approach, see [16], and more efficiently the Monte 46

Carlo Markov Chain (MCMC) approach, see [17] and [27]. Further, Linear Inverse Modeling 47

Monte Carlo Markov Chain (LIM-MCMC) methods involve mass balanced models (the 48

biomass of each species is assumed constant) that consider the uncertainty in the estimations 49

and link them to the variability of the living; see [22,27]. As such, a range of possible results 50

is provided, that makes LIM-MCMC advantageous by allowing to include uncertainties in 51

the data; see [12]. 52

Still, the question remains to extract a unique solution from this simulated sample. In 53

[3], we proposed a numerical optimization of some pertinent goal functions that directly 54

yields a unique functioning point of the ecosystem, with a low computing time. This 55

straightforward approach allowed us to infer properties on the stability of the selected 56

state, and hence on the evolution of the ecosystem. Precisely, the assumption is that the 57

biomasses are the stationary state of a dynamical system determined by the constraints on 58

the flows. Determining the stability of this fixed point informs on how the biomasses will 59

vary. In this sense, this approach is data-driven by the information on both the biomasses 60

and the biological constraints. 61

Such an optimization may also be inferred in a probabilistic framework, where the 62

flows are all seen as random variables. MCMC thus amounts to simulating samples drawn 63

from the probability density functions (pdfs) of the flows, while the optimization can be 64

processed in the space of pdfs satisfying the biological constraints. 65

In ecology, Ecological Network Analysis (ENA) indices, and have been introduced in 66

the literature as criteria of fitness to the ecosystems; see [3,15,17,29]. They are all related to 67

Shannon information theory. Some are based on Shannon entropy, while others are based 68

on Kullback-Leibler divergence [18] or Shannon mutual information. In this paper, we 69

present several of these classical goal (cost) functions. Then we consider goal functions 70

that take into account reference distributions that may not belong to the polytope but are 71

of interest, for instance resulting from previous studies of the same ecosystem. We also 72

consider goal functions based on Rényi entropy and divergence, that may fit better to 73

particular food systems by adjusting the associated parameter. Their potential optimization 74

opens the way to a better fit of the chosen unique solution among the MCMC sample. 75

2. The constraints, the polytope of solutions, and the probabilistic framework 76

2.1. The constraints 77

We will denote by V the set of all vertices of the trophic network (directed graph), and 78

E is the set of all oriented edges – denoted by ij when going from vertice i to vertice j, with 79

|E| = n. 80

In many situations, all biomasses Bi of the species can be measured with accuracy. On 81

the other hand, the flows Fij between the species (or compartments) are much more difficult 82

to evaluate. Therefore, we will adopt here the standard viewpoint that the biomasses are 83

given and the flows between nodes are unknown. 84

Mathematically, the flow is a vector F = (Fij)ij∈E of dimension n = |E| with non 85

negative components - also called flows, satisfying Kirchoff law on all vertices, 86

∑
j∈N+(i)

Fij − ∑
j∈N−(i)

Fji = 0, i ∈ V, (1)
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where the successors and predecessors of a vertex i are N+(i) = {j ∈ V : ij ∈ E} and 87

N−(i) = {j ∈ V : ji ∈ E}. 88

The flows Fij satisfy biological constraints. For example, a fish cannot eat more than a 89

certain percentage of its biomass. These constraints are numerous thanks to the important 90

knowledge that has been acquired over the years on the functioning of species ecosystems 91

and can be summarized as a system of linear equations and inequations over the flux space. 92

2.2. The polytope of solutions 93

The set S of solutions F to the constraints system is a convex subset of Rn, where n is 94

the number of edges of the graph. Precisely, for any such ecosystem, 95

S = {F = (Fij)ij∈E ∈ Rn : Fij ≥ 0, AF = b, GF ≤ h}, (2)

where A and G are matrices of sizes m× n and k× n and b and h vectors of sizes m and k, 96

where m and k are, respectively, the number of equality and inequality constraints (with 97

m < n so that the system AF = b is under-determined). 98

The defined domain is the intersection of hyperplanes and half-spaces and hence is a 99

convex polyhedron. In addition, biological constraints encompass bounds on flows, so S 100

is bounded. The same is true for most alike ecosystems. Such bounded polyhedrons are 101

called polytopes. Apart from the MBE which involve many flows in the same equation, 102

most constraints involve a small number of flows. Therefore matrices A and G are mainly 103

composed of 0 and a few 1. 104

2.3. The probabilistic framework 105

The problem can also be presented in terms of pdfs, or proportions. Let fij = Fij/F.. 106

denote the proportion of flows from vertex (i.e., compartment) i to vertex j with respect 107

to the total flow in the system, where F.. = ∑ij∈E Fij. The marginal distributions ( fi.)i∈V 108

and ( f.j)j∈V , where fi. = ∑j∈N+(i) fij and f.j = ∑i∈N−(j) fij represent the proportions of, 109

respectively, outflows and inflows of trophic compartments. The polytope of admissible 110

flows defined by (2) is identified to 111

S = { f = ( fij)ij∈E ∈ Rn : 0 ≤ fij ≤ 1, A f = a, G f ≤ g}, (3)

where a = b/F.. and g = h/F... 112

Actually, S can be considered, and hence MCMC applied, in a smaller space. Let 113

d be the rank of A, that is the dimension of the subspace of Rn defined by the system 114

A f = b. One way to present this is to write f = fp + Ãx where fp is a particular solution 115

in S , and Ã is the orthonormal matrix obtained from A, e.g., through the well-known QR- 116

decomposition. Indeed in this subspace, only inequality constraints remain, say G̃x ≤ h̃ 117

with G̃ = GÃ and h̃ = G fp − h, that define the volume delimited by the intersection of 118

hyperplanes. MCMC methods are then applied to the latter system, that is in a smaller 119

space. 120

3. The Goal Functions 121

In ecological studies, goal functions appear either as indices of the behavior of the 122

system, or as a means of comparison between estimated solutions. Actually, they are 123

potential tools for determining one solution from the MCMC numerous simulated ones. 124

Many goal functions can be considered in relation to ecosystems. They are either sta- 125

tistical tools, information theory quantities, or purely ecological indexes. The most classical 126

are the mean, the quadratic energy, and the so-called ENA, all quantities derived from 127

entropy. An important characteristics is whether the goal function includes information 128

from the constraints or not. Further, only convex (or concave) functions yield a unique 129

optimum corresponding to a unique functioning state of the system. 130

The natural setting is to give all these functions in terms of the pdfs f . Indeed, the 131

advantage of considering pdfs for ENA indices, computed in different situations, is that 132
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different ecosystems can be compared. This makes it possible to compare different stations 133

or different time periods. For example, [20] compare seven spatial sub-sections of the Seine 134

estuary at two time periods; they were thus able to describe the change in the functioning 135

of the estuary’s food web, linked to the construction of the Le Havre port extension called 136

Port2000, but also to the change in the precipitation regime that occurred over the same 137

period. Such comparisons are essential in the search for indicators of marine ecosystems 138

health. 139

3.1. Classical ENA 140

The most usual function is the empirical mean of all flux, 141

E( f ) = ∑
ij∈E

fij. (4)

The quadratic energy, giving rise to the least squares method, is also classical, with 142

Q( f ) = ∑
ij∈E

f 2
ij. (5)

143

Various functions involving the concept of entropy of distributions have been con- 144

sidered in the literature on ecosystems, under various specific names. See [4] and the 145

references therein for a synthesis of these Shannon entropic indices, and [6] for details 146

and more on information theory tools. Shannon’s definition of entropy S gave birth to 147

information theory; see [26] and [6]. It was introduced in the field of ecological systems by 148

[21], through the so-called Mc Arthur index C, 149

C( f ) = S( f ) (6)

= − ∑
ij∈E

fij log( fij) = − ∑
ij∈E

Fij

F..
log
( Fij

F..

)
. (7)

Note that the basis of the logarithm is non pertinent, since only comparison or optimization 150

are to be considered. 151

152

The mutual information is also a classical tool in information theory. It was introduced 153

in ecology by [14], that calls it ascendency, as 154

A( f ) = ∑
ij∈E

fij log

(
fij

fi. f.j

)
= ∑

ij∈E

Fij

F..
log

(
FijF..

Fi.F.j

)
. (8)

The ascendency can be written K( f |( fi.)⊗ ( f.j)), that is the Kullback-Leibler diver- 155

gence with respect to the product distribution ( fi.)⊗ ( f.j) = ( fi. f.j). This function is neither 156

convex nor concave, which hinders it from being used as an optimization function; see [3]. 157

While A/C also serves to measure the degree of constraint of the system, in order to 158

keep a balance between A and C, [9] prefers 159

GA/C( f ) =
A( f )
C( f )

log
[

A( f )
C( f )

]
, (9)

for which we fail to find an interpretation in terms of pdfs. 160

161

The symmetrized conditional entropy becomes in ecology the system redundancy 162

(overhead), introduced in [30] as the negative quantity Φ = C− A, that is to say 163

Φ( f ) = − ∑
ij∈E

fij log

(
fij

fi.

fij

f.j

)
= − ∑

ij∈E

Fij

F..
log

(
F2

ij

Fi.F.j

)
. (10)
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Several indices drawn from overhead and ascendency have been proposed as health 164

indicators based on marine ecosystem functioning; see [24] and [10]. 165

166

Note that in the literature, these ENA indices have sometimes been multiplied by F.,., 167

to make them depend on the total mass of the system. Then they can only been used as 168

tools in analyzing the system, and neither for determining a flow solution to the constraints 169

nor for comparing two systems. 170

3.2. Goal function involving a reference 171

An added value to determining a pertinent solution in S is to incorporate information 172

on the system that is not given in terms of the set of MBE and inequalities. In this aim, 173

the following goal functions involve some reference pdf, say f ∗, known a priori to be 174

informative on the behavior of the ecosystem. In particular, a solution to the problem 175

obtained in a previous study, or a previous year, may not be solution to the present, but can 176

be considered as a reasonable reference. Another natural way is to consider the middle of 177

the constraint intervals, in particular to take into account regular feeding habits of most 178

species; see [3]. 179

The most classical tool in information theory is the Kullback-Leibler divergence 180

K( f | f ∗) = ∑
ij∈E

fij log

(
fij

f ∗ij

)
, (11)

where f ∗ = ( f ∗ij) is some reference pdf of flows that makes sense in terms of the ecosystem. 181

Note that [4] considers it as a "structural term". 182

The divergence is not a mathematical distance because it is not symmetric in f and f ∗. 183

Still, it is nonnegative and null only if f = f ∗, and minimizing K determines the projection 184

in terms of divergence of the reference f ∗ on the set S of solutions f to the constraints; see 185

[6] and [7]. 186

It is worth remembering that the entropy S in Equation (6) is, up to constants, the 187

Kullback-Leibler divergence with respect to the uniform distribution on the flows, with 188

f ∗ij = 1/n. This uniform distribution is well-known to maximize the entropy when no 189

information is a priori available. 190

191

A simple generalization of the quadratic function Q is the well-known χ2-distance

χ2( f ) = ∑
ij∈E

( fij − f ∗ij)
2

( f ∗ij)
2 ;

see [3] for an application, where for both for K and χ2, we have chosen f ∗ for each flow as 192

the middle of the interval defined by the inequality constraints. 193

3.3. Rényi goal functions 194

Shannon type entropy quantities have been generalized to many others, that – to the 195

best of our knowledge – have not yet been used in ecological networks. For a better fit 196

of the goal function to the problem through the choice of a parameter s, we propose to 197

consider the family of Rényi entropy, introduced in [23], and defined for positive s 6= 1 by 198

Rs( f ) =
1

1− s
log

[
∑

ij∈E
( fij)

s

]
, (12)
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with associated divergence 199

Rs( f | f ∗) = 1
1− s

log

[
∑

ij∈E

( fij)
s

( f ∗ij)
s−1

]
. (13)

The value of the parameter s has to be chosen. In a first stage, s = 1/2 and s = 2 can 200

illustrate the role of the regions separated by the threshold s = 1. Note that Shannon 201

entropy appears as the limit of Rényi entropy when s tends to 1; see [6]. 202

203

Similarly to the Shannon case, Rényi mutual information is Rényi divergence with 204

respect to the product distribution ( fi. f.j), 205

As( f ) = Rs(P|( fi.)⊗ ( f.j)) =
1

1− s
log

[
∑

ij∈E

( fij)
s

( fi. f.j)s−1

]
. (14)

The associated quantities As( f )/Rs( f ) and Rs( f )− As( f ) may also be of use in further 206

studies. 207

4. Conclusion 208

Classically in ecology, ENA indices are used to bring more information on an estimated 209

model, or as a tool for comparing two of them. Considering them as goal (cost) functions in 210

[3] opens the field to full mathematical optimization methods, as soon as the convexity of 211

the function is assessed. Adding to the collection divergence-like functions, that take into 212

account reference pdfs, should lead to a better fit to a priori information on the ecosystem. 213

Tools from extended information theory, such as Rényi’s, also may yield an optimized 214

solution that is a better fit to certain complex systems, by a pertinent choice of the parameter. 215

A fully determined food web model (one in which all the flows are known, mainly 216

from mean of observations) is presented in [2], that describes the eight habitats of the 217

Sylt-Romo Bight. These food webs are composed of 56 living compartments and 3 non- 218

living compartments. In [25], the known flows are replaced with inequalities at four 219

decreasing levels of information block per block. Then a unique solution is chosen within 220

the LIM-MCMC sample by optimizing a variety of goal functions. Some technical issues 221

of computation time regarding the R package limsolve used in this paper made the 222

randomization difficult. This will be corrected by using a new version of limsolve updated 223

in C++, that will appear soon; see [8]. Then, a meaningful comparison of goal functions on 224

the ecosystems of [2] at decreasing levels of information will be conducted by the authors. 225

Abbreviations 226

The following abbreviations are used in this manuscript: 227

228

MBE Mass-Balance Equations
pdf probabilistic density function
ENA Ecological Network Analysis
LIM Linear Inverse Modeling
MCMC Monte-Carlo Markov Chain

229
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