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Abstract: Beehive health monitoring has gained interest in the study of bees in biology, ecology, and
agriculture. As audio sensors are less intrusive, a number of audio datasets (mainly labeled with the
presence of a queen in the hive) have appeared in the literature, and interest in their classification
has been raised. All studies have exhibited good accuracy, and a few have questioned and revealed
that classification cannot be generalized to unseen hives. To increase the number of known hives,
a review of open datasets is described, and a merger in the form of the “BeeTogether” dataset on
the open Kaggle platform is proposed. This common framework standardizes the data format and
features while providing data augmentation techniques and a methodology for measuring hives’
extrapolation properties. A classical classifier is proposed to benchmark the whole dataset, achieving
the same good accuracy and poor hive generalization as those found in the literature. Insight into
the role of the frequency of the classification of the presence of a queen is provided, and it is shown
that this frequency mostly depends on a colony’s belonging. New classifiers inspired by contrastive
learning are introduced to circumvent the effect of colony belonging and obtain both good accuracy
and hive extrapolation abilities when learning changes in labels. A process for obtaining absolute
labels was prototyped on an unsupervised dataset. Solving hive extrapolation with a common open
platform and contrastive approach can result in effective applications in agriculture.

Keywords: beehive monitoring; queen presence detection; bee acoustics; machine learning; classification;
generalization; contrastive learning

1. Introduction

There is an increasing interest in bee audio monitoring, as evidenced by publication
trends, peaking in the most recent years. This uptick corresponds to an increasing recog-
nition of the critical role that bees play in ecological sustainability and to an economic
interest in monitoring beehives for agricultural purposes. These needs align with the
mature technology in remote sensing and the Internet of Things (IoT), which offer access to
large databases created by the scientific community, leading to the possibility of applying
modern classification techniques using machine learning and deep learning. In this con-
text, bee audio monitoring emerges as an interdisciplinary research field that attracts the
attention of researchers, as shown in Figure 1.

Tremendous hardware monitoring solutions have been proposed and discussed in the
literature, and they involve a wide variety of sensors, such as temperature, humidity, hive
weight, video, and acoustic and mechanical vibration sensors [1–3].

Continuous weight measurement raises a challenge due to thermal and mechanical
drift compensation, which may explain the lack of open databases and publications on
this topic, although it is central in agricultural exploitation. Although video or image
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measurements can be widely found, mainly as innovative applications of image processing,
the problems of cost and data size when targeting agricultural applications on a large
scale have been raised. Airborne audio sensing represents a good trade-off between the
relevance of information on the hive state, non-intrusive sensing, low maintenance, low
cost, and a small data size.

Thus, a number of databases of audio data have appeared in the last five years, and
they have becoming a classical application domain for machine learning classification
techniques. Section 2.1 reviews the audio datasets and their characteristics, including if
they are supervised or not, their features, their size, and the number of hives.

Figure 1. Number of articles published on bee audio monitoring per year.

1.1. Importance of Sound in Beehive Communication

Beyond pheromones and visual interactions, sound plays a crucial role in honeybee
communication and social organization. The pioneering work of Wenner [4] first high-
lighted the significance of sonic communication among honeybees. Further studies, e.g., [5],
provided a more detailed analysis of the specific sounds produced by honeybee queens,
such as the “tooting” and “quacking” signals. The “waggle dance”, a behavior that has
been well documented for its role in communicating the location of food sources to hive
mates, was found to incorporate both sound and vibration signals.

This finding sheds light on how these signals are integrated into the dance language,
enhancing our understanding of bee communication dynamics. Further research by [6] ex-
panded on these insights by examining acoustic communication in honeybees, elucidating
the role of vibratory signals produced not only by queens but also by worker bees. This
study highlighted how these signals are transmitted through the hive’s comb structure
and perceived by bees, facilitating critical social interactions, such as food sharing and the
coordination of hive activities.

Although mechanical vibrations appear to be involved in communication [7] and
MEMS (microelectromechanical system) accelerometers or piezoelectric sensors can be
used to measure them [8,9], very few works on that topic can be found, and vibrations have
not been investigated as main or complementary features [2].

1.2. Applications and Audio Datasets

Understanding the importance of sound within a bee colony has led to various ef-
forts to exploit these data in order to aid beekeepers by developing methods for mon-
itoring the health of colonies. More recent works have utilized modern digital signal
processing techniques and machine learning algorithms to delve deeper into this complex
communication system.

Ferrari et al. [10] aimed to develop a method for the early detection of the swarming
period in bee hives. By recording and analyzing the sounds within bee hives directly,
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along with temperature and humidity measurements, the goal was to identify specific
acoustic signatures and environmental patterns associated with swarming. The goal of
this approach was to enable beekeepers to anticipate and manage swarming events more
effectively, thereby reducing the economic impact of lost honey production and improving
overall hive management practices.

Recent studies initiated by [11,12] shifted the focus toward analyzing the sounds
emitted by honeybees using advanced feature extraction techniques such as the Mel-
frequency cepstrum coefficient (MFCC). The objective was to classify different scenarios
within hives to monitor the health of bee colonies. These studies concentrated on identifying
the presence of bees in an audio file, leading to the development of innovative methods for
health monitoring.

Furthermore, comprehensive reviews [13–15] emphasized the growing significance of
sound analysis for the non-invasive monitoring of bee hives. These reviews showcased how
sounds within a hive could reveal pivotal information about colony health and facilitate the
detection of variations using simple equipment, such as a microphone and an acquisition
system. The evolution of sound analysis methods, from early observations to sophisticated
algorithms capable of classifying complex beehive states, demonstrates the increasing
recognition of acoustics as a crucial parameter for beehive monitoring.

The presence of a queen bee within a colony has become a health metric that has been
analyzed in several articles (e.g., [11,13,16–21]). This critical factor highlights the queen’s
essential role in colony stability and productivity.

In summary, the academic community focuses on the following two indicators for
extraction through audio classification:

• Bee–NoBee: This indicates if a significant bee buzz is recorded and preponderant with
respect to interference and noise (human voices, animals, cars, etc.);

• Queen–NoQueen: This indicates if an accepted queen is present in the hive.

Only the Queen–NoQueen indicator is relevant for agriculture. Note that there is a lack
of annotated datasets, which prevents the study of indicators such as honey production,
varroa infestation, and hornet attacks.

1.3. Hive Extrapolation Problem

Most of publications in the literature focused on the performance of the classification
of audio recordings based on previous indicators. This approach is a classical application of
different machine learning (ML) techniques. However, only a few articles have addressed
the question of extrapolation from one hive to another—in particular, unseen hives. This is
an important topic, as it is essential to assess if the obtained ML model can be used to mon-
itor the health of many bee colonies. To the extent of our knowledge, only Nolasco [12,22],
Terenzi [13,23], and Orlowska [17] have discussed the hive extrapolation properties of their
solutions. The authors of [1,24] also mentioned the issue of non-extrapolation between
distinct hives.

Nolasco and Terenzi worked on the NUHIVE dataset [25], which is only composed
of two hives labeled with Queen–NoQueen. In their article, they studied several features
and classification models, and they isolated one hive during the learning phase to test
extrapolation. While the obtained models were accurate with respect to the hives used
for training, none of the models extrapolated properly to the other hives in the dataset.
Orlowska worked on the TBON database [26], which is composed of the NUHIVE [25] and
OSBH [27] databases, which constitute 65% and 55%, respectively. The results are similar,
i.e., the models do not generalize to unseen hives.

There is clearly a lack of diversity due to the low number of available measured hives.
Thus, while the models separate the labels for each hive well, they have a blind spot when
considering any newly introduced hives that are not aligned with those used in the the
learning phase.
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Data augmentation (DA) can artificially increase diversity and help in solving the prob-
lem of extrapolation. Various augmentation types have been introduced in the literature
for this application.

• Additive noise: The authors of [17] artificially increased the number of audio record-
ings in their training dataset by 50% with the addition of white Gaussian noise to
the existing data. The variance in the noise signal was defined in order to obtain a
resulting signal-to-noise ratio (SNR) that was equal to 30 dB.

• Time slicing and shifting: The authors of [20] increased the number of training sam-
ples through the splitting of audio files into smaller chunks (0.5, 1, 3, and 5 s) with
no overlapping.

• Frequency shifting: The authors of [12] augmented data by periodically shifting the
training examples in time and applying random pitch shifting.

Noise, time slicing, and shifting are independent from hive to hive and do not increase
the hive diversity of a dataset. Frequency shifting has been discussed more extensively,
and Terenzi suggested not to use pitch-shifting DA because most of the information seems
to be carried by the signal frequencies [23]. Although Terenzi suggested that frequency
shifting could be misleading, Nolasco used this augmentation technique. However, no
study has investigated the actual impact of this type of DA on classification performance
and extrapolation between hives.

1.4. Approach of this Study

This study addresses the hive extrapolation properties of hive health detection using
audio. The Materials and Methods section (Section 3) explains how a maximum number of
open datasets is joined into a single dataset to increase hive diversity. This joint dataset is
published on the collaborative platform Kaggle and is named BeeTogether [28]. It provides
the validation methods used to check the hive extrapolation properties and the methods
proposed to solve it.

• First, a review of heterogeneous open datasets and classifiers is described in Section 2.
Section 3.1 establishes a common framework for joining heterogeneous datasets using
a common raw data format (Section 3.1.1) and common features (Section 3.1.2).

• Section 3.2 proposes data augmentation (DA), including frequency shifting, with
the aim of creating artificial hive varieties. This led the authors to investigate the
frequency patterns with respect to the hardware used, as well as the hive diversity
(Appendix B). Insight into the spectra among different hives is provided to propose
realistic frequency shifting.

• A classical classifier (ClassiC) inspired by [17,22,29–31] is described in Section 3.3. It
achieves accuracy comparable to that reported in previous works when applied to
the common data format and features of the BT dataset. This model benchmarks
extrapolation properties when applying DA or being compared with the new models
described in the following.

• Two new classifiers, the pairwise classifier (PairC) and the pairwiseXNOR classifier
(XNORC), which are based on the contrastive learning method, are proposed in Sec-
tion 3.4 to force the extrapolation capacity without the need for DA.

• Finally, Section 3.5 explains the machine learning workflow used and in the pro-
posed BT dataset. The validation of the hive extrapolation method is described in
Section 3.5.1, and the metrics used as performance indicators in this study are ex-
plained in Section 3.5.2.

The results reported in Section 4 show the performance of the three proposed classifiers
when applied on the whole merged BT dataset. Then, the hive extrapolation performance
measurements are given and discussed as follows:

• First, Section 4.1 shows the learning and classification performance of the proposed
ClassiC, PairC, and XNORC models when applied to the joint dataset. This validates
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that state-of-the-art performance can be reached and establishes the increase in hive
diversity achieved by joining the datasets is relevant.

• Then, a discussion about hive extrapolation is provided in Section 4.2. The low
performance of ClassiC and PairC is exposed in Section 4.2.1 with a nominal dataset
and even with a pitch-shifted dataset.
The discussion in Section 4.2.2 first attempts to draw a conclusion on the impact
of the frequency shift in DA and interest in hive extrapolation, and it is discussed
whether the frequencies depend on both a queen’s presence and the hive number.
Secondly, unsupervised data visualization techniques are used to demonstrate the
preponderance of a colony’s belonging over the hardware setup or queen’s presence.

• Insights from a discussion that led to the XNORC solution are presented in Section 4.3
with extrapolation measurements.

• Finally, Section 4.4 shows how this contrastive solution can be applied to derive the
Queen–NoQueen label and the results obtained when applied to an open, unanno-
tated dataset.

2. Related Work

In this section, open audio datasets and the traceability of the data provenance and mix-
ing are reviewed, as are the different features and methods of ML proposed in the literature.

2.1. Open Datasets

Table 1 presents the main articles compiled in this review and the datasets used therein.
It appears that most of them used publicly available audio datasets that were annotated,
and only a few used private data or unsupervised techniques [24].

Table 1. Cross-referenced table of citations and the datasets used. Bullets in a column indicates
that the dataset is cited in the corresponding paper. For the private datasets column, numbers 1
and 2 identifies the private datasets that where multiply cited, whereas a simple bullet indicates a
single citation.

Date Reference NUHive OSBP BUZZ SBCM Private Base

2018 Kulyukin [32] •
2018 Nolasco [12] • •
2018 Cerjroski [11]
2019 Nolasco [22] •
2019 Robles-Guerrero [16] 1
2020 Terenzi [13] •
2020 Zgank [33] •
2021 Kim [29] •
2021 Orlowska [17] • •
2021 Zgank [34] •
2021 Kulyukin [30] •
2022 Quaderi [35] • •
2022 Soares [18] •
2022 Kampelopoulos [19] 2
2023 Robles-Guerrero [36] 1
2023 Di [37] •
2023 Truong [38] •
2023 Farina [39] •
2023 Ruvinga [31] •
2023 Phan [40] •
2023 Uthoff [24] •
2023 Kanelis [21] 2
2023 Rustam [41] • •
2023 Barbisan [20] •

As emphasized in Table 1, three datasets were mainly used on collaborative platforms
to boost academic research on supervised classification tasks, namely NUHIVE, OSBP, and
BUZZ. In the following, we provide the details of these datasets by indicating the number
of hives, hardware characteristics, and annotation labels. Note that due to previous mergers
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and extensions of the datasets, it is difficult to trace the provenance of the data from each
hive. Figure 2 illustrates the intertwined origin of the datasets introduced here.

We detail the main datasets below, including their hardware specifications and date of
recording when available.

• Open Source Beehive Project (OSBH) [27]: The OSBH is a global collaborative
project involving beekeepers; thus, there are no common hardware specifications.
A portion of the data is publicly accessible for research and can be found at https:
//zenodo.org/records/321345 (accessed on 17 April 2024).

• NuHive Project (NUHIVE) [25]: The NuHive Project provides audio recordings from
two hives—with and without a queen bee—and they are accessible at https://zenodo.
org/records/2667806 (accessed on 18 July 2024). The hardware specifications are the
following: 32 kHz, stereo, ADMP401 microphones, and a Behringer UCA222 sound
card [13]. The measurements were made on only 4 days—Hive1 on 12 June 2018 and
31 May 2018 and Hive2 on 12 July 2017 and 15 July 2017.

• To Bee or Not to Bee (TBON) [26]: This dataset merges data from the OSBH and
NuHive projects that were annotated with bee presence and queen presence. It is avail-
able at https://www.kaggle.com/datasets/chrisfilo/to-bee-or-no-to-bee (accessed on
18 July 2024). The data in the TBON dataset comprise 65% NUHIVE data, which are
redundant to the other dataset cited above. The other part comes from four additional
hives labeled with queen presence, with the specificity of having only one label per
hive. This means that each hive was only recorded with or without queens.

• To Bee or Not to Bee Processed (TBON processed) [42]: An enhanced version of
TBON with segmented and annotated audio files for detailed analysis. This dataset can
be found at https://www.kaggle.com/datasets/yevheniiklymenko/beehive-buzz-
anomalies (accessed on 18 July 2024). Table 2 illustrates the content of the processed
TBON database. Note that most of the audio files therein came from hives 1_NUHIVE
and 3_NUHIVE (65,78%), which originated from the NUHIVE database. Hence, those
hives’ data from the TBON database were excluded to avoid data redundancy.

• Smart Bee Colony Monitor (SBCM) [43]: The SBCM dataset includes recordings from
hives during re-queening, offering insights into bee behavior during these events,
and it is accessible at https://www.kaggle.com/datasets/annajyang/beehive-sounds
(accessed on 18 July 2024). Here, the queen presence label is enriched with the labels Old
Queen, New Queen, Present and Rejected, and NoQueen. The hardware specifications
are as follows: mono, 22.05 kHz, 24 bits, and an INMP441 reference microphone.
Recordings were collected over 8 days in June 2022 for two hives and over 1 month in
July 2022 for the other two hives.

• BUZZ base (BUZZ) [43]: The BUZZ base is no longer publicly available. It contains
recordings of bee colonies mixed with cricket chirping sounds, as well as environmen-
tal noise. It was used to learn how to differentiate bee sounds from other signals.

• Bee Audio Dataset (BAD) [44]: The BAD is a collection of ten hives recorded over the
course of one month, representing great hive diversity. However, this dataset contains
no labels, so it can only be processed through unsupervised learning. Therefore, the
BAD was not added to our BT framework, as it is aimed at supervised learning. This
dataset is accessible at https://zenodo.org/records/7052981 (accessed on 18 July
2024). The hive diversity in the BAD is used in Section 4.4 as additional data to test
extrapolation to new hives.

• Private Bases: Some peers have developed and worked on their own datasets. In
Table 1, a number is used to identify bases that were used more than once. If a base
was only used in one publication, then it is represented by a bullet.

Table 3 summarizes the characteristics of all the datasets selected to be merged in the
proposed BT framework, along with the corresponding numbers of hives, the labels used,
and the sizes of the uncompressed raw audio files.

https://zenodo.org/records/321345
https://zenodo.org/records/321345
https://zenodo.org/records/2667806
https://zenodo.org/records/2667806
https://www.kaggle.com/datasets/chrisfilo/to-bee-or-no-to-bee
https://www.kaggle.com/datasets/yevheniiklymenko/beehive-buzz-anomalies
https://www.kaggle.com/datasets/yevheniiklymenko/beehive-buzz-anomalies
https://www.kaggle.com/datasets/annajyang/beehive-sounds
https://zenodo.org/records/7052981
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Figure 2. Visualization of the public datasets.

Table 2. Description of the audio content in the TBON base. The table was inspired by [17].

Beehive ID Queen NoQueen Total Percentage (%) Dataset of Origin

1 2687 1476 4163 24.07% NUHIVE
2 656 6557 7213 41.71% NUHIVE
3 0 16 16 0.09% OSBH
4 3700 0 3700 21.39% OSBH
5 0 802 802 4.64% OSBH
6 1401 0 1401 8.10% OSBH

Total 8444 8851 17,295 100%

Table 3. Characteristics of the datasets, including the number of hives (“# Hives”), the annotation
labels, and the amount of data. The BUZZ and private databases were not publicly available and,
thus, were excluded.

Dataset # Hives Labels Volume

OSBH 4 Queen–NoQueen, Swarming, Varoa 0.8 Go
NUHIVE 2 Queen–NoQueen 47.8 Go

TBON 6 Queen–NoQueen, Bee–NoBee 3.46 Go
TBON processed 6 Queen–NoQueen, Bee–NoBee 3.38 Go

SBCM 4 Queen–NoQueen 21.7 Go
BAD 10 No label 1.25

2.2. Labels Used for Classification

There is a large diversity in the labels that are given or not in each of the datasets.
However, not all labels have been studied equally in the literature. Table 4 summarizes the
number of articles in which label has been used.

Table 4. Number of articles per label learned.

Label Number of Articles

Queen–NoQueen 13
Swarming 3
Bee–NoBee 4

Bee buzzing, cricket chirping, ambient noise 3

In this study, we focused on the most represented annotation, i.e., Queen–NoQueen,
which bears critical importance in beehive monitoring with large annotated databases.
Although swarming detection is also relevant, its spurious nature makes it difficult to
record and explain the lack of annotated data on this topic.

The OSBH and NUHIVE datasets were processed and labeled with Bee–NoBee by
examining the spectrograms to create the TBON base [12]. This offered a large annotated
database and promoted the use of machine learning on that specific label. The Bee–NoBee
separation essentially represents the bee-to-noise ratio, allowing for the analysis of the
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quantity of noise and interference (traffic noise, human voices, etc.) in the signal relative to
the presence of bees.

The Bee–NoBee label is not of direct interest for health monitoring but may be used
to select uncontaminated audio samples before learning other labels. Appendix A dis-
cusses the interest of this label and shows its minimal impact on the performance of
Queen–NoQueen classification as an example. Consequently, the Bee–NoBee label was
deemed unnecessary, and the focus remained on the Queen–NoQueen label for all files in
the BT base.

All gathered datasets were labeled with the queen presence label; however, the method
by which the labels were established differed. In the OSBH, NUHIVE, and TBON databases,
the label source was opportunistic, involving the observation of a queenless hive, which led
to the recording of the hive and the creation of data without the queen. The same hives were
then recorded with a queen, and datasets with both queen and no-queen files were created.

Conversely, the SBCM database followed a different approach. Over the course of a
few weeks, the hives were recorded periodically. Midway through the experiment, the
hives were deliberately orphaned by the beekeeper, creating an artificially queenless state.
After a few days, a new queen was introduced to the hives, allowing for the creation of
datasets that included both queenless and queen-present states.

2.3. Feature Extraction for Time/Frequency Representation

A few studies operated on raw audio signals, mainly because the study of time series
in ML is less common and documented than in image processing.

Time/frequency representation is mainly used because it leads to a 2D representation,
allowing for the use of image processing techniques such as convolutional neural networks
(CNNs). The main time/frequency representations are listed as follows:

• MFCC: Mel-frequency cepstrum coefficient;
• Mel-Spec: Mel-frequency spectrogram;
• HHT: Hilbert–Huang transform;
• STFT: Short-time Fourier transform.

In order to perform classification for the audio recordings of the hives, the audio
needed to be preprocessed to extract the relevant information. A number of feature
extraction techniques were studied, including the Mel-frequency cepstrum coefficient (MFCC),
Mel-frequency spectrogram (Mel-Spec), Hilbert–Huang transform (HHT), and short-time Fourier
transform (STFT). Each of these techniques processed the raw signal in a 2D time/frequency
format that was appropriate for classical ML. Most studies used the MFCC because it has
been proven effective in human speech recognition. This can be disputed because Mel
frequencies are designed to match the sensitivity of human hearing, which probably differs
from bee perception. Thus, the MFCC or Mel spectrogram parameters should be carefully
established, as discussed in [12,13,16,32], to achieve the best performance.

The features used in the literature are reviewed in Table 5.

Table 5. Summary of the features used in various studies. “MFCC”: Mel-frequency cepstrum
coefficient; “Mel-Spec”: Mel-frequency spectrogram; “HHT”: Hilbert–Huang transform; “STFT”:
Short-time Fourier transform.

Date Reference MFCC Mel-Spec HHT STFT Others

2008 Ferrari [10] Sound analysis (frequency and amplitude),
temperature, humidity

2018 Kulyukin [32] • • • Tonnetz for ML models

2018 Nolasco [12] • •

2018 Cejrowski [11] LPC coefficients, temperature, humidity
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Table 5. Cont.

Date Reference MFCC Mel-Spec HHT STFT Others

2019 Nolasco [22] • • •

2019 Robles-Guerrero [16] •

2020 Terenzi [13] • • • Wavelet transform

2020 Zgank [33] • With and without cepstral mean normalization,
LPC

2021 Kim [29] • • Constant-Q transform (CQT)

2021 Orlowska [17] •

2021 Zgank [34] •

2021 Cejrowski [45] • Sound indices, ACI

2021 Kulyukin [30] • • Chroma, spectral contrast coefficients, tonnetz
coefficients

2022 Quaderi [35] • •
RMSE energy, spectral centroid, spectral
bandwidth, spectral rolloff, zero-crossing rate
(128 sequences)

2022 Soares [18] • Time, frequency, chroma, spectra, zero-crossing
rate

2022 Kampelopoulos [19] •

2023 Robles-Guerrero [36] •

2023 Di [37] • VGGish embedding

2023 Truong [38] • •

2023 Farina [39] • •

2023 Ruvinga [31] • •

2023 Phan [40] •

2023 Uthoff [24] • • Chroma coefficients, spectral contrast coefficients,
tonnetz coefficients

2023 Kanelis [21] •

2023 Rustam [41] • Spectral centroid, zero-crossing rate,
chromagram, constant Q transform

2023 Barbisan [20] • •

We observed a preponderance of the MFCC compared with all other features, as it
was used in 21 out of 24 articles. In this study, we chose to use the Mel-Spec, as detailed in
Section 3.1.2.

2.4. Classification Models

Finally, different ML models were considered as solutions to our ML classification
problem, including neural networks (NNs), convolutional neural networks (CNNs), support vec-
tor machine (SVM), random forest (RF), k-nearest neighbors (KNN), and logistic regression (LR).
Similarly, Table 6 presents the different studies from the literature with the corresponding
ML models.

The decision tree family (i.e., SVM, Boosts, forest, etc.) and classical linear/polynomial
regression are well represented. As the amount of data is reasonable; these are traditional
ML techniques that can be well implemented in a low-cost and low-power architecture.

Deep learning architectures, especially CNNs, are mainly used for speech recognition,
traditionally combined with the MFCC. CNNs contain a larger parametric space than
previous techniques, making them prone to overfitting. Cross-validation should be used,
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and overfitting may require more data than offered. Moreover, the implementation of
deep learning architectures is more problematic at the node level than that of, for example,
decision tree techniques.

Table 6. Summary of the models used in various studies. “CNN”: Convolutional Neural Net-
works; “SVM”: Support Vector Machine; “RF”: Random Forest; “KNN”: k-nearest neighbors; “LR”:
Logistic regression.

Date Reference CNN SVM RF KNN LR Others

2008 Ferrari [10] Manual labeling
2018 Nolasco [12] • • CNN Bulbul implementation
2018 Kulyukin [32] • • • • • CNN ConvNets
2018 Cejrowski [11] • +C-classification and Gaussian-kernel
2019 Nolasco [22] • •
2019 Robles-Guerrero [16] • Singular Value Decomposition (SVD)
2020 Terenzi [13]
2020 Zgank [33] HMM with different states and GMM
2021 Kim [29] • • • XGBoost, VGG-13
2021 Orlowska [17] •
2021 Zgank [34] CNN
2021 Kulyukin [30] • • • • • CNN (ConvNets)
2021 Cejrowski [45]
2022 Soares [18] • •
2022 Kampelopoulos [19]
2022 Quaderi [35] • • • SNN, RNN, Decision Tree, Naïve Bayes
2023 Robles-Guerrero [36] • • • • NN
2023 Barbisan [20] • NN
2023 Di [37] • • • Decision Tree (DT)
2023 Ruvinga [31] • • LSTM, MLP
2023 Phan [40] • • • • Decision Tree, Extra Trees, XGBoost
2023 Uthoff [24] • • • • • CNN (ConvNets)
2023 Kanelis [21]
2023 Rustam [41] • •

Nevertheless, these solutions have achieve high accuracy and were used in this study
to quickly provide performance boundaries without sophisticated tuning of the method
parameters. In Section 3.3, we introduce the CNN model that we used in this study.

3. Materials and Methods

This selection of datasets was compiled into a common open framework to encourage
the community to use a larger amount of data and focus on hive extrapolation. The
hardware designed and used to propose an additional audio dataset is not described in
this study, which does not focus on hardware setups for hive monitoring. The common
framework, named BeeTogether (BT), is described in this section and has been published
on the public and collaborative Kaggle platform. The use of this collaborative platform
is intended to ease the publication of additional data the expansion of the extrapolation
properties of the proposed solutions to solve our application problem. BT can be found
online on the Kaggle platform at the link given in [28].

Based on the extensive review presented in Section 2, we began with the datasets that
had been identified and selected in the literature to derive common labels for our open
framework. Then, a common raw data format, a data preprocessing procedure, and features
specific to audio signal processing were chosen such that we maintained the classification
accuracy when using a state-of-the-art CNN classifier derived from the literature.

We then introduce and discuss DA techniques inspired by the literature to avoid the
phenomenon of overfitting and virtually increase hive diversity. The augmented data are
included in the BT dataset.
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Finally, we describe the CNN implementation, as well as a new ML strategy inspired
by contrastive learning, which is proposed to check and solve the extrapolation problem
for all hives.

3.1. Building the BeeTogether Framework

In this study, we used only publicly available datasets that were appropriately tagged
for learning patterns within beehive environments. The datasets employed in this research
were the NUHIVE project [25], OSBH [27], and SBCM [43]. Specifically, the version of the
OSBH dataset used was the one processed in TBON. These datasets were combined with
data from NUHIVE and SBCM. This process required data preprocessing steps to facilitate
integrated use in pattern recognition tasks.

3.1.1. Raw Data Standardization

This section outlines the steps taken to achieve dataset compatibility, focusing on the
necessary standardization of the data samples.

• Label Standardization: The label “Queen/NoQueen”, which was common across the
datasets and indicative of a queen bee’s presence, was chosen as the primary feature
for analysis. The enriched labels “Old Queen”, “New Queen”, and “Present” used in
the SBCM dataset were merged into the “Queen” label, whereas the “Rejected” label
was transposed to the “NoQueen” label.

• Sample Rate Normalization: The majority of the audio files were recorded at a
standard rate of 44.1 KHz, except for those in the NUHIVE dataset, which had
a 32 kHz recording rate. Given that bee sound frequencies primarily fall within
the range of 20–2000 Hz, a minimum sample rate of 4 kHz sufficed according to
the Shannon–Nyquist criterion. To retain richer data for ML and allow subsequent
flexibility, a uniform rate of 8 kHz was chosen for the downsampling of all audio
samples [16,19,20,32,36]. Anti-aliasing filtering, interpolation, and decimation were
performed using the resample function of the Librosa audio library [46].

• Bit Uniformization: All samples were standardized to a 16-bit depth to align with
industry standards for audio quality. Although the SBCM dataset originally featured a
24-bit depth, downscaling to 16 bits was necessary for consistency across the datasets.
Exploratory ML trials performed on the SBCM database indicated minor performance
differences between the two bit-depth choices, justifying our choice for the scope of
this study.

• Normalization: The normalization of audio signals is an essential preprocessing step
aimed at ensuring uniformity in power levels across different recordings, which is
crucial for subsequent machine learning processes. ML models can be particularly sen-
sitive to the normalization of data. This procedure adjusted the audio signal amplitude
such that its average power or energy was standardized to a specific value—in this
case, one. Normalization was applied to the raw data before duration normalization
and feature extraction. Most audio libraries normalize energy to one, computing s

∥s∥2

with ∥s∥2
2 = ∑N−1

k=0 s2
k , where N is the number of samples and sk is the kth sample.

However, signals (N) of different durations lead to a different average power or ampli-
tude in raw signals, which is problematic for ML. We chose to normalize the average

power ( ∥s∥2
2

N ) of the raw data and, thus, computed
√

N. s
∥s∥2

. Normalized frequency
bins in a fast Fourier transform (FFT) and other features were also obtained with the
normalized raw signals when using the same sampling frequency and duration.

• File Duration Optimization: We aimed to minimize the file duration in order to in-
crease the number of usable files while ensuring sufficient audio content for ML perfor-
mance. The literature suggests that a two-second duration is optimal [16,20,32,35,40].
Files that were not divisible by 2 s were truncated to maintain uniformity and ensure
no overlap between samples.
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The content of the newly formed BT database, i.e., the number of samples obtained
from each database after standardization and the distribution of the Queen–NoQueen
labels, is given in Table 7.

Table 7. Amount of data after standardization and the corresponding distribution of the labels.

Dataset Number of Samples Queen NoQueen

SBCM 213,000 184,620 (86.70%) 28,380 (13.30%)
NUHIVE 169,044 84,568 (50.02%) 84,476 (49.98%)

TBON 13,792 7434 (53.92%) 6358 (46.08%)
BAD * 40,000 - -
Total 395,836 276,622 (69.88%) 119,214 (30.12%)

Note: * The BAD was processed but not included in the overall BT dataset because it is unlabeled.

3.1.2. Feature Extraction

Based on the obtained BT database, we extracted features in order to apply ML
classification. In the review, it appeared that most of the studies used the MFCC feature.
The detailed method of MFCC processing, which is illustrated in Figure A1 (extracted
from [47]), can be decomposed into the following two steps:

• The Mel-Spec calculation (Figure A1d) gives a time/frequency representation close to
the human perception of pitch and intensity.

• The MFCC (Figure A1e) is used to remove correlations on the frequency axis of the
Mel-Spec coefficients using a direct cosine transform (DCT).

Appendix B details the extraction of the Mel-Spec features using parameters inspired
by previous studies and shows their relevance by using the average spectrum over the
whole BT dataset.

The Mel-Spec time/frequency representation increases the information quantity, in-
troducing strong correlations between the coefficients. This causes problems in non-deep
learning techniques, especially with polynomial regression, SVM, and RF.

Thus, the MFCC was used to remove frequency redundancy and to obtain uncorrelated
features of reduced size. Good performance and lower computation effort than in deep
learning techniques were then achieved.

Deep learning models, such as CNNs, perform well independently of feature cor-
relations. Although they could directly use the Mel-Spec features, most studies chose a
common MFCC feature to compare with non-deep learning algorithms.

Reducing features from the Mel-Spec to the MFCC requires extra parameter tuning,
and non-deep algorithms need finer hyperparameter tuning than that used in CNNs. To
avoid low performance due to parameter misfits and focus on the generalization ability
when using the BT dataset, we used the full Mel-Spec information with a CNN.

The choices of the CNN and Mel-Spec parameters are validated in Appendix B by
applying a simple CNN model to classify the Queen–NoQueen label with different values
for the maximum frequency used in the Mel-Spec.

Future works may compute the MFCC directly from the Mel-Spec and techniques other
than CNNs to achieve comparable results with fewer features and low-power solutions
that can be embedded.

3.2. Data Augmentation Techniques

In order to increase the possibility of extrapolating the results of ML models between
hives, we enriched the BT database using a combination of DA techniques.

• Pitch shifting: Pitch shifting was performed on an audio signal using a predefined set
of pitch-shift steps ([−2,−1, 1, 2] semitones). For the initial frequencies of 100 Hz and
300 Hz, the corresponding frequency changes are described in Table 8.
We chose the frequencies of 100 Hz and 300 Hz because they are where the useful
information in bee audio is concentrated.
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• Adding noise: Gaussian noise was added to the Mel-Spec to simulate variations in
audio recordings. Typically, the noise factor was small, often in the range of 0.001 to
0.01. We used a noise factor of 0.005, as in [48].

• Spectral augmentation with frequency and time masking: Spectral augmentation
was used to enhance robustness against frequency and temporal variations [49].

- Frequency masking: We masked up to 5% of the total number of Mel-Spec
frequency channels in each mask.

- Time masking: A maximum of 15% of the total time steps could be masked in
each mask for both frequency and time masking.

- Amplitude perturbation: Random multiplicative perturbations were introduced
into the amplitude of the Mel-Spec, simulating variations in signal strength.
The perturbation factors were typically in the range of 0.05 to 0.2. We used a
perturbation factor of 0.1, meaning that the amplitude could vary by ±10% [49].

For each audio sample, we created three augmentations by sequentially applying noise
addition, spectral augmentation, and amplitude perturbation. Ultimately, each original file
was modified and augmented four times. Table 9 details the resulting number of samples
and the corresponding distribution of the Queen–NoQueen labels with data augmentation
but no pitch shifting.

Table 8. Frequency changes resulting from pitch shifting for initial frequencies of 100 Hz and 300 Hz.

Pitch Shift (Semitones) Frequency (100 Hz) Frequency (300 Hz)

−2 89.09 Hz 267.27 Hz
−1 94.39 Hz 283.18 Hz
1 105.95 Hz 317.84 Hz
2 112.25 Hz 336.75 Hz

Table 9. Amount of data after augmentation of the BTdatabase without pitch shifting and the
corresponding distribution of the labels.

Dataset Number of Samples Queen NoQueen

SBCM 852,000 738,480 (86.70%) 113,520 (13.30%)
NUHIVE 676,176 338,272 (50.02%) 337,904 (49.98%)

TBON 55,168 29,736 (53.92%) 25,432 (46.08%)
Total 1,583,344 1,106,488 (69.88%) 476,856 (30.12%)

The relevance of pitch shifting was discussed by Terenzi [23], who spotted that most
of the useful Queen–NoQueen information is contained in the frequency of the signals. We
then chose to separate pitch-shifted raw signals as new virtual hives to specifically test this
method of DA. Four new files were then generated through pitch-shifting augmentation,
with each corresponding to a different tone shift. Table 10 details the resulting dataset.

Table 10. Amount of data after augmentation with pitch shifting of the BTdatabase and the corre-
sponding distribution of the labels.

Dataset Number of Samples Queen NoQueen

SBCM 1,065,000 923,100 (86.70%) 141,900 (13.30%)
NUHIVE 845,220 422,840 (50.02%) 422,380 (49.98%)

TBON 68,960 37,170 (53.92%) 31,790 (46.08%)
Total 1,979,180 1,383,110 (69.88%) 596,070 (30.12%)

3.3. State-of-the-Art ML Model

Once the BTdatabase was constructed with the Queen–NoQueen labels, we could
introduce ML models in order to perform classification tasks. We now introduce our
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model, focusing on finding approaches capable of generalizing to unseen hives in the
training phase.

Inspired by the literature, a convolutional neural network (CNN) classifier was chosen
due to its efficiency and effectiveness in identifying and categorizing labels, such as the
Queen–NoQueen label. In the sections on classical validation with training and test datasets,
we demonstrated that this model is comparable with the top-performing models found in
the literature, even when applied to the whole heterogeneous BT dataset.

The architecture chosen for the CNN model described in Table 11 was composed of
six convolutional layers and an adaptive average pooling layer. Each of the convolutional
layers used ReLU as an activation function, and this was followed by a batch normalization
step. A linear output layer with one neuron per label finished the network to obtain the
classification result.

We call the application of the CNN model to the prediction of the Queen–NoQueen
label using the Mel-Spec features the classical approach.

Table 11. Architecture of the audio classifier model. “Conv2d”: convolutional layer for 2D input;
“AdapAvgPool2d”: adaptive average pooling layer for 2D input. Note that the Conv2d layers use
ReLU and are followed by a batch normalization step.

Type Kernel Size Stride Padding Output Channels

Conv2d 5 × 5 2 × 2 2 × 2 8
Conv2d 3 × 3 2 × 2 1 × 1 16
Conv2d 3 × 3 2 × 2 1 × 1 32
Conv2d 3 × 3 2 × 2 1 × 1 64
Conv2d 3 × 3 2 × 2 1 × 1 128
Conv2d 3 × 3 2 × 2 1 × 1 256

AdapAvgPool2d - - - 1
Linear - - - 2

3.4. New Classification Method Inspired by Contrastive Learning

Since the authors of [12,23] emphasized that there is no extrapolation between hives
when using a CNN, we propose a simple classification approach inspired by contrastive
learning, the goal of which is specifically to learn the differences between samples with dif-
ferent labels instead of focusing on the characteristics of these separate classes (potentially
leading to overfitting and poor extrapolation abilities). These methods allow for a more
nuanced understanding of hive-specific data by focusing on the similarities and differences
between two audio samples of one hive rather than assuming that a single classifier can
generalize across all hives. This approach ensures that the unique conditions and variations
within each hive are properly accounted for in the evaluation process, leading to more
accurate and meaningful results.

In practice, we kept the same CNN architecture as that defined above. However, the
input data were modified. Pairs of data samples were generated from data coming from
the same hive. Each sample was used once within a pair while ensuring a balanced number
of each pairwise label defined in Table 12. A new label was associated with each pair of
samples. Two possible sets of labels were applied, depending on whether we predicted
both of the original Queen–NoQueen labels or if the paired samples shared the same
original label.

Table 12. Pair creation and associated labels.

NoQ/NoQ NoQ/Q Q/NoQ Q/Q

pairwise labels 0 1 2 3
pairwiseXNOR labels 0 1 1 0
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Thus, we obtained the following two separate classification approaches depending on
the labels used:

• pairwise: Predicts each label of the pair;
• pairwiseXNOR: Predicts if the labels of the pair are identical.

In a classical contrastive learning approach, such as in the use of Siamese neural
networks [50], the primary objective is to learn a representation space where the distance
between similar pairs is minimized and the distance between dissimilar pairs is maximized.
This explicitly differentiates classes by increasing the contrast between them. In contrast,
our approach implicitly considers the contrast between classes by learning to recognize
when pairs of data samples have distinct labels. Thus, while inspired by contrastive
learning, our method treats it as a simple classification problem with modified labels.

3.5. Machine Learning Workflow

This section describes the methods used to validate the accuracy of Queen–NoQueen
prediction and measure the abilities of the three classifiers presented above (ClassiC, PairC
and XNORC) to be generalized to unknown hives.

3.5.1. Validation Method

We used two validation methods depending on the questions that we sought to answer
in our experiments.

Classical Validation with Training and Test Datasets

The first question was whether our chosen CNN model achieved good performance
(i.e., comparable to that in the literature) globally on the BT dataset. For this purpose, we
used a simple training and test set validation process with a random split of 80% and 20%,
respectively, in the complete dataset. This validation is described in the section on classical
validation with training and test datasets for our three classification methods.

k-Hive-Fold Hive Extrapolation Validation

The second question and the main point of interrogation in this study was whether a
model could be generalized (or extrapolated) to different hives. The following method was
used to evaluate the models described in Sections 4.2 and 4.3. This validation process is a
variant of classical k-fold cross-validation, where the folds are not randomly defined but
correspond to the hives. In summary, the following steps were taken:

1. A column was added to the dataset, e.g., groupID, to identify the following for each
sample: the hive number and the dataset of origin.

2. At each fold, one hive was extracted from the dataset, and the queen presence label
was learned using the remaining data. The extracted hive was excluded from the
learning phase to ensure that it was never seen by the model.

3. Once the model was trained, it was tested on the data from the excluded hive to
evaluate whether the model’s results could be extrapolated to unseen hives.

4. This process was repeated for all hives in the dataset.

3.5.2. Performance Metrics

To evaluate the model, we used both the accuracy (i.e., the number of accurately
predicted labels) and the confusion matrix. The accuracy metric was used to validate the
overall performance of the model, providing a general measure of how well the model
predicted the correct outcomes. In the binary classification case, the formula for accuracy
was the following:

Accuracy =
TP + TN

TP + TN + FP + FN
where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.
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The confusion matrix was particularly useful in our case because the dataset was
imbalanced. It helped visualize and quantify the numbers of false positives and false
negatives, allowing for an understanding of their impact on the model’s performance. The
confusion matrix is expressed as

Predicted Positive Predicted Negative
Actual Positive TP FN

Actual Negative FP TN

The confusion matrix is presented in percentages to facilitate a quick and intuitive
understanding of the model’s performance across different classes. Confusion matrices are
presented as heat maps with shades of red to simplify reading, with white representing 0
and bright red representing 100

Figure 3 summarizes the full ML workflow used in our approaches.

Figure 3. The classical ML workflow applied to the classification of hives.

4. Results and Discussion

In this section, we detail and analyze the results of our experiments. First, we vali-
date our three models on the full BeeTogether (BT) database to assess their performance
in comparison with previous results from the literature. Secondly, we show that the
classicaland pairwise classifiers failed to extrapolate to unseen hives and propose some
interpretations based on frequency analysis and unsupervised learning techniques. Finally,
we demonstrate the efficiency of our new approach inspired by contrastive learning for
extrapolation.

4.1. State-of-the-Art Performance for Classification on BeeTogether

In this section, we apply the validation approach from the section on classical valida-
tion with training and test datasets, using 80% of the BTdatabase as the training set and
20% as the test set. We used the original data in the BTdatabase without DA, as described
in Table 7. CNN training was performed with 100 epochs to evaluate potential overfitting.
The results indicated no overfitting, and convergence was achieved within 20 epochs.

Table 13 presents the accuracy and confusion matrix obtained on the test set with this
approach for each of the three classification methods introduced in Section 3.3, i.e., the
classical, pairwise, and pairwiseXNOR classifiers.
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Table 13. Accuracy and confusion matrix for the classical, pairwise, and pairwiseXNOR classifiers
from Section 3.3 on the test set. The confusion matrix is normalized by the number of actual elements
in each class and presented as a heat map, where 0% is white and 100% is red.

Classification Accuracy (%) Confusion Matrix (%)

classical 99.2
98.2 1.8
0.4 99.6

pairwise 98.5

98.9 0.0 0.0 1.1
0.2 99.5 0.3 0.0
0.3 0.6 99.1 0.1
3.6 0.0 0.0 96.4

pairwiseXNOR 99.9
100.0 0.0
0.1 99.9

As a reminder, these classifiers were based on the same CNN model. The classical ap-
proach predicted the target labels of 0 = NoQueen and 1 = Queen directly on one sample’s
Mel-Spec. The pairwise and pairwiseXNOR classifiers were applied to paired Mel-Specs
of two audio samples from the same hive. The pairs were created by concatenating the
two Mel-Spec features of each file. Each file was only used once in the process of creating
pairs. The PairC and XNORC classifiers predicted the corresponding pairwise labels (i.e.,
0 = NoQueen-NoQueen; 1 = NoQueen-Queen; 2 = Queen-NoQueen; 3 = Queen-Queen)
and the pairwiseXNOR labels (0 = identical/1 = different) from Table 12, respectively.

For each approach, we achieved state-of-the-art performance in terms of accuracy
when applied to the BT database as a whole, with more than 98%, 96%, and 99.9% accurately
classified samples for each label, respectively. This was comparable to the extremely good
accuracy found in the literature; for example, the authors of [22] reported a precision
of 94% when using MFCC features and a comparable CNN architecture and 98% when
using STFFT features. This comparison validates our choice for data standardization and
classification methods, since the results align closely with previously established findings
in the literature.

Due to the imbalance between the Queen and NoQueen labels in the dataset, the
confusion matrix showed a higher error rate of 98.2% for NoQueen detection—compared
with 99.6% for Queen—when using the classical approach. Globally, the classical and
the pairwise approaches seemed very comparable. In the case of the pairwise approach,
we observed that the accuracy was higher, with 99.5% and 99.1% when the labels were
different, compared with 98.9% and 96.4% for identical labels. It seems that accurately
finding a change in state between two audio samples is an easier task than predicting the
actual labels. This fact is supported by the quasi-perfect accuracy results obtained with the
pairwiseXNOR approach, meaning that it perfectly compares the state of the hive for audio
samples in two separate time frames.

4.2. On the Difficulty in Extrapolating Queen Presence Classification to Unseen Hives

As stated in the reviews performed in [15,24], a few studies and results on hive
extrapolation have been presented. The studies by Nolasco and Terenzi called this property
“hive independency”, and in [22] (Tables 2 and 4 of the article), they reported results using
the fold technique with two hives. It appears that a feature setup could attain an accuracy
of 74%, at best, on one fold, but the best accuracy found on two folds was achieved with the
HHT feature, with a precision of 60%. The same poor accuracy was found using a four-hive
fold in [12], except for compact MFCC-20 features, which ameliorated the AUC (area under
the curve) score to 80%, although still not meeting the standards.

In this section, we study the potential of extrapolating between hives for the classi-
fication of a queen bee’s presence using the classical and pairwise approaches. For this
purpose, we applied the k-hive-fold validation approach from the section on k-hive-fold
hive extrapolation validation, i.e., we performed a k-fold validation where the folds cor-
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responded to the separate hives in the BT dataset. CNN training was performed with
20 epochs, which was previously observed to be enough for good convergence.

4.2.1. Non-Extrapolation of the classical and pairwise Classifiers

First, we applied the classical and pairwise approaches to the original data without
DA (see Table 7). Table 14 presents the accuracy and confusion matrix obtained when
successively considering each hive as a test set (thus, excluding it from the training set).

Table 14. Accuracy and confusion matrix obtained for each hive when applying k-hive-fold valida-
tion for the BT database without DA. “Hive”: identifier of the hive used as the test set; “(% BT)”:
percentage of the full BT database corresponding to the current hive; “Acc.”: accuracy for the whole
dataset; “Conf. Mat.”: confusion matrix normalized by the number of actual elements in each class
and presented as a heat map, where 0% is white and 100% is red.

Hive % BT
Classical Pairwise

Acc. (%) Conf. Mat. (%) Acc. (%) Conf. Mat. (%)

1_NUHIVE 22.94 54.2
49 51
41 60

59.1

52 0 0 48
3 61 34 2
2 37 58 2
35 0 0 65

3_NUHIVE 21.42 84.3
78 22
9 91

59.4

35 0 0 65
1 57 23 19
2 20 60 18
15 0 0 85

1_SBCM 21.82 80.2
4 96
10 90

41.1

6 0 0 94
0 22 53 25
0 34 43 23
7 0 0 93

3_SBCM 8.73 67.6
42 59
28 72

43.1

19 0 0 81
3 41 23 34
2 38 29 32
16 0 0 84

4_SBCM 19.59 34.133
83 17
73 27

46.2

76 0 0 24
13 44 40 3
14 49 35 2
71 0 0 29

5_SBCM 4.47 75.4
7 93
1 99

44.1

6 0 0 94
0 24 48 27
0 19 47 33
1 0 0 99

3_TBON 0.002 0.0
0 100

NA NA
0.0

0 100
NA NA

4_TBON 0.51 77.4
NA NA

23 77
61.8

NA NA
38 62

5_TBON 0.1 26.7
27 73

NA NA
40.4

40 60
NA NA

6_TBON 0.41 72.5
NA NA

27 73
83.5

NA NA
16 84

The results obtained for both classification approaches and for all hives indicated
poor accuracy.

In the end, the classical and pairwise exhibited similar behaviors in the sense that
they were unable to extrapolate their predictions of precise Queen or NoQueen labels. We
obtained either random predictions (accuracies close to 50%) or constant predictions of one
of the two labels for the whole dataset. The latter could produce extreme accuracies for
TBON hives 3 to 6, where only one label was present in the corresponding datasets (good
for hives 4 and 6 and bad for hives 3 and 5).
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As in [22], we achieved a good accuracy of 98% for known hives, but this was strongly
degraded when hive folding was applied. The accuracy when hive folding on 10 hives
ranged from 34% to 84% with our CNN in comparison with a score ranging from 32% to
82% in their study. The CNN and chosen features confirmed the poor performance when
extrapolating to unknown hives, even with a dataset that was increased from 2 to 10 hives.

However, by examining the structure of the matrix for the PairC approach, the zeros
on the first and last lines of the matrix showed that labels 1 and 2 were not confused with
labels 0 and 3. This indicated an ability to detect a change in labels in each of the pairs. This
motivated the use of the pairwiseXNOR approach.

In an attempt to improve the extrapolation properties, we turned to DA. We focused
on the classical classifier, since both of the previous approaches exhibited similar behav-
iors in terms of extrapolation for the prediction of the specific Queen–NoQueen label.
We distinguished between DA with pitch shifting and without pitch shifting, as detailed
in Section 3.2. The corresponding dataset contents are given in Tables 9 and 10, respec-
tively. The accuracy and confusion matrices obtained for each hive when considering the
augmented datasets are given in Table 15.

Table 15. Accuracy and confusion matrices obtained for the BT database enriched with DA without
and with pitch shifting. Notations are similar to those in Table 14.

Hive % BT
Classical Classical No Pitch Shifting Classical with Pitch Shifting

Acc. (%) Conf. Mat. (%) Acc. (%) Conf. Mat. (%) Acc. (%) Conf. Mat. (%)

1_NUHIVE 22.94 54.2
49 51
41 60

45.4
61 39
70 30

56.6
39 61
26 74

3_NUHIVE 21.42 84.3
78 22
9 91

56.1
35 65
23 77

63.3
43 57
16 84

1_SBCM 21.82 80.2
4 96

10 90
47.7

8 92
12 88

49.6
7 93
8 92

3_SBCM 8.73 67.6
42 59
28 72

50.6
18 82
17 83

49.5
10 90
12 88

4_SBCM 19.59 34.1
83 17
73 27

52.8
30 70
25 75

55.4
49 51
38 62

5_SBCM 4.47 75.4
7 93
1 99

50.0
12 88
12 88

54.3
7 93
4 96

3_TBON 0.002 0.0
0 100

- -
7.14

7 93
- -

33.3
33 67

- -

4_TBON 0.51 77.4
- -
23 77

69.1
- -
31 69

86.4
- -
14 86

5_TBON 0.10 26.7
27 73

- -
39.9

40 60
- -

33.1
33 67

- -

6_TBON 0.41 72.5
- -
27 73

92.9
- -

7 93
96.1

- -
4 96

The same poor results were obtained using DA, whether or not we used pitch shifting.
Pitch shifting did not change the results, even though the information for queen presence
prediction was emphasized to be in the frequency of the signal [23].

Using a few different hives (only ten different hives) in the learning process may lead
to the overfitting of the CNN on known hives, explaining these dysfunctions.

The evolution of the accuracy on the training and test sets for the k-hive-fold validation
while excluding the 1_NUHIVE data is given in Figure 4 as an example.
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Figure 4. Evolution of the accuracy on the training and test sets for the k-hive-fold validation while
excluding the 1_NUHIVE data.

We observed that the accuracy on the test set never increased beyond 50%, and similar
results were obtained for all hives that were folded. This made overfitting an unlikely
explanation for the poor generalization ability.

Other tests were conducted to avoid overfitting, involving the reduction of features
through the selection of fewer frequencies in the Mel-Spec and the reduction of the CNN
model’s complexity by changing its structure, but the qualitative conclusion remained.

The classical and pairwise approaches were unable to extrapolate the classification
of the Queen and NoQueen labels to new unseen hives. This result is complementary to
the few observations on the lack of extrapolation abilities that have been published in the
literature [23,24].

In particular, the new pairwise approach was unable to extrapolate between hives. In
fact, this approach still tried to predict the exact labels from the audio signals, even when
we used paired audio samples, so it was very close to the classical classifier. However, the
observation of the confusion matrix structure for pairwise suggested that a change in a
label in a pair could be detected efficiently.

4.2.2. The Classification Focus May Be Off-Course

In this section, our goal was to propose some explanations for the issue of extrapolation.
For this purpose, we explored the following two aspects of the data: frequencies and
similarities of audio signals depending on the hive and labels.

Frequency Analysis of the Audio Files

By observing the behavior of a colony, a beekeeper is able to know whether there
is a problem with the queen. The activity of a bee colony seems to differ when it is
orphaned. Since [23] emphasized that most of the useful information is contained in the
frequency of the signals, we wanted to observe the impact of the presence of bees on the
frequency domain.

Manual inspections of the Mel-Spec for various audio files seemed to indicate a
difference in low frequencies depending on the presence or absence of the queen—in
particular, a frequency shift in the peak

signals.
To analyze this phenomenon, the fast Fourier transform (FFT) was computed for each

signal to convert it from the time domain to the frequency domain, facilitating the analysis
of the frequency components of each signal. Figure 5 presents the average frequency
spectra corresponding to audio recordings for each hive and each label category, enabling
the observation of differences in peak frequencies and amplitude responses.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Comparative FFT magnitude spectrum (in dB) of the normalized signals from dif-
ferent hives. The blue and red curves represent audio labeled as NoQueen and Queen, re-
spectively. Lines correspond to the mean value, and the area encloses data within 8 deciles
between 10% and 90%. (a) d1_NUHIVE; (b) d3_NUHIVE; (c) d1_SBCM; (d) d3_SBCM; (e) d4_SBCM;
(f) d5_SBCM; (g) d3_TBON; (h) d5_TBON.
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The frequency response appeared to vary depending on the “queen presence” label
much more on the NUHIVE and TBON datasets than on the SBCM dataset.

In the case of the NUHIVE dataset, these differences could be attributed to the fact that
the two hives were sampled in a significantly different season of activity. Consequently,
variations in colony population, hive placement, and available resources (e.g., honey and
pollen) likely also influenced the frequency response.

The TBON dataset represented roughly 1% of the data, which explained the high
variance in the mean curve compared with the two other datasets that are 40 times bigger.
Moreover, the hives with queens were different from those without queens; the spectra of
the two hives with the presence of a queen are shown in the figure. The strong differences in
the spectra were not due to label differences and may be explained by a spectral difference
from one hive to another or from one season to another.

In contrast, the SBCM dataset followed four hives during the same period of the year
(summer 2022) with consecutive sampling. This consistency in parameters and the minimal
changes in hive conditions resulted in a similar frequency response across the samples.

This suggests that the frequency may vary, mostly due to the activity, season, and hive
rather than the presence of a queen.

Unsupervised Learning to Analyze Similarities between Audio Signals

To explore the components of the datasets further, we employed an unsupervised
ML method, namely t-distributed stochastic neighbor embedding (t-SNE). This method is a
dimensionality reduction technique used to visualize high-dimensional data by projecting
them into a lower-dimensional space (typically, two or three dimensions). t-SNE works
by converting high-dimensional Euclidean distances between data points into conditional
probabilities that represent similarities, and it aims to minimize the divergence between
these similarities in the high- and low-dimensional spaces. This approach effectively
preserves local structures, allowing for meaningful visualizations of datasets. t-SNE was
processed in the frequency domain directly on the Mel-Spec. Similar work using this
method was presented by Cejrowski et al. [11] on bee audio data and with the same label.

For simpler representations, here, focused on the NUHIVE and SBCM databases,
which represent a large majority of the data in the BTdataset. We then used t-SNE to
visualize the similarity of data from different databases, then used it to visualize that of
different hives in these databases.

Figure 6 presents the content of the dataset obtained with t-SNE in 2D. The data are
colored in yellow and dark blue for the NUHIVE and SBCM datasets, respectively.

Figure 6. Visualization of the NUHIVE (yellow) and SBCM (dark blue) datasets in 2D using dimension
reduction with t-SNE.
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We observed a clear separation based on the origin of the audio files.
We then separated each dataset in Figure 7 to show the 2D representations obtained

with t-SNE for each database with the following coloring schemes:

• Based on the hive number;
• Based on the Queen–NoQueen data label.

(a) (b)

(c) (d)

Figure 7. t-SNE plots of the SBCM and NUHIVE databases with separation according to hive number
and queen presence. (a) t-SNE visualization colored according to hive number (SBCM); (b) t-SNE
visualization colored according to queen presence (SBCM); (c) t-SNE visualization colored according
to hive number (NUHIVE); (d) t-SNE visualization colored according to queen presence (NUHIVE).

When using the t-SNE method, it was not possible to effectively separate the queen
presence label. However, a clear separation could be observed between different hives.
This suggests that while it may be straightforward to learn the differences between hives
using regression methods, there is no simple way to determine the presence of a queen
within the beehive.

The SBCM experiment allowed both the Queen and NoQueen labels to be obtained
under similar conditions and time intervals, and the t-SNE results in Figure 7b indicate very
close Queen/NoQueen signals. However, different Queen labels under different conditions
within the same hive were obtained for NUHIVE, and the t-SNE results in Figure 7d seemed
to be a bit more separable. This indicated that seasonal conditions may have acted as a
strong hidden factor in the TBON and NUHIVE datasets.

While the frequency analysis clearly indicated a difference between the recordings for
some hives, the data corresponding to different Queen–NoQueen labels stayed very similar.
Our hypothesis is that training ML models using transformations in the frequency domain
may not allow the queen’s presence inside the hive to be learned; instead, information
correlated to other factors is learned, including the following:
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• The hive’s belonging, where each colony differs from others;
• Seasonal and activity variations leading to different bee behaviors;
• Differences in the colony’s position and the population within the hive;
• Differences in the hardware used for the recordings;
• Variations in the microphone’s position inside the beehive.

4.3. Extrapolation with a Contrastive Learning-Inspired Model

In this section, we elaborate on two of the previous results, namely that

• The pairwise classification seemed to be extrapolatable when only predicting whether
the labels of a pair of audio samples were identical or not; and

• The extrapolation of the classification of queen bee presence was difficult, which might
have been due to exterior information incorporated in the audio signal acting as a
hidden factor.

We propose a solution to this using the pairwiseXNOR approach, which no longer
predicts the exact label but, rather, predicts whether two audio signals correspond to the
same label or not.

We applied this approach to the original data without DA (see Table 7). Again, we
applied the k-hive-fold validation approach from the section on k-hive-fold hive extrapo-
lation validation. CNN training was performed with 20 epochs, which was observed to
be enough for convergence. Table 16 presents the accuracy and confusion matrix obtained
when using a similar setup and convention to those in Table 14.

Table 16. The accuracy and confusion matrix obtained for the BT database without DA when using
XNORC. Notations are similar to those for Table 14.

Hive % BT XNORC Accuracy % XNORC Confusion Matrix (%)

1_NUHIVE 22.94 99.98
100.00 0.00

0.04 99.96

3_NUHIVE 21.42 99.78
100.00 0.00

0.44 99.56

1_SBCM 21.82 98.98
100.00 0.00

2.04 97.96

3_SBCM 8.73 99.83
100.00 0.00

0.33 99.67

4_SBCM 19.59 99.34
100.00 0.00

1.32 99.68

5_SBCM 4.47 99.98
99.96 0.04
0.18 99.82

3_TBON 0.002 100
100.00 0.00

NA NA

4_TBON 0.51 100
NA NA

100.00 0.00

5_TBON 0.1 100
100.00 0.00

NA NA

6_TBON 0.41 100
NA NA

100.00 0.00

The pairwiseXNOR approach demonstrated its ability to generalize to unknown hives
with quasi-perfect accuracy for all hives. This method enabled the application of the model
to unseen data during the learning phase. Given that the model was able to find differences
between two audio files, a first labeled sample in the pair was necessary to determine the
presence of a queen. This is the main limitation of this approach. It is then the beekeeper’s
responsibility to ascertain the queen’s presence when an audio sensor is introduced into
the hive. With a labeled file established, subsequent audio recordings can be compared
with the initial recording.
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Furthermore, since a hive is a dynamic system influenced by seasonal changes, weather,
and available resources, it is essential to adjust the reference file over time. This temporal
adjustment ensures that the reference file remains similar to the test sample, minimizing
the risk of extreme differences, which could lead to false positives or negatives due to
significant system changes.

4.4. Prospective Evaluation on an Unannotated Database

We have now established the potential for extrapolation of the XNORC approach
between hives. In order to reinforce this result and prospectively evaluate its usefulness, we
compared the ClassiC and XNORC approaches when applied to the audio files contained
in the BAD dataset [44] (detailed in Section 2.1). The BAD dataset is not labeled, but it
represents 10 unknown hives recorded with an unknown hardware setup and more than
100 files with 8 s of audio for each colony sampled over 20 days. Those audio files were
formatted and included in the BT dataset without labels (roughly 400 audio files of 2 s for
each of the ten hives).

The time and setup continuity offered in those measurements gave credence to label
continuity itself; a queen could be continuously present in most of the recorded hives or
could be missing for a few days, while natural re-queening may have occurred in rare cases.

Figure 8 shows the queen status given by the ClassiC approach (trained on the whole
labeled BT dataset) when applied to four hives selected from the BAD dataset (hives 24, 26,
28, and 30). The ClassiC approach was not able to generalize to those four unknown hives,
indicating almost continuous changes in Queen labels, which were very unlikely. When
holding the assumption of label continuity, this confirmed the poor accuracy of close to
50% that was previously reported with the hive-fold technique for this classifier.

Pairs of audio samples were constructed to feed the XNORC classifier (trained on the
whole labeled BT dataset), which was able to detect a change in the label instead of an
absolute Queen/NoQueen label. Each audio sample of rank k was paired with the fifth
following audio sample of rank k + 5. This ensured a minimal time difference in the pairs in
that specific dataset. An 8.2 s BAD audio file produced four audio files in the standardized
format of 2 s for the BT dataset. The BAD experiment produced bursts of four consecutive
audio samples of 2 s. Each burst was spaced at a minimum of one hour (a maximum of
12 h) due to the manual collection of data used in the BAD dataset.

The change in the Queen status is shown in Figure 9 when using pairs of the same
samples and hives as those used in Figure 8. Supposing that a queen was always present,
the worst case observed over the whole BAD dataset was 20 false detections over the course
of one month, representing a score of 99.51% for total accuracy. This accuracy is consistent
with the extrapolation score obtained in Section 4.3 using hive folding.

This confirmed our confidence in the use of the contrastive approach with the pair-
wiseXNOR classifier to obtain generalization abilities. Secondly, we used the assumption of
continuity in the state of queen presence and the confidence in the obtained accuracy value
to propose a time-filtering process and produce an absolute prediction of the Queen/No-
Queen state.
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ClassiC

Figure 8. Queen/NoQueen status indicated by the ClassiC approach in the unlabeled BAD dataset
(hives 24, 26, 28, and 30). The date is in seconds from the first measurement; the output is 1 for
“Present Queen”.

XNORC

Figure 9. Changes in labels detected by the XNORC classifier when applied pairwise to the same
hives and samples as those used in Figure 8. The abscissa index is the date of the second element in a
pair of audio samples. The output is 1 for “same labels in pair” and 0 for “label changed”.
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The “Queen label changed” output of the XNORC classifier can be time-filtered using
these assumptions. In this case of the sampling of the BAD dataset (with bursts of four
consecutive samples, each burst being separated by at least one hour), a change in queen
status can be determined if and only if all four pairs of samples in a burst are detected as a
“Queen change”. For example, the confusion matrix in Table 16 can be used to state a 2%
probability of false change detection in one sample; then, a false detection accuracy of 0.16
per million can be stated for a burst.

Assuming the queen’s presence upon the introduction of the audio sensor, the model
can predict the queen’s presence throughout the recorded period by integrating filtered
changes in the Queen indicator. Since re-queening is not immediate, there should be a transi-
tional period where “Queen changes” should be ignored and interpreted as false negatives.

5. Conclusions

In our study, we replicated existing methods for the detection of the presence of a
queen in beehives by using Mel-Spec features and a simple convolutional neural network
(CNN). Our primary goal was to achieve extrapolation to unseen hives during the model’s
training phase. We accomplished this by introducing a comparison between data pairs
based on a contrastive learning approach while utilizing the same features and CNN model.

The most significant contribution of our work is the merging and standardization
of all existing public beehive audio datasets, which provided a critical amount of data
necessary for effective AI extrapolation. This standardized dataset has been published as
the BeeTogether dataset [28] on the public Kaggle platform. This was used as a foundation
for our subsequent analyses and model training.

Our key contributions also include an in-depth analysis of audio files using the
statistical spectrum and an unsupervised learning visualization technique to investigate
the challenges of extrapolation to unseen hives. It appears that the colony’s belonging
and the season of activity have a greater impact on the frequency features than the the
Queen/NoQueen tag of interest. Only the SBCM protocol guarantees measurements of
different Queen/NoQueen labels without co-varying factors of hive belonging or seasonal
activity. All models proposed in the literature use a unique dataset (none exploits the
SBCM dataset) and may have learned hidden factors entangled with the presence of a
queen, which, in our view, explains the very poor ability to be generalized to other hives
or seasons.

Simple DA techniques with and without the controversial use of frequency shifting
were also proposed in the BT dataset and used. Increasing the number of hives and DA is
insufficient to achieve a model that can extrapolate to unknown hives.

A method inspired by contrastive learning that uses pairs of samples to identify
changes in queen presence is proposed in this study, with a success rate exceeding 99% on
the overall BT dataset. The contrastive approach was validated with a simple test on an
unlabeled dataset, demonstrating the effective hive extrapolation ability of our solution.

The extrapolation results align well with expectations, and the generalization prop-
erties seem to extend not only to new hives but also to new hardware and measurement
processes that were not encountered in the learning stage. However, definitive conclusions
cannot be drawn due to the unlabeled nature of the data. Additional data are required for
a final validation—in particular, consecutive records with a natural re-queening.

The authors encourage the data analyst community to use the BT framework and focus
on optimizing the size and complexity of the solution—first by minimizing the required
feature size and correlations, then by benchmarking less deep solutions (such as SVM
and RF), with the goal of accuracy and hive extrapolation performance within embedded
smart solutions.

First, hardware running autonomous long-term monitoring of both audio and mass
will be proposed by the authors in future work. Indicators other than the presence of a
queen can then be investigated; in particular, the activity of honey production should be
remotely monitored to help beekeepers with seasonal migration.
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This hardware can collect data on natural de- and re-queening processes without
variations in the setup, and activity can be monitored in different periods to learn new
labels or carry out unsupervised learning.

Secondly, a proper contrastive approach, such as the use of Siamese networks, should
be developed for both the queen presence and honey production labels. Database enrich-
ment may result in fewer strongly co-varying factors and allow for the investigation of the
link between contrastive approaches and factor separation for extrapolation.
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BUZZ BUZZ base
BAD Bee Audio Dataset
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Appendix A. Is the Bee–NoBee Label Useful?

The Be–NoBee label was one of the first labels to appear in hive audio datasets. It is
not of direct interest for health monitoring, except for stating whether a hive is dead or
alive. Despite the name of this label, the rationale behind it is to detect if audio samples are
contaminated by ambient noise and external interference.

This label could be used in a two-step monitoring schema as follows:

• The Bee–NoBee label can be used to exclude audio samples with interference and
retain pure bee buzzing with low ambient noise.

• The label of interest for the selected uncontaminated samples is classified.

The Bee column in Table A1 presents the learning performance of the Queen–NoQueen
label when using a clean database of all files labeled “Bee” if the first step was perfectly
applied. Those results were compared with those in the NoBee column Table A1, repre-
senting a direct single-step learning of the Queen–NoQueen label on a half-contaminated
“NoBee” dataset. Those results were produced with the machine learning parameters and
workflow described in Section 3.5.

Table A1. Dataset constitution, confusion matrix of the test phase, and learning curve for the
Queen/NoQueen label during training and testing. The Bee column corresponds to a clean dataset,
while the NoBee column corresponds to a half-contaminated dataset.

Bee NoBee

All files labeled Bee
with balance between

Queen (5473) and NoQueen (4873)

Balanced Bee (50%) and NoBee (50%) files
with balanced between

Queen (1961) and NoQueen (1497)(
99.39 0.61
0.83 99.17

) (
99.48 0.52
0.54 99.46

)

Analyzing the confusion matrix revealed that the bee presence label was not pertinent
for learning the presence of the queen. The implementation of the bee presence label in [12]
essentially served as a noise indicator, signifying whether a file was noise-free. However,
this noise did not obscure the useful information within the files, allowing the NoBee files to
be used in the learning phase. In fact, including these files could act as a data augmentation
process similar to time/frequency masking, thereby strengthening the model. There were,
however, noticeable differences in learning speed and stability; the presence of the Bee
label accelerated learning, while the inclusion of NoBee files prolonged it.

In the current study, the decision was made to disregard the Bee–NoBee label and
use all files indiscriminately. It was proposed that the label should be reinterpreted as a
bee presence label, with an emphasis on determining whether the noise in the audio file
obscured all of the information or not. Given that all the datasets used in this study were
recorded inside beehives, the likelihood of noise completely obscuring the information
was minimal.
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Appendix B. Mel-Frequency Spectrogram Parameter Validation

In the following, we first describe how the MFCC was computed from the Mel-Spec.
Then, Appendix B.2 presents and displays four different Mel-frequency placements and
concludes with the parameters used in the BT dataset.

Appendix B.1. Mel-Frequency Spectrogram and MFCC Computation

The melodic (Mel) frequency scale, as defined in [51], samples frequencies whose
pitches are equally spaced based on human perception. Choosing this scale may result
in the loss of sensible frequencies used in bees’ acoustic communication that are not well
perceived by humans. The choice of this scale and the use of the MFCC thereafter may
exhibit a path dependence of the scientific community, as described in [52].

The outputs of overlapping triangular filter banks give the average power over time
for each Mel frequency. The perception of intensity by humans depends on frequency, as
measured by Robinson and Dadson [53]. The curve is roughly approximated by a simpler
decibel log scale to produce the log-scale Mel-Spec (Figure A1d), which may be accurate
both in pitch and intensity according to human perception.

The Mel-Spec time/frequency representation increases the information quantity, in-
troducing a strong correlation between its coefficients. This causes problems in machine
learning techniques, specially for regression, SVM, and decision tree techniques.

Figure A1. (a) the Time signal normalized for the average power, length, and bit depth; (b) the
power spectrum that loses the phase information; (c) the Mel-freq scale filterbank output sampling
frequencies that follow human pitch sensitivity; (d) the log amplitude of the Mel-Spec in decibels is
closer to the human perception of intensity; (e) the MFCC removes strong correlation in frequency
using the DCT; (f) the normalized MFCC tempers the noise-masking effect.

The direct cosine transform (DCT) was applied to the Mel-Spec along the frequency
axis for each time slot to obtain the MFCC. This removed part of the redundancy and could
increase the classification performance. The MFCC was then used to obtain uncorrelated
features of reduced size, which are needed when using an SVM or other non-deep models.
Good performance and lower computation effort than those of deep learning techniques
were then achieved.

As the MFCC was obtained from the Mel-Spec by choosing some more parameters
and as the use of SVM or decision tree techniques may require hyperparameter tuning,
we decided to use Mel-Spec features with a CNN classifier. This allowed the same perfor-
mance to be achieved and benchmarked the generalization ability without enduring low
performance due to an additional parameter misfit but, rather, the cost of power calculation
and dataset size.

The CNN choice and Mel-Spec parameters are discussed in the following.

Appendix B.2. Mel-Frequency Parameters and Statistical Spectrum

The Mel-Spec transformation was computed with the librosa Python library [46] and
the MelSpectrogram function as follows:
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spec = transforms . MelSpectrogram ( sr , n _ f f t = n _ f f t ,
hop_length=hop_len ,
n_mels=n_mels ) ( s i g )

spec = transforms . AmplitudeToDB ( top_db=top_db ) ( spec )

The parameter choice was inspired by previous works [12,13,16,32], where the empha-
sis was on precision rather than optimizing the feature size.

• n_mels = 64
The spectrogram had 64 Mel bands scattered linearly before 1 kHz, then on a log scale
for the upper frequencies according to the Mel-frequency scale reported in [51].

• n_fft = 1024
This parameter defines the length of the FFT (fast Fourier transform) window and the
sliding time-window size for the same time. Each frame of audio was transformed
into 1024 frequency bins with a resolution of around 8 Hz, with a sampling frequency
of 8 kHz used in the BT dataset. The corresponding time window was around 125 ms.

• hop_len = (win_length//2)
The hop length is the number of samples between successive frames, and it dictates
the overlap between frames in a spectrogram. In this case, 512 samples corresponded
roughly to 60 ms, which seemed sufficient to follow the humming vibrato of a hive.

• top_db = 80
This parameter sets the threshold for the minimum decibel level to display in the spec-
trogram. It was used to convert the amplitude into decibels and helped in normalizing
the dynamic range of the spectrogram. The default value was 80 dB. This meant that
any part of the signal below 80 dB was clipped to 80 dB.

• fmax = 4000
This parameter specified the maximum frequency (in Hz) to include in the Mel spec-
trogram. The choice among 1, 2, and 4 kHz is discussed in the following.

However, visual inspection of the audio file spectra (cf. FFT images) revealed that
most significant signals were located below 500 Hz. This raises the question as to whether
the frequencies selected for the Mel spectrogram accurately represented the useful parts of
the signal necessary to determine queen presence.

The experiments involved maintaining the same number of Mel frequencies to create a
Mel spectrogram, but the maximum represented frequency was reduced. Figure A2 shows
the mean spectrum of a hive (Number 3 of NUHIVE) and presents the Mel-Spec scale as
vertical dashed lines. The reduced maximum frequency enhanced the representation of
low-frequency signals by reducing the interval between two frequencies. At 500 Hz, it was
evident that the low-frequency peaks in the spectrum corresponded to a Mel frequency,
ensuring that this information was well represented in the Mel spectrogram used as
input features for the model. However, this improvement came at the cost of losing the
representations of all high frequencies. The purpose of this test was to determine which
frequencies were most critical for identifying the presence of a queen in the hive and what
information could be omitted to optimize audio file sizes.

Visual inspection was completed by using a benchmark of the learning performance
with the same data and the ClassiC CNN described in Section 3.3. Figure A2 shows the
learning curves for the queen label and those for different feature parameters. While
reducing the maximum frequency to 500 Hz decreased the model’s performance, there
was no evidence suggesting a need to extend to 4000 Hz. The models using maximum
frequencies of 2 kHz and 4 kHz demonstrated the best overall results. A full Nyquist
bandwidth of 4 kHz determined as the maximum frequency.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A2. Tuning of the maximum frequency for the Mel-Spec by rows with maximum frequency
parameters of 0.5, 1, 2, and 4 kHz. On the left is the mean spectrum over an entire hive audio record
(as described in Figure 5). The Mel-frequency scale (vertical dashed lines) is evenly spaced on the
log-frequency scale after 1 kHz, following the Mel-frequency formula, and it is linearly spaced below.
On the right are the learning curves of the ClassiC classifier using the corresponding Mel-Spec feature.
(a) Spectrum and Mel scale for 500 Hz Fmax; (b) results for the Mel-Spec at 500 Hz; (c) spectrum
and Mel scale for 1 kHz Fmax; (d) results for the Mel-Spec at 1000 Hz; (e) spectrum and Mel scale
for 2 kHz Fmax; (f) results for the Mel-Spec at 2000 Hz; (g) spectrum and Mel scale for 4 kHz Fmax;
(h) results for the Mel-Spec at 4000 Hz.
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