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Highlights: 

• We propose a new biosensor to improve patient stratification for ICI eligibility 

• High frequency fields and dielectric spectroscopy can estimate TMB in cancer cells 

• Significant changes in UHF-DEP signatures correlate with varying TMB levels 

• UHF-DEP provides a cheap, rapid and label-free method to predict ICI response 

• Offers an innovative and complementary marker to conventional diagnostic 

approaches  
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ABSTRACT 

Tumor Mutational Burden (TMB) has emerged as a crucial biomarker to guide patient 

eligibility for immunotherapy. However, whole exome sequencing, the gold-standard method 

for TMB measurement, remains limited in accessibility due to its high costs, operational 

complexity, and lengthy processing times. To address these limitations, we investigated 

whether Ultra-High-Frequency (UHF) technology could serve as a novel approach to assess 

TMB by analyzing the crossover frequencies or electromagnetic signature (EMS) of cancer 

cells on a lab-on-a-chip biosensor, integrating microfluidics and dielectrophoresis. 

In a panel of 12 cancer cell lines with varying TMB levels, we observed that EMS showed 

an upward shift correlating with higher TMB, particularly in solid tumor cell lines. This finding 

suggests a potential relationship between TMB and EMS. To further explore this hypothesis, 

we artificially increased mutation levels by treating cells with the highly mutagenic compound 

N-ethyl-N-nitrosourea (ENU). Results showed that EMS captured significant TMB variations in 

ENU-treated cells with enhanced proliferative capacity compared to their parental 

counterparts. These results underscore the importance of matched control samples for reliable 

EMS measurements. Altogether, our findings highlight the potential of EMS to detect TMB 

variations associated with proliferative activity, a key hallmark of cancer cells, thereby enabling 

a more precise stratification of cancer cells.  
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INTRODUCTION 

In the past two decades, immune checkpoint inhibitors (ICI) like anti-PD-1 (Programmed 

cell Death protein 1) and anti-PD-L1 (Programmed Death-Ligand 1) agents, have transformed 

the therapeutic landscape of many solid and hematologic malignancies by providing durable 

responses and improved tolerance (Tan et al., 2020; Shiravand et al., 2022; Salik et al., 2020). 

These therapies have become central to cancer treatment, especially for patients whose 

tumors exhibit high PD-L1 expression (Butterfield and Najjar, 2024; Chen et al., 2020). 

However, although PD-L1 is a relevant biomarker for predicting response to ICI, patients with 

low PD-L1 expression may also respond favorably to these therapies (Garon et al., 2015; 

Socinski et al., 2018; Morihiro et al., 2019; Mok et al., 2019). Notably, the FDA-approved (Food 

and Drug Administration) monoclonal antibody pembrolizumab (Keytruda), which targets PD-

1, has demonstrated efficacy in patients with low PD-L1 expression (Wakelee et al., 2023). 

Conversely, up to 15-40% of patients may fail to respond to immunotherapy despite high PD-

L1 expression (Berghmans et al., 2020). If many mechanisms may be responsible for this 

immunotolerance (Chen and Mellman, 2017), all are far from being elucidated. This variability 

in response highlights the urgent need for more accurate, robust, and comprehensive 

biomarkers to better guide ICI-based treatment decisions (Makuku et al., 2021). 

Tumor mutational burden (TMB) has attracted a great deal of interest in recent years, with 

an exponential number of data and publications in the literature. In particular, TMB has 

emerged as a crucial biomarker for predicting response to immunotherapy (Chalmers et al., 

2017; Choucair et al., 2020; Jardim et al., 2021; Aggarwal et al., 2023). TMB measures the 

total number of non-synonymous somatic mutations per megabase within the coding regions 

of a tumor genome. Tumors with high TMB, defined as ≥10 mutations/megabase (Mut/Mb), 

are more likely to respond to immunotherapy (Hellmann et al., 2018; Marabelle et al., 2020a; 

Litchfield et al., 2021; Gutierrez et al., 2023). Indeed, because mutations generate neoantigens 

or tumor-specific antigens, which the immune system recognizes as foreign, an anti-tumor 

response is triggered when ICI release the natural brakes on the immune system (Jardim et 

al., 2021; Xie et al., 2023). An accurate assessment of TMB can therefore aid in selecting 

patients who are most likely to benefit from immune checkpoint inhibitors (ICI). However, 

despite its potential, TMB measurement with the current gold standard, whole exome 

sequencing (WES), is often costly, resource-intensive, and time-consuming for routine clinical 

application (Sha et al., 2020).  

To address these limitations, we explored the potential of Ultra-High-Frequency (UHF) 

technology could serve as a novel approach to assess TMB by analyzing the crossover 

frequencies of cancer cells (Pethig et al., 2010). This approach utilizes on a lab-on-a-chip 

biosensor that integrates microfluidics and dielectrophoresis (DEP) (Hjeij et al., 2016). The 

UHF-DEP measures the electromagnetic signature (EMS) of cells by applying a high-

frequency, non-uniform field that induces movement in cells suspended in solution. While UHF-
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DEP does not directly measure mutational burden, it is tempting to speculate that UHF-DEP 

can be used to analyze various properties indirectly linked to the cells mutational status. 

Indeed, by altering the DNA sequence, mutations can lead to changes in genome and 

chromatin structures that disrupt gene expression or to changes in the genes, RNAs and 

proteins they encode. In particular, non-synonymous mutations cause either a loss or gain of 

protein function, triggering profound changes in cellular phenotype and behavior. These 

mutations can lead to alterations in cell signaling pathways, metabolic processes, and even 

cell cycle regulation and proliferation, key hallmarks of cancer cells (Hanahan and Weinberg, 

2011), all of which may contribute to increased tumor aggressiveness therapy resistance. 

Here, we propose a model in which cell EMS measured by UHF-DEP could indirectly 

provide insights into the genomic features of cancer cells. This study potentially opens new 

avenues for exploring the relationships between genotype, phenotype and biophysical 

properties, suggesting that EMS indices could be used to determine patient eligibility for anti-

cancer treatments. Our findings underscore the potential of EMS to identify high-TMB in solid 

tumor cell lines with increasing TMB and aggressiveness, thereby supporting more accurate 

stratification in cancer treatment. Future research will aim to validate these EMS-TMB 

relationships across a broader range cancer cell lines and tumors, including matched healthy 

counterparts, to strengthen of EMS’role as a predictive biomarker in oncology.  
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MATERIAL AND METHODS 

Tumor samples  

Patient DNA for TMB analysis were obtained from the Centre de Biologie et de Recherche en 

Santé (CRBioLim), as part of project 2023-027, in strict compliance with current regulations 

governing the use of biological samples for research purposes. 

 

Cell culture 

The four hematological cancer cell lines, Jurkat, MEC-1, OCI-LY10 and TH-P1 were cultured 

in RPMI 1640 medium (Gibco) supplemented with 10% fetal bovine serum (FBS), 1% 

antibiotics (penicillin and streptomycin) and 0.1% 2-mercaptoethanol (Gibco). The eight solid 

cancer cell lines, A549, H1975, U87-MG, DAOY, MEL-5, MEL-28, SW480, and SW620 were 

cultured under adherent conditions in Dulbecco's Modified Eagle Medium (DMEM) GlutaMAX 

(Gibco, Thermo Fisher Scientific, USA), supplemented with 10% FBS (IDbio, France), 1% 

antibiotics (penicillin and streptomycin, at 100 U/mL and 100 μg/mL respectively) (IDbio). All 

cell cultures were maintained at 37°C, in a humid atmosphere with 5% CO2. Cells were 

cryopreserved by freezing at -80°C in complete medium containing 10% DMSO (Sigma, 

France).  

 

ENU treatment 

H1975 and U87-MG cell lines were exposed to 100 μM of the mutagenic chemical agent N-

ethyl-N-nitrosourea (ENU, Sigma-Aldrich) for 24 hours to induce an increase in their mutational 

load. This treatment was repeated 6 times, with a one-week interval between each treatment 

cycle. 

 

Dead cells removal  

Live cell sorting was performed using the Dead Cell Removal Kit (Miltenyi Biotec, Germany) 

and MS Columns (Miltenyi Biotec), following the supplier's recommendations. Cell viability was 

systematically checked before and after sorting using the LUNA-II™ automatic cell counter 

(Logos Biosystems, South Korea) and trypan blue staining (Sigma-Aldrich). 

 

Doubling time calculation  

Cells were seeded at a known density and counted using the LUNA-II™ automated cell counter 

(Logos Biosystems, South Korea). After 48 hours, the cells were detached and counted to 

determine the final cell density. The doubling time (DT) was calculated using the formula:  
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where t is the time interval (48 hours), Nt is the final cell count, and N0 is the initial cell count. 

 

Ultra-High Frequency Dielectrophoresis 

Biological cells are polarizable entities that, when exposed to a non-uniform electric field, 

experience forces that enable their manipulation. This force, called the dielectrophoretic force 

(FDEP), depends on the cell’s intracellular dielectric properties, specifically conductivity and 

permittivity. At higher frequencies, the influence shifts predominantly to the intracellular content 

and its overall dielectric characteristics. This phenomenon has been demonstrated in previous 

studies, where ultra-high frequency dielectrophoresis was used to characterize and distinguish 

cancer stem cells by probing their intracellular content (Lambert et al., 2021; Manczak et al., 

2019). 

 

Genomic DNA extraction and qualification 

Genomic DNA was extracted using the Maxwell® CSC Blood DNA or Maxwell® CSC Genomic 

DNA kits for hematological or solid cancer cell lines respectively, on the Maxwell® CSC 

Instruments PLC (Promega, USA). The concentration of extracted DNA was measured with 

the Qubit™ BR dsDNA assay kit (Invitrogen, USA) in a Qubit™ fluorometer (Invitrogen). 

 

TMB determination by Next-Generation-Sequencing 

TMB measurement was performed on 20 ng of genomic DNA with the Oncomine™ Tumor 

Mutation Load Assay kit (Thermo Fisher Scientific). Quantification of the libraries was carried 

out using Ion Library TaqMan™ Quantification kit in the QuantStudio 5 real-time quantitative 

PCR instrument. Libraries were loaded on a Ion 540 chip with the Ion Chef™ Instrument 

sequencing array preparation system into the Ion S5™ sequencing instrument and sequenced 

with the Ion S5™ sequencing instrument. Data were analyzed with the online Ion Reporter™ 

Software. 

 

Statistical analysis 

Statistical analyses, unpaired t-test, Mann-Whitney test, ROC (Receiver Operating 

Characteristic) curves and AUC (Area Under the Curve), were carried out using GraphPad 

Prism software (version 10, Dotmatics, USA). Statistical differences were considered 

significant when the p-value was less than 0.05. Each experiment was performed at least three 

times independently, ensuring robustness and reproducibility of results.  
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RESULTS 

Biosensor to analyze EMS of cancer cells in relation to TMB  

We developed a lab-on-a-chip biosensor to measure the electromagnetic signature (EMS) 

of cancer cells based on their unique intracellular characteristics (Hjeij et al., 2016) (Figure 

1A). This device utilizes microfluidics and dielectrophoresis technologies to apply an ultra-high 

frequency, non-uniform field, which induces movement in cells in suspension (Figure 1A-C). 

The UHF-DEP signal applied to the cells is generated by a high-frequency source coupled to 

an amplifier. A splitter is used to provide the same signal to both sides of the sensor. The signal 

is applied using radio-frequency (RF) probes that contact RF coplanar waveguide (CPW) lines 

matched to 50 ohms. To prevent standing wave effects and to account for the high impedance 

of the sensor, 50-ohm (50 Ω) loads are added. The signal applied to the electrodes is 

monitored on an oscilloscope (Scope) to verify the generated waveform quality. A flow 

controller that applies pressure to circulate cells in a microfluidic channel in contact with the 

sensor controls the fluidic part. When a cell is stopped in the middle of the quadrupole a 

negative DEP (nDEP) signal in high frequency is applied (in the example at 250 MHz in Figure 

1D), causing the cell to center itself in the region where the electromagnetic field gradient is 

weakest (Black square area in Figure 1E). By gradually decreasing the frequency, a slight 

movement of the cell can be observed, and by decreasing it again until the cell switches to 

positive DEP (pDEP), the cell will continue to move towards a lateral electrode (white square, 

Figure 1E). The frequency at which the cellular movement begins is defined as the UHF 

crossover frequency. For the cell A, the crossover frequency is 230 MHz and 215 MHz for the 

cell B (Figure 1D). This measurement is repeated on several cells for each sample. While UHF-

DEP does not directly measure mutational burden, it can be used to analyze various 

intracellular properties indirectly linked to the cells mutational status (Figure 1F). Indeed, by 

altering the DNA sequence, mutations can lead to changes in genome and chromatin 

structures disrupting spatial genomic organization, transcriptomic and proteomic modifications. 

In particular, non-synonymous mutations cause either a loss or gain of protein function, 

triggering profound changes in cellular phenotype and behavior. 

Altogether, these consequences of DNA damage suggest investigating whether EMS can 

indirectly provide insights into the TMB status of cancer cell lines.  
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Analysis workflow development: focus on maintaining cell viability  

Although EMS depend on several factors, cell viability is a key variable affecting 

measurements. To avoid these biases, we designed a workflow comprising three steps (step 

1 to 3) to eliminate and preserve viable ones before assessing the EMS and TMB 

measurements of the selected cancer cell line panel (Figure 2A). Indeed, both molecular and 

cellular changes occurring in dying cells introduce significant biases: (i) alterations in cell 

structure, and (ii) loss of DNA information following cell membrane disruption. Using a dead 

cell removal assay, we significantly enriched the proportion of live cells (p<0.0001, Figure 2B) 

prior to suspending them in DEP buffer. This buffer is essential for performing EMS 

characterization with UHF-DEP (Figure 2C). As expected, EMS values were significantly lower 

in unsorted cells compared to sorted live cells, likely due to the influence of cell death 

(p<0.0001, Figure 2C). This buffer called DEP, was especially designed to be compatible with 

both the conductivity (anionic) required for EMS analysis and the physiological osmolarity of 

cells. Likewise, we analyzed the safety of the DEP buffer concerning cell viability throughout 

the entire handling process. We observed that cell viability decreases by more than 10% 

(p<0.0001) after 90 minutes of incubation in a time-course study (Figure 2D). To comply with 

this requirement, the cell handling time after sample preparation (Figure 2A, step 2) was limited 

to a maximum of 90 minutes to ensure that cell death remained below 10% during EMS 

characterization (Figure 2A, step 3).  

Altogether, this workflow preserves cell viability allowing accurate TMB characterization and 

improving the reliability of our analyses to better reflect the true biological state of the samples. 
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Correlation of tumor mutational burden and crossover frequency in cancer models 

Because one major feature of malignant cells lies in the heterogeneity of their mutation 

levels, we selected a panel of 12 human cancer cell lines representative of both liquid 

(hematological) or solid cancers (Figure 3A). After removing dead cells, we extracted DNA as 

templates for TMB measurement before ensuring that each DNA sample met the TMB quality 

control standards to rule out DNA degradation (data not shown). Then, we analyzed their 

respective TMB score using the Oncomine™ oncology assay. This panel offers the possibility 

to use a tumor-only workflow without the need for a matched normal sample, similar to 

Foundation Medicine (FMI). Indeed, cancer cell lines lack matched normal cell counterparts. 

Hence, before to assess the accuracy of the Oncomine™ panel we firstly used as templates 

DNA from two different solid tumor samples (Tumor A and B) for which FMI already assessed 

TMB (Figure 3B). The Oncomine™ assay revealed TMB level trends like to those observed 

with FMI, with score differences attributed to variations in gene types, quantity, and sequencing 

coverage. Following these crucial steps, we assessed TMB in cancer cell lines and obtained 

values ranging from 3.69 to 114.31 Mut/Mb (Figure 3A). These results indicate broad variability 

in the mutation burden among the different cell lines used, providing a range of TMB values. 

This range serves as a valuable reference for comparing TMB across samples, highlighting 

differences that could influence EMS. Based on this, we first analyzed solid cancer cell lines, 

which harbor EMS values ranging from 147 to 284.5 MHz (Figure 3C). The box plot shows cell 

lines in ascending order of TMB, ranging from 3.69 to 17.97 Mut/Mb. A crossover frequency 

near 210 MHz (grey dashed line) appears to differentiate two populations based on the FDA-

defined TMB cutoff of 10 Mut/Mb: high (purple) and low (light blue) (Figure 3C). H1975 and 

MEL-28 cells have adjacent TMB value to the cutoff of 10 Mut/Mb (respectively 9.56 vs 11.66 

Mut/Mb) and EMS values (213 vs 212 MHz), positioning them centrally within the model 

(Figure 3C). When cell lines were grouped by the FDA’s TMB cutoff (Low in light blue; High in 

Purple) EMS values showed a significant increase with higher TMB (p<0.0001) (Figure 3D) 

and a positive Pearson correlation (r=0.56, p=0.0314) (Figure 3E). Conversely, hematological 

cancer cell lines, which harbor the higher TMB of 114.31 Mut/Mb, particularly Jurkat cells 

(Figure 1A), compared to others, with TMB values ranging from 5.41 to 7.97 Mut/Mb, no 

significant variation were observed in EMS measurements (Figure 3F). Indeed, difference in 

crossover frequencies remained around 10 MHz (262 to 272 MHz) (Figure 3G), with no 

significant correlation between EMS and TMB (Figure 3H).  

Altogether, our findings suggest a correlation between TMB and EMS, especially in solid 

cancer cell line following the FDA-defined threshold of 10 Mut/Mb. Results in hematological 

cell line suggest that Oncomine™ panel could not be pertinent. 
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Relevance of EMS for determining TMB: validation with CCLE data 

However, previous TMB variations between Oncomine™ and FMI in patient samples 

(Figure 3B) highlight the need for careful validation when applying different panels for TMB 

measurement across various tumor types, particularly in relation to EMS measurements that 

can further influence the interpretation of TMB. Consequently, we sorted and curated publicly 

available TMB data from the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al., 2019) and 

the Broad Institute via cBioPortal (https://www.cbioportal.org/) (Cerami et al., 2012). 

Interestingly, in most cases, TMB values from CCLE were higher than those obtained with the 

Oncomine™ assay, likely due to differences in gene selection, quantity, and sequencing 

coverage (Figure 4A). A Spearman correlation analysis indicated a strong and significant 

correlation between experimental TMB values obtained using Oncomine™ panel and those 

from CCLE (r=0.94, p<0.0001) (Figure 4B). Notably, the CCLE data places the intermediate 

cell line H1975 over the FDA-defined TMB cutoff of 10 Mut/Mb (11.36 Mut/Mb), underscoring 

the need for careful validation of TMB values depending on the panel used. Hence, using the 

CCLE-based TMB values to the previous EMS obtained for each cell lines, we also categorized 

two populations based on the FDA-defined TMB cutoff of 10 Mut/Mb: high (purple in the box 

plot) and low (light blue in the box plot) (Figure 4C and 4D). Using EMS data grouped by TMB 

levels, we found that an EMS around 200 MHz significantly distinguishes cells with high TMB 

from those with low TMB only in solid cancer cell lines (p<0.0001) (Figure 4D). However, 

adding EMS data from hematological cell lines disrupt this model, significantly reducing 

sensitivity, with the difference becoming only weakly significant (p<0.05) (Figure 4D). The ROC 

curve generated from EMS results of solid cancer cell lines using the FDA TMB cutoff of 10 for 

low and high TMB, indicates relevant AUC values (Area Under the Curve) (Figure 4E). The 

dark line represents an AUC of 0.86 for the Oncomine™ panel, while the light blue line 

indicates an AUC of 0.93 for CCLE, confirming the strong accuracy of EMS in discriminating 

solid cancer cells based on their TMB (Figure 4E). 

Altogether, these findings suggest that EMS can predict indirectly the TMB level in solid 

cancer cell lines.   
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Assessing TMB and EMS in response to evolving mutations 

Given previous results suggesting that an EMS cutoff around 200 MHz can predict a TMB 

threshold above 10 Mut/Mb in solid cancer cell lines, we conducted further analyses to 

investigate whether EMS could monitor TMB changes in response to accumulating mutations. 

Due to the absence of matched normal samples for comparison with cancer cell lines, and 

considering that cancer is an evolving genetic disease, we artificially increased mutation levels 

in cell lines with either low (U87-MG) or intermediate (H1975) TMB scores. We then monitored 

changes in EMS, specifically observing whether TMB exceeded the FDA cutoff of 10 Mut/Mb 

compared to their respective parental cell lines. To test this hypothesis, we treated cells with 

the highly mutagenic compound N-ethyl-N-nitrosourea (ENU) at a concentration of 100 μM for 

24 hours, repeating this cycle multiple times. We arbitrary conducted six consecutive cycles of 

ENU treatment, tracking EMS as the cells acquired new mutations or affecting their respective 

TMB (Figure 5A). Likewise, since ENU induces random mutations that may or may not 

influence cell fate, we assessed whether these hereditary mutations confer positive or negative 

advantages by selecting a cancer cell population with an increased proliferative doubling time.  

Interestingly, we observed that ENU treatment decreased the doubling time of U87-MG 

cells, suggesting that newly acquired mutations positively select for a cell population (Figure 

5B). In contrast, the doubling time of H1975 cells increased from the early cycles of ENU 

treatment (Figure 5E). TMB measurements in terms of fold change relative to control in both 

cell lines reveal opposite effects of ENU, with a rapid TMB increase in H1975 cells (pink curves, 

Figure 5F) compared to U87-MG cells, which show a general slowdown until reaching a peak 

at the fifth cycle of ENU (pink curves, Figure 5C). However, the number of variants, indicating 

DNA sequence variation, increased from the second cycle of ENU in U87-MG cells (black 

curves, Figure 5C) while remaining with a minimal increase in H1975 cells (black curves, 

Figure 5F). Interestingly, only U87-MG cells exhibited a continuous increase in EMS 

throughout the ENU cycles (green curves, Figure 5C). In contrast, the EMS evolution in H1975 

(green curves, Figure 5F) cells appeared to depend on the paired ENU cycles, showing a 

tendency to decrease. Strikingly, U87-MG cells exceeded the EMS cutoff of 200 MHz from the 

third ENU treatment cycle onward (Figure 5D), although their TMB score remained below the 

FDA cutoff of 10 Mut/Mb. Likewise, although ENU-treated H1975 cells exceeded 10 Mut/Mb 

depending on the ENU cycle (Figure 5G), their associated EMS remained below 200 MHz. 

Analysis of mutation patterns (Figure 5D and 5G) reveals a difference in the heritability of 

mutations between U87-MG and H1975 cells. In U87-MG, the mutation pattern remains stable 

from the fifth ENU cycle, while H1975 exhibits an almost complete mutation pattern from the 

early ENU cycles. Similarly, the difference in the number of mutated genes in H1975 cells may 

trigger negative selection, as evidenced by their increased doubling time.  

Altogether, these results indicate that EMS and TMB are not necessarily correlated and 

underscore the importance of matched controls. EMS may reflects cell state variation that are 
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influenced by mutation types in TMB, which can impact cell fate through positive or negative 

selection. 
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DISCUSSION 

Biomarkers, whether prognostic or predictive of treatment response, form the foundation of 

personalized medicine, one of the main public health challenges in oncology worldwide. 

Developing new tools capable of rapidly assessing these biomarkers, to minimize loss of 

opportunity, and affordably, to reduce costs for society is a key objective of translational and 

interdisciplinary research to further refine patient stratification. The emergence of immune 

checkpoint inhibitors (ICIs) has radically transformed treatment in numerous cancers with a 

growing need to optimize patient selection and develop reliable biomarkers (Rui et al., 2023). 

TMB is emerging as a potential biomarker and has been FDA-approved to determine patient 

eligibility for pembrozulimab (Marabelle et al., 2020b). However, significant challenges remain 

before its widespread and effective adoption, particularly due to the high cost, resource 

demands, and time requirements of whole exome sequencing, the primary method for 

measuring TMB, which limits routine clinical application (Sha et al., 2020). Additionally, there 

are ongoing uncertainties about the applicability of a universal threshold of 10 mut/Mb 

(Budczies et al., 2024). To address these limitations, we explored Ultra-High-Frequency 

technology as a novel method to assess TMB by analyzing cancer cell crossover frequencies. 

Mutations alter DNA sequences, potentially affecting gene expression and protein function, 

and leading to changes in signaling pathways, metabolism, cell cycle, and proliferation, 

hallmarks of cancer (Hanahan, 2022). Although UHF-DEP does not directly measure 

mutational burden, it may enable indirect analysis of mutation-linked properties.  

The workflow we developed using UHF-DEP demonstrated its ability to distinguish cells 

with high TMB, based on a cutoff of 200 MHz. High and Low TMB classification was determined 

by Oncomine™ and defined as ≥ 10 Mut/Mb according to FDA approval, without requiring the 

companion diagnostic test performed by FMI. While this approach is applicable to solid cancer 

cell lines, hematological cells do not follow this rule. Interestingly, we observed a correlation 

between EMS and TMB across the various solid cancer cell lines analyzed. However, results 

obtained after treatment with the highly mutagenic agent ENU lead us to make certain 

recommendations. ENU induces random mutations in the genome, even though this type of 

mutagenesis does not follow the pathophysiological processes typically seen in oncogenesis. 

ENU treatment cycles drive dynamic changes in the genome (TMB and variant counts) and 

variations in EMS. This suggests that TMB might be better considered as a measure of 

variation between the original cell and the transformed cell, rather than as an absolute value. 

Further experiments are needed to test this hypothesis, such as inducing oncogenic 

transformation through a more pathophysiological process or using primary cancer cells 

directly. In clinical applications, this would imply comparing the EMS of tumor cells to that of 

their healthy counterparts, which would provide more relevant references. This study 

underscores the potential of UHF-DEP technology to refine biomarker assessments, 

particularly for TMB, enhancing patient stratification for immune checkpoint inhibitor (ICI) 

therapies. By enabling the detection of TMB variations, UHF-DEP could complement existing 
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diagnostic tools, facilitating more personalized and accurate treatment selection in oncology 

(Figure 6). 
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FIGURE LEGENDS 

 

Graphical abstract.  
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Figure 1: UHF-DEP biosensor for TMB estimation. 

(A) Schematic diagram of the characterization setup where the crossover frequencies 

measurements are performed: with in red the signal pathway from the high-frequency source 

(UHF) to an amplifier and to a splitter. The signal is applied using radio frequency (RF) probes. 

The signal applied to the electrodes is monitored on an oscilloscope (scope) to verify the 

generated waveform quality. The fluidic part in violet is controlled by a flow controller that 
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applies pressure (in grey) to circulate cells in a microfluidic channel in contact with the sensor. 

All the references of the setup devices are represented on the left rectangle. (B) Photograph 

of the electromagnetic (EM) sensor under the probes and the microscope. The black circular 

components represent the 50-ohm loads. (C) Zoom on the sensors implemented in the 

microfluidic channel. This illustrates the coplanar waveguide (CPW) lines that connect multiple 

quadrupole sensors. (D) Measurement of crossovers frequencies with one sensor: 

dielectrophoretic force (FDEP) response of a cell A in blue under an UHF applied signal for 

frequencies between 250 and 205 MHz. The crossover frequency ���� is measured at 230 

MHz by passing from a negative force (nDEP) to a positive and attractive force (pDEP). And 

dielectrophoretic force response of a cell B in red under an UHF applied signal for frequencies 

between 250 and 205 MHz. The crossover frequency ���� is measured at 215 MHz. (E) 

Numerical simulation of the biased quadrupole in a non-uniform electric field (COMSOL 

Multiphysics®). The scale color corresponds to the normalised electromagnetic (EM) field 

gradient intensity (�
�

��� V2/m3). The black square represents the weakest EM field gradient 

area. The white squares represent the strongest EM field gradient areas, where the cells will 

be attracted. (F) Impact of TMB status on dielectric intracellular properties and their detection 

through EMS. This schematic illustrates the various intracellular consequences associated 

with TMB status, including genomic alterations, chromatin rearrangements, spatial genomic 

reorganization, transcriptomic modifications, and proteomic changes. These alterations can 

modify intracellular dielectric properties, leading to variations in EMS that can be detected by 

the UHF-DEP biosensor, highlighting its potential utility in assessing TMB-related cellular 

characteristics. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.05.622085doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.05.622085


 25

 

Figure 2: Analysis workflow for ensuring cell viability in reliable EMS and TMB 

assessment. 

(A) Workflow for assessing EMS and TMB in cancer cell lines. This schematic illustrates the 

three-step analysis process. Step 1 outlines the selection of a cancer cell line panel 

characterized by variable TMB levels, ranging from low to high. Step 2 details the sample 

preparation process, where cells are consistently cultured and prepared using standardized 

and normalized methods. This includes magnetic labeling and cell sorting, resulting in a live 

cell fraction suspended in DEP buffer. Step 3 depicts the characterization of crossover 

frequency using UHF-DEP, conducted over a 90-minute period following the initiation of DEP 

incubation. TMB measurement is performed using the Oncomine™ targeted NGS panel, with 

the mutational load calculated by normalizing non-synonymous somatic mutations against the 

total exonic bases that have sufficient coverage. (B) Improved viability of cell population post-

sorting. The scatter dot plot with bar illustrates the percentages of viable cells in the population 

before and after the sorting process across a panel of cancer cell lines (H1975, A549, MEL5, 

MEL28, SW480, SW620, OCI-LY10, and U87-MG), with a total of 30 samples analyzed. Data 

are presented as mean values ± standard deviation (SD). Prior to sorting, the mean viability 

was 92.03% (±4.273), with values ranging from 82.60% to 98.70%. Following the sorting 

process, the mean cell viability significantly increased to 97.22% (±1.634), with a range of 

94.00% to 100%. The enhancement in cell viability following sorting was statistically significant, 

as determined by an unpaired t-test (**** p < 0.0001). (C) Crossover frequency of H1975 sorted 

living cells compared to unsorted cells. The scatter dot plot displays individual crossover 

frequency measurements in MHz for sorted living cells (N=157) and unsorted cells (N=102). 

The median crossover frequency for sorted living cells was 213.0 MHz, with an interquartile 

range (IQR) of 166.0 to 256.0 MHz. For unsorted cells, the median was 150.5 MHz, with an 

IQR of 96.25 to 231.3 MHz. The enrichment of viable cells significantly increased crossover 
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frequencies, as determined by the Mann-Whitney test (**** p < 0.0001). The shaded area 

indicates the range of crossover frequencies for unhealthy cells. (D) Measurement of cell 

viability in H1975 cells incubated in DEP buffer over time post-sorting. Cell viability remained 

above 90% for approximately 100 minutes of incubation (n=7). The red shaded area indicates 

the critical viability threshold set at 90%. 
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Figure 3: Positive correlation between EMS and TMB in solid cancer cell lines.  

(A) EMS and TMB across selected panel cell lines. This table lists the median EMS values (in 

MHz) and corresponding TMB scores (using the Oncomine™ assay, in Mut/Mb) for selected 

hematological and solid tumor cancer cell lines. (B) Validation of our TMB calculation method. 

This table presents TMB values obtained from two assays: Foundation Medicine® (FMI) and 

Oncomine™. The negative template control serves as an experimental blank, showing a TMB 

of -1 for Oncomine™. For Tumor A, the TMB is 0 for FMI and 1.78 for Oncomine™, while for 

Tumor B, the TMB values are 117 for FMI and 90.18 for Oncomine™. The Oncomine™ assay 

revealed TMB level trends similar to those observed with FMI, this consistency supports the 

validation of our method for determining TMB. (C) The scatter plot displays individual crossover 

frequency measurements for the solid tumor cancer cell lines included in the panel. Each point 
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represents a distinct measurement, with median values indicated by the horizontal lines and 

error bars representing IQR. The low TMB group is defined as having TMB values less than 

10 Mut/Mb, while the high TMB group includes those with TMB values equal to or greater than 

10 Mut/Mb. (D) The violin plot compares crossover frequencies categorized by low and high 

TMB levels based on the Oncomine™ assay for solid tumor cancer cell lines. For the low TMB 

group, the median crossover frequency was 178.0 MHz (IQR: 135.0 to 223.5 MHz). For the 

high TMB group (N=868), the median was 238.0 MHz (IQR: 203.0 to 273.0 MHz). The 

significant difference in crossover frequencies between low (blue) and high (purple) TMB 

groups was assessed using an unpaired t-test (**** p < 0.0001), indicating that higher TMB is 

associated with increased crossover frequency. (E) Linear regression of the relationship 

between crossover frequency and TMB in solid tumor cancers models. Data points represent 

SEM median and TBM for each cell line. A vertical dotted line indicates the TMB cutoff of 10 

Mut/Mb. The linear regression analysis demonstrates a positive correlation between TMB and 

crossover frequency (R² = 0.5655; p value =  0.0314), indicating statistical significance. This 

suggests that increased TMB is associated with higher crossover frequencies in the tested 

solid tumors. (F) The scatter plot displays individual crossover frequency measurements for 

the hematological cancer cell lines. (G) The violin plot compares crossover frequencies 

categorized by low and high TMB levels for hematological cancer cell lines. For the low TMB 

group (N=612), the median crossover frequency was 262.0 MHz (IQR: 225.3 to 297.0 MHz). 

For the high TMB group (N=171), the median was 272.0 MHz (IQR: 247.0 to 300.0 MHz). The 

significant difference in crossover frequencies between low (blue) and high (purple). (H) Linear 

regression of the relationship between crossover frequency and TMB in hematological cancer 

models. Data points represent the median crossover frequency and TMB for each cell line. 

The linear regression analysis shows no correlation between TMB and crossover frequency 

(R² = 0.02375; p value = 0.8459), indicating no statistical significance. This suggests that 

variations in TMB do not significantly influence crossover frequencies in the tested 

hematological cancers. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.05.622085doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.05.622085


 29

 

Figure 4: EMS accurately predict TMB in solid cancer cell lines: validation with CCLE 

data. 

(A) Comparison of Tumor Mutational Burden (TMB) Measurements from Oncomine™ and 

CCLE. This table presents TMB values (in Mut/Mb) obtained from two assays for various 

cancer cell lines, comparing results from the Oncomine™ panel with those from the Cancer 

Cell Line Encyclopedia (CCLE). (B) Spearman Correlation of Tumor Mutational Burden (TMB) 

from Oncomine™ and CCLE. The scatter plot illustrates the correlation between TMB values 
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(in Mut/Mb) obtained from the Oncomine™ assay and those from the Cancer Cell Line 

Encyclopedia (CCLE). Each data point represents the TMB measurement for a specific cancer 

cell line. A strong positive Spearman correlation (r = 0.9422; p < 0.0001, 95% confidence 

interval: 0.7949 to 0.9846) was observed, indicating a significant relationship between TMB 

values from both assays. The shaded area represents the 95% confidence interval, with the 

boundaries indicated by the dotted black lines. (C) Crossover frequency in both solid and 

hematologic cancer cell lines based on TMB from CCLE. The cancer cell lines are arranged 

along the y-axis, with those above the defined TMB cutoff of 10 Mut/Mb indicated in purple 

(high TMB) and those below in blue (low TMB). The plot represents crossover frequency as 

box and whiskers, where the whiskers extend to the 10th and 90th percentiles. (D) The scatter 

dot plot displays crossover frequency measurements categorized by low and high TMB levels, 

as determined by CCLE data. The left side of the plot shows results for solid tumor cancers 

only, with the low TMB group (N=300) having a median crossover frequency of 160.0 MHz 

(IQR: 118.3 to 199.0 MHz) and the high TMB group (N=1025) showing a median of 235.0 MHz 

(IQR: 195.0 to 271.0 MHz). The right side of the plot includes both hematological and solid 

tumor cancers, where the low TMB group (N=912) has a median crossover frequency of 237.0 

MHz (IQR: 174.0 to 281.0 MHz), while the high TMB group (N=1196) has a median of 241.5 

MHz (IQR: 205.0 to 276.0 MHz). The significant difference in crossover frequencies between 

low and high TMB groups in both categories was assessed using the Mann-Whitney test (* p 

< 0.05; **** p < 0.0001), indicating that higher TMB is associated with increased crossover 

frequency especially in solid tumor cancer cell lines. (E) Receiver Operating Characteristic 

(ROC) Curves for TMB Prediction in Solid Tumor Cancers. The ROC curves illustrate TMB 

prediction based on data from the Oncomine™ and CCLE assays, with classification applied 

at a cutoff of 10 Mut/Mb for each panel. The dark blue curve represents the Oncomine™ 

classification, with an area under the curve (AUC) of 0.8697 (95% confidence interval: 0.7224 

to 1.000; p value = 0.0015). The cyan curve represents the CCLE classification, with an AUC 

of 0.9333 (95% confidence interval: 0.8382 to 1.000; p value = 0.0016). These results indicate 

a high level of accuracy for both panels in distinguishing between high and low TMB levels in 

solid tumor cancers. 
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Figure 5: Tracking the Evolution of TMB and Electromagnetic Signatures in Response 

to Induced Mutations. 

(A) This diagram illustrates the timeline and procedures for inducing mutations in cancer cell 

lines using 100 μM ENU treatment. Step 1: Mutation Induction. One million cells from the U87-

MG and H1975 cell lines are seeded and treated with ENU (100 μM) in complete medium for 

24 hours, starting 2 days post-seeding (d2). After ENU exposure, the cells are washed and 

incubated for 1 week (1w). ENU treatment is repeated for a total of six cycles. Following the 

last treatment, ENU-treated cells are harvested and divided for further ENU treatments and 

cryopreservation for subsequent analysis. Step 2: Simultaneous EMS and TMB Analysis. EMS 

and TMB analyses are performed simultaneously, allowing for the evaluation of the correlation 
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between induced mutations and changes in TMB and EMS. (B and E) This graph illustrates 

the doubling time in hours for U87-MG and H1975 cells across six cycles of ENU treatment. 

The shaded regions differentiate between negative selection (beige) and positive selection 

(green), illustrating the impact of ENU-induced mutations on the growth dynamics of the cell 

lines. (C and F) EMS and TMB data were collected for each cycle of ENU treatment in the 

U87-MG and H1975 cell lines, along with the number of variants identified. The number of 

variants corresponds to a specific alteration of the DNA sequence compared to the reference 

sequence, such as a point mutation, an insertion, a deletion, or another type of genetic change. 

The analysis of variant and TMB calculation was conducted using Ion Reporter software, patch 

5.18, with the “TMB extended' option”. For each cell line, values were normalized against the 

control condition (untreated wild-type cells) and expressed as fold change relative to control. 

(D and G) Phylogenetic analysis of induced mutations across ENU treatment cycles in U87-

MG and H1975 cell lines. Genes that are conserved across the different ENU cycles (1X to 

6X) are highlighted in bold, with respective TMB and EMS value annotated. In U87-MG cells, 

mutations in key genes are involved in tumor suppression and transcriptional regulation, 

appeared and were conserved across ENU cycles, suggesting a potential selective advantage. 

In H1975 cells, mutations in oncogenes and tumor suppressor genes were preserved across 

ENU cycles. 
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Figure 6: Leveraging UHF-DEP for enhanced therapeutic decision-making in cancer 

treatment.  

This schematic illustrates the potential application of the UHF-DEP tool in guiding therapeutic 

decisions for cancer patients. By characterizing tumor cells obtained from biopsies or surgical 

procedures, UHF-DEP can effectively discriminate between low and high SEM, which reflect 

low and high TMB, respectively. The integration of UHF-DEP with existing biomarkers aims to 

refine patient eligibility for ICI, enhancing the stratification of cancer patients. Those identified 

with high TMB through UHF-DEP can be prioritized for ICI therapy. In contrast, patients with 

low TMB may be directed towards alternative cornerstone treatment options, including surgery, 

radiation, targeted therapies, or cytotoxic chemotherapy. This approach not only optimizes 

patient outcomes by ensuring that those who are most likely to benefit from ICI are identified 

and treated accordingly, but it also streamlines therapeutic pathways within the overall 

treatment algorithm for cancer care, limiting analysis costs per patient and providing rapid 

responses. 
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