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Introduction

• Design of complex systems (e.g., aerospace
vehicles) using costly simulations with
functional outputs (black box functions)

• Uncertainty quantification (UQ), i.e.,
quantify the impact of the uncertain input
variables vector u on the outputs to help
decision making (e.g., positioning of thermal
protections on an hypersonic vehicle)
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Objectives

• Compute the estimator q̂α of the
α-quantile qα of the simulator output field
(α ∈ [0, 1])

• Scalar α-quantile:

qα = inf {y ∈ R : α ≤ Pr[Y ≤ y]}

• Extension to functional outputs: one scalar
quantile per node of the mesh X

• The estimation requires many runs of the
costly simulator ⇒ need for surrogate
modeling
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Dimensionality reduction (DR)1

• Exploits the spatial/temporal/etc. correlation
of the field to describe it with a reduced set
of latent variables z

• To each snapshot of the output field
corresponds a point in the low-dimensional
latent space

• Example (on the right): snapshots are
mapped to a 1-dimensional manifold

1L. van der Maaten et al. (2009). Dimensionality Reduction: A Comparative Review. TiCC TR 2009–005.
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Dimensionality reduction (DR)
Principal component analysis (PCA)2

• The mapping between the snapshots y and
the latent space is linear

y(u, x) =

N∑
i=1

ϕi(x)zi(u)

• Example (on the right): snapshots (top) and
corresponding scaled PCA basis (bottom) of
a space launcher trajectory

2Y. C. Liang et al. (2002). Proper Orthogonal Decomposition And Its Applications — Part I: Theory. Journal of
Sound and Vibration 252.3.
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Gaussian process regression3 in the latent space

• Probabilistic machine learning model

• The latent variables are modeled by a
Gaussian process (GP):

ẑi(·) ∼ GP (µi(·), ki(·, ·)) (1)

with µi(·) the mean and ki(·, ·) the
covariance function

• Comes with a “confidence” measure
represented by the GP variance σ2(u, x)

• Used as the latent surrogate model (LSM)
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regression

3G. Matheron (1963). Principles of geostatistics. Economic Geology 58.8.
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Surrogate model with functional outputs

Simulator
(black box function)

Surrogate model

Design of 
experiments

DR LSM

Snapshots

Prediction
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Active learning

Simulator
(black box function)

Surrogate
Active learning criterion

(e.g., based on the prediction 
capability, the maximum of variance)

New input 
sample

Initial design of 
experiments

Repeat until 
convergence

DR LSM

Initial snapshots New snapshot
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UQ oriented active learning with scalar outputs

• The learning function g(·) is a compromise between points that are close to
the estimated quantile q̂α (numerator) and points where the prediction
variance is high (denominator)4

g(u) =
|µ(u)− q̂α|

σ(u)
(2)

• The sample that will be added is u⋆ such that
u⋆ = argmin

u
g(u) (3)

4R. Schöbi et al. (2017). Rare Event Estimation Using Polynomial-Chaos Kriging. ASCE-ASME Journal of Risk
and Uncertainty in Engineering Systems, Part A: Civil Engineering 3.2. Publisher: American Society of Civil
Engineers.
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Extension to functional outputs

• Extension to functional outputs by taking the integral of the field over the
mesh X 5

g(u) =

∫
X

|µ(u, x)− q̂α(x)|
σ(u, x)

dx (4)

• The sample that will be added is u⋆ such that
u⋆ = argmin

u
g(u) (5)

5L. Brevault et al. (2022). Active Learning Strategy for Surrogate-Based Quantile Estimation of Field Function.
Applied Sciences 12.19. Number: 19 Publisher: Multidisciplinary Digital Publishing Institute.
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UQ oriented active learning with functional outputs
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The problem with functional quantiles

• With functional outputs, the quantile might
not correspond to any snapshot but rather a
composition of snapshots

• To illustrate, we divide the mesh into multiple
sections and measure which snapshot is the
closest to the quantile for each section 0 20 40 60 80 100
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The problem with functional quantiles
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Application to test cases

• Proposed approach compared to a naive latin hypercube sampling (LHS)
scheme of the maximum budget and an active learning criterion based on the
maximization of the surrogate model variance

• 20 repetitions for each test case and each criterion
• The performance is measured through the mean relative error (MRE) of the

estimated quantile
• We do not solve the minimization problem (find u⋆), we rely on a discretization

of the input space

15UQ oriented infillL. Brunel et al.05/06/2024



Application to test cases

• Proposed approach compared to a naive latin hypercube sampling (LHS)
scheme of the maximum budget and an active learning criterion based on the
maximization of the surrogate model variance

• 20 repetitions for each test case and each criterion

• The performance is measured through the mean relative error (MRE) of the
estimated quantile

• We do not solve the minimization problem (find u⋆), we rely on a discretization
of the input space

15UQ oriented infillL. Brunel et al.05/06/2024



Application to test cases

• Proposed approach compared to a naive latin hypercube sampling (LHS)
scheme of the maximum budget and an active learning criterion based on the
maximization of the surrogate model variance

• 20 repetitions for each test case and each criterion
• The performance is measured through the mean relative error (MRE) of the

estimated quantile

• We do not solve the minimization problem (find u⋆), we rely on a discretization
of the input space

15UQ oriented infillL. Brunel et al.05/06/2024



Application to test cases

• Proposed approach compared to a naive latin hypercube sampling (LHS)
scheme of the maximum budget and an active learning criterion based on the
maximization of the surrogate model variance

• 20 repetitions for each test case and each criterion
• The performance is measured through the mean relative error (MRE) of the

estimated quantile
• We do not solve the minimization problem (find u⋆), we rely on a discretization

of the input space

15UQ oriented infillL. Brunel et al.05/06/2024



Parametric test case to illustrate

Goal: compute the 99%-quantile of

f(u, x) = ã exp

(
−1

2
× 0.5 + 0.01ã− x

ln(1 + u1)

)
(6)

with ã = 1 + sin(2nu2), n = 3.

The distribution of the uncertain variables u are u1 ∼ U(0.2, 0.4) and u2 ∼ U(0, π).

The mesh coordinate is x ∈ [0, 1] with 101 nodes.
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Parametric test case to illustrate
With 3 regions that activate the quantile
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Parametric test case to illustrate
With 3 regions that activate the quantile
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Trajectory of a space launcher test case

• Two-Stage-To-Orbit rocket (circular at 250 km)

• The solver is the optimization of the trajectory
• u1 ∼ N (0, 1) is a perturbation of the specific

impulse of the first stage (measure of the engine
performance) and u2 ∼ N (0, 0.05) is a perturbation
of the pitch over angle

• 99%-quantile: flight envelope for safety purposes
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Trajectory of a space launcher test case
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Trajectory of a space launcher test case
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⇒ -11% median MRE at cost 10 and -7% at cost 20 over a naive LHS
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Takeaways

• The proposed strategy behavior is as expected adding samples in areas of
the inputs space that contribute the most to the quantile or that bear a
large variance, and it appears to be beneficial

• We cannot simply transpose scalar active learning strategies to simulators
with functional outputs

• The effectiveness of our method is highly dependent on which parts of the
input space compose the quantile, considering that the exact quantile is not
known a priori
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Future works

• Apply the method on other test cases (of increased dimensionality and
complexity), in particular cases with varying quantile structure to better
understand the effectiveness of the proposed method

• Extend it to multi-fidelity simulators to take advantage of the lower
computational cost of lower-fidelity simulators

24UQ oriented infillL. Brunel et al.05/06/2024



Future works

• Apply the method on other test cases (of increased dimensionality and
complexity), in particular cases with varying quantile structure to better
understand the effectiveness of the proposed method

• Extend it to multi-fidelity simulators to take advantage of the lower
computational cost of lower-fidelity simulators

24UQ oriented infillL. Brunel et al.05/06/2024



www.onera.fr

Thank you for listening!

Any questions?

https://www.onera.fr/en


Parametric test case to illustrate
With 5 regions that activate the quantile
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Viscous free fall
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Viscous free fall
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Viscous free fall

• Adds samples where we want them again
• Ecart moins important que sur le cas analytique
• Quand ce sera animé analyser l’ordre dans lequel les points sont ajoutés
• Le critère variance est moins intéressant qu’un LHS naif

28UQ oriented infillL. Brunel et al.05/06/2024


