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Abstract
Solvent selection is essential for industrial and analytical extraction processes to ensure environmental safety and neutrality. 
Nevertheless, toxic and hazardous solvents are often used, due to their cost-effectiveness and ready availability. In green 
chemistry, alternative solvents such as supramolecular deep eutectic solvents are gaining attention due to their superior 
performance compared with traditional non-green solvents in certain applications. Here we review the use of supramolecu-
lar deep eutectic solvents as a green solvent for analytical and industrial liquid–liquid extraction processes, with focus on 
physicochemical properties, extraction conditions, the capacity factor, the enrichment factor, fuel desulfurization, extraction 
of biological active compounds, lignin valorization, and sample preparation.

Keywords  Cyclodextrins · Supramolecular deep eutectic solvents · Liquid–liquid extraction processes · Green solvents · 
SUPRADES
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Introduction

The choice of reagents heavily influences the greenness 
of the technological procedures. Solvents play a signifi-
cant role in the industrial separation processes and sample 
preparation. Many technological processes commonly use 
toxic organic solvents derived from crude oils. In today's 
environmentally conscious society, reducing the use of 
hazardous solvents in academic and industrial settings 
is crucial. To achieve this goal, two primary strategies 
can be implemented. First, it is important to reduce the 
use of solvents by modifying the technology or replacing 
harmful organic solvents with eco-friendly alternatives 
[5, 9, 72, 73]. However, organic solvents are necessary 
for many chemical processes, including extraction and 
microextraction. Moreover, numerous extraction, purifi-
cation, and cleaning processes rely heavily on solvents, 
often requiring substantial excesses to guarantee adequate 
product purity. Therefore, it is more practical to explore 
alternative environmentally friendly solvents.

Most academic papers have focused on replacing haz-
ardous and flammable organic solvents with environmen-
tally friendly alternatives, including ionic liquids, deep 
eutectic solvents (DESs), surfactants, hydrotropes, and 
bio-based solvents [69]. Among the aforementioned sol-
vents, ionic liquids have gained significant attention as 
effective extraction solvents because of their non-volatile, 
non-flammable, and non-explosive characteristics, as well 
as their ability to customize their physicochemical proper-
ties through the selection of cations and anions [95]. How-
ever, their high cost, complex synthesis, proven toxicity, 
and minimal biodegradability have hindered their use in 
industrial applications [75, 101]. To address these limita-
tions, Abbott et al. introduced an innovative eco-friendly 
solvent known as a deep eutectic solvent in 2003 [1].

Deep eutectic solvents are created by mixing at least 
two solid components (typically at elevated temperatures) 
to form a liquid. The interaction between the components 
of a deep eutectic solvent is mainly driven by the for-
mation of hydrogen bonds between the hydrogen bond 
donor (HBD) and hydrogen bond acceptor (HBA). The 
first published deep eutectic solvent was choline chloride 
combined with urea at a 1:2 molar ratio [1]. Components 
with functional groups capable of forming hydrogen bonds 
were used to significantly reduce the melting point of the 
mixture. Deep eutectic solvents are known to have unique 
properties. Their main advantages include the natural ori-
gin of many of the components used for their prepara-
tion, low toxicity, and simple, cost-effective preparation. 
By altering the components of a deep eutectic solvent, 
a solvent with properties tailored to the specific separa-
tion requirements for various systems can be obtained 

[12, 27, 46, 86, 99]. This makes deep eutectic solvents 
widely applicable in various fields [88]. Currently, distinct 
subclasses of deep eutectic solvents exist based on their 
physicochemical properties and the origin/functionality of 
their components. These subclasses include hydrophobic, 
natural, therapeutic, and magnetic deep eutectic solvents 
[7, 17, 20, 74, 80, 85].

The latest group, first published in 2020, are supramo-
lecular deep eutectic solvents (SUPRADES) [28]. This is 
a family of deep eutectic solvents containing cyclodextrin 
(CD), a host molecule which can form inclusion complexes. 
In SUPRADES, cyclodextrin can be used as hydrogen bond 
acceptor, in binary supramolecular systems, or as additives 
within deep eutectic solvents, in ternary supramolecular 
systems. SUPRADES can combine the advantages of con-
ventional deep eutectic solvents with those of cyclodex-
trins. Their benefits make it a promising candidate for vari-
ous industrial and laboratory applications, as demonstrated 
by the recent papers [41, 42, 52, 58, 98]. However, limited 
information is available in the literature regarding their phys-
icochemical properties and potential applications.

The extraction process is a crucial area of science used 
in analytical and large-scale processes. Safety in the extrac-
tion process becomes increasingly important when planning 
conscious processes; therefore, there is a need to replace the 
toxic organic solvents by greener alternatives. This review 
summarizes the groundbreaking and innovative use of the 
SUPRADES, including their properties and applications in 
the extraction processes. Despite their novelty, SUPRADES 
already attracted the attention of scientists and few reviews 
have already been published. The use of deep eutectic sol-
vents in extraction techniques is also a hot topic that has 
been reviewed (Table 1). However, to the best of our knowl-
edge, this is the first review on the use of SUPRADES in 
extraction techniques.

The present review summarizes the use of supramolecu-
lar deep eutectic solvents, which combine the properties of 
cyclodextrins and eutectic solvents in a variety of extraction 
processes (Fig. 1). First, the different cyclodextrins and other 
compounds used for the preparation of SUPRADES are 
described. The physicochemical properties of the solvents 
obtained are detailed, and the price of these new solvents 
is estimated. Then, the different extraction processes using 
SUPRADES will be described. Finally, we will critically 
discuss the future of SUPRADES in extraction processes.

Supramolecular deep eutectic solvents 
composition and preparation

The key component of SUPRADES is cyclodextrin, a mole-
cule from the oligosaccharide family, obtained by enzymatic 
degradation of starch [18, 19, 82]. Native cyclodextrins 
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are molecules composed of six (α-CD), seven (β-CD), or 
eight (γ-CD) D-glucopyranose units linked by an α-(1–4) 
bonds [18]. Cyclodextrins are frusto-conical in shape, have 
a hydrophilic outer surface, and their cavities are relatively 
hydrophobic. The unusual structure of cyclodextrins (i.e., a 
hydrophilic outer surface connected to a relatively hydro-
phobic cavity) makes them capable of forming inclusion 
complexes in aqueous solutions with numerous molecules 
of low hydrophilicity and appropriate geometric size (which 
will allow non-covalent host/guest interaction) [6, 57, 82]. 
The number of D-glucopyranose molecules determines the 
size of the hydrophobic cavity (4.7–5.3 Å, 6.0–6.5 Å, and 
7.5–8.3 Å for α-CD, β-CD, and γ-CD, respectively) [67]. 
Naturally occurring cyclodextrins can be modified by amina-
tion, esterification, or etherification reactions [21]. In these 
processes, additional functional groups are introduced: 
methyl, ethyl, hydroxyl, hydroxypropyl, carboxymethyl, or 
sulfobutylether.

A summary of the most common cyclodextrins and 
their modifications is shown in Fig. 2. Possible benefits of 
modifying cyclodextrins include increasing the solubility 
in water, changing the volume of the cavity, increasing the 
stability (resistance to oxygen and/or light), and helping to 
control the chemical activity of the guest molecules [21]. 
The presence of cyclodextrins in SUPRADES enables the 
encapsulation of numerous chemical compounds through the 
formation of hydrogen bonds and host/guest interactions [22, 
23, 68]. The SUPRADES described in the literature are sol-
vents composed mainly of two or three organic substances, 
called binary and ternary systems, respectively.

Binary SUPRADES are obtained precisely the same route 
as conventional deep eutectic solvents. This procedure for 
obtaining them involves magnetic stirring of the two precur-
sor compounds in an appropriate molecular ratio in a closed Ta
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Fig. 1   Various extraction processes concerned by the use of supra-
molecular deep eutectic solvent (SUPRADES) that combine cyclo-
dextrins and eutectic solvent properties. One of the advantages of 
these supramolecular solvents is to take benefit of the ability of cyclo-
dextrins to form inclusion complexes with a variety of hydrophobic 
organic compounds
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vial at a certain temperature for a certain period of time [1]. 
The final product is a homogeneous and stable clear liq-
uid at room temperature. The procedure is simple and does 
not require additional chemicals. In binary SUPRADES, 

cyclodextrin acts as a hydrogen bond acceptor because of the 
presence of O-glycosidic bonds in the outer part of its struc-
ture. Both native (α-CD, β-CD, γ-CD) and modified cyclo-
dextrins, i.e., sulfobutylether-β-cyclodextrin (SBE-β-CD), 

Fig. 2   Commonly used ingredients for preparing supramolecular 
deep eutectic solvents (SUPRADES). In binary systems, cyclo-
dextrins act as a hydrogen bond acceptor and are associated with a 
hydrogen bond donor. In ternary systems, cyclodextrins act as addi-
tives in a conventional deep eutectic solvent prepared from a hydro-
gen bond donor and a hydrogen bond acceptor. Different chemi-

cal families can play the role of hydrogen bond donor or acceptor. 
CD: cyclodextrin; CM-β-CD: carboxymethyl-β-cyclodextrin; 
CRYSMEB: low methylated-β-cyclodextrin; DM-β-CD: 2,6-Di-O-
methyl-β-cyclodextrin, HP-β-CD: hydroxypropyl-β-cyclodextrin; 
RAMEB: randomly methylated-β-CD; SBE-β-CD: sulfobutylether-β-
cyclodextrin; S-β-CD: sulfated-β-cyclodextrin
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sulfated-β-cyclodextrin sodium salt (S-β-CD), 2,6-Di-O-
methyl-β-cyclodextrin (DM-β-CD), carboxymethyl-β-
cyclodextrin (CM-β-CD), low methylated-β-cyclodextrin 
(CRYSMEB), hydroxypropyl-β-cyclodextrin (HP-β-CD), 
and randomly methylated-β-cyclodextrin (RAMEB), are 
used to prepare binary SUPRADES. In contrast, the same 
chemicals used in the preparation of conventional deep 
eutectic solvents are used as hydrogen bond donors. These 
compounds include carboxylic acids (i.e., formic acid, lev-
ulinic acid, lactic acid, citric acid), alcohols (benzyl alco-
hol), diols (i.e., ethylene glycol, 1,2-propanediol, 1,3-butan-
ediol), and amides (N,N′-dimethylurea, urea, nicotinamide) 
[29–31, 39, 41].

Ternary SUPRADES contains conventional deep eutec-
tic solvents in its structure, mainly quaternary ammonium 
salts, i.e., choline chloride, tetramethylammonium chlo-
ride or sodium acetate, and various hydrogen bond donors 
such as urea, citric acid, L-malic acid, and L-tartaric acid. 
Cyclodextrin plays the role of additive. Formulating ter-
nary SUPRADES is more challenging than preparing 
binary SUPRADES. This is because the direct mixing of 
deep eutectic solvents with cyclodextrin (in the same molar 
ratios of deep eutectic solvents:cyclodextrin as in binary 
SUPRADES) does not typically result in the formation of 
a liquid complex at room temperature. Therefore, a small 
amount of cyclodextrin is generally added to the deep eutec-
tic solvents. Water can be added to increase the proportion of 
cyclodextrin in the SUPRADES structure, as it plays a role 
in forming the deep eutectic solvents-cyclodextrin hydrogen-
bonding network, which leads to the formation of supramo-
lecular structures.

Physical properties of supramolecular deep 
eutectic solvents

The physical properties of SUPRADES depend on the type 
of cyclodextrin, other organic components, and their stoi-
chiometry. Often, even a small change in the amount of a 
single ingredient can significantly alter the physicochemical 
properties of SUPRADES, which can improve or worsen its 
extraction ability. This section summarizes the crucial physi-
cal properties of the SUPRADES described in the literature 
(Table 2).

Melting point and glass transition temperature

The evaluation of solvents necessitates the determination 
of their melting points or glass transition temperatures, 
which are crucial factors for SUPRADES. Melting point is 
the temperature at which a crystalline material transitions 
from solid to liquid. In contrast, the glass transition tem-
perature transitions from a glassy state to a highly elastic 

state. Since most extraction processes are conducted at 
room temperature, SUPRADES extractants must have a 
melting point/glass transition temperature lower than room 
temperature. However, the results show that only a lim-
ited number of SUPRADES meet this assumption. This is 
because of the relatively high melting points of cyclodex-
trins, which are 507, 501, and 474 °C for α-, β-, and γ-CD, 
respectively [35]. The modified cyclodextrins exhibit lower 
melting points, with values of 182, 202, 267, and 260 °C 
for methyl-β-cyclodextrin, sulfobutylether-β-cyclodextrin, 
hydroxypropyl-β-cyclodextrin, and hydroxyethyl-β-
cyclodextrin, respectively [44]. In addition, cyclodextrins 
form relatively weak non-covalent interactions with other 
components, such as van der Waals or electrostatic interac-
tions. In most cases, hydrogen bonds, which play a major 
role in lowering the melting point, are formed in insufficient 
amounts to create a liquid extractant at room temperature.

Notably, the formation of cyclodextrin—hydrogen bond 
donor inclusion systems—did not significantly reduce the 
melting point. Theoretically, increasing the cyclodextrin 
content in the SUPRADES structure should increase its 
melting point too. This theory was confirmed for binary 
SUPRADES composed of α-, β-, and γ-CD as hydrogen 
bond acceptor and carboxylic acids, i.e., citric acid, L-(-)-
malic acid, and L-( +)-tartaric acid (1:10) [90]. However, 
in different works, comparing binary SUPRADES contain-
ing the same compounds in different proportions showed 
an opposite trend. In the CRYSMEB:N,N′-dimethylurea 
and RAMEB:N,N′-dimethylurea systems, increasing the 
proportion of cyclodextrin from 3:7 to 7:3 decreased the 
melting point from 92 to 71  °C and from 91 to 51  °C, 
respectively. By contrast, increasing the proportion above 
80% m/m significantly increased the melting point above 
100 °C [31]. To obtain binary SUPRADES with melting 
point/freezing point below 25 °C, the cyclodextrin content 
of the complex structure must be significantly reduced. For 
example, for binary systems composed of levulinic acid, 
i.e., HP-β-CD:levulinic acid (1:32), RAMEB:levulinic 
acid (1:27), CRYSMEB:levulinic acid (1:25), and SBE-
β-CD:levulinic acid (1:44), the glass transition tempera-
ture is -73.3, -74.3, -73.5, and -67.8 °C, respectively [29]. 
Similar glass transition temperature values of -80, -78.4, 
and -79.6  °C were obtained for ternary SUPRADES 
that consist of thymol:heptanoic acid (2:1) + DM-β-CD, 
thymol:heptanoic acid (2:1) + RAMEB, thymol:heptanoic 
acid (2:1) + HP-β-CD, respectively [97].

Decomposition temperature

The decomposition temperature of SUPRADES is a crucial 
factor in determining its suitability for high-temperature pro-
cesses. In particular, for extraction processes, the decompo-
sition temperature plays a vital role in solvent regeneration 
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Table 2   Physical properties and estimated price of supramolecular deep eutectic solvent (SUPRADES) used for extraction in the literature

SUPRADES (molar ratio) Water 
content 
(%)

Viscosity 
(temp, °C)
[mPa⋅s]

Density (temp, °C)
[kg/m3]

MP/TG
[°C]

Decomposi-
tion temp. [°C]

Hydro-
phobic-
ity

Price per 1 kg Reference

Binary SUPRADES
Sulfobutylether-β-

cyclodextrin:levulinic acid (1:44)
3.9 1300 (30 °C) 1234.3 (30 °C)  − 67.8 127.6 No 55.93 € [29]

Low methylated-β-
cyclodextrin:levulinic acid (1:25)

3.3 480 (30 °C) 1207.5(30 °C)  − 73.5 137.7 No 246.94 € [29]

Hydroxypropyl-β-
cyclodextrin:levulinic acid (1:32)

2.7 600 (30 °C) 1204.7 (30 °C)  − 73.3 130.4 No 130.4 € [29]

Randomly methylated-β-
cyclodextrin:levulinic acid (1:27)

2.5 212.9 (30 °C) 1184.5 (30 °C)  − 74.3 117.6 No 71.4 € [29]

α-Cyclodextrin:N,N’-dimethylurea 
(3:7)

– 1436 (90 °C) – 86 – No 134.19 € [31]

β-Cyclodextrin:N,N’-dimethylurea 
(3:7)

– 1165 (90 °C) – 91 – No 70.49 € [31]

β-Cyclodextrin:N,N’-dimethylurea 
(1:1)

– 434 (90 °C) – 67 – No 74.49 € [31]

γ-Cyclodextrin:N,N’-dimethylurea 
(3:7)

– 1096 (90 °C) – 91 – No 181.54 € [31]

Hydroxypropyl-α-
cyclodextrin:N,N’-dimethylurea 
(3:7)

– 163 (90 °C) – 87 – No 2619.81 € [31]

Hydroxypropyl-β-
cyclodextrin:N,N’-dimethylurea 
(3:7)

– 205 (90 °C) – 91 – No 2382.45 € [31]

Hydroxypropyl-γ-
cyclodextrin:N,N’-dimethylurea 
(3:7)

– 208 (90 °C) – 94 – No 2942.73 € [31]

Low methylated-β-
cyclodextrin:N,N’-dimethylurea 
(3:7)

– 445 (90 °C) – 92 – No 1406.73 € [31]

Low methylated-β-
cyclodextrin:N,N’-dimethylurea 
(1:1)

– 103 (90 °C) – 79 – No 2301.95 € [31]

Low methylated-β-
cyclodextrin:N,N’-dimethylurea 
(7:3)

– 45,500 (90 °C) – 71 – No 1406.73 € [31]

Randomly methylated-β-CD:N,N’-
dimethylurea (3:7)

– 235 (90 °C) – 91 – No 1604.73 € [31]

Randomly methylated-β-
cyclodextrin:N,N’-dimethylurea 
(1:1)

– 196 (90 °C) – 71 – No 2781.95 € [31]

Randomly methylated-β-CD:N,N’-
dimethylurea (7:3)

– 834 (90 °C) – 51 – No 3869.17 € [31]

Randomly methylated-β-
cyclodextrin:ethylene glycol 
(1:40)

3.12 175 (20 °C) 1179.64 (20 °C) – – No 15.66 € [41]

Randomly methylated–β-
cyclodextrin:1,2-propanediol 
(1:40)

2.38 305 (20 °C) 1111.48 (20 °C) – – No 23.73 € [41]

Randomly methylated-β-
cyclodextrin:1,3-butanediol 
(1:40)

2.08 476.78 (20 °C) 1005.3 (20 °C) – – No 62.7 € [41]

Randomly methylated-β-
cyclodextrin:benzyl alcohol 
(1:40)

1.78 22.78 (20 °C) 1076.25 (20 °C) – – No 51.3 € [41]

α-Cyclodextrin:formic acid (1:3) – 5.3 (30 °C) – – – No 131.9 € [39]
β-Cyclodextrin:formic acid (1:3) – 3.6 (30 °C) – – – No 79.3 € [39]
γ-Cyclodextrin:formic acid (1:3) – 3.3 (30 °C) – – – No 171.05 € [39]
Methyl-β-cyclodextrin:formic acid 

(1:3)
– 42.8 (30 °C) – – – No 529.86 € [39]
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Table 2   (continued)

SUPRADES (molar ratio) Water 
content 
(%)

Viscosity 
(temp, °C)
[mPa⋅s]

Density (temp, °C)
[kg/m3]

MP/TG
[°C]

Decomposi-
tion temp. [°C]

Hydro-
phobic-
ity

Price per 1 kg Reference

Methyl-β-cyclodextrin:acetic acid 
(1:3)

– 88.9 (30 °C) – – – No 769.48 € [39]

Methyl-β-cyclodextrin:propionic 
acid (1:3)

– 44.1 (30 °C) – – – No 500.83 € [39]

β-Cyclodextrin:lactic acid (1:4) 0.79 818 (21.3 °C) – – – No 38.12 € [30]
Hydroxypropyl-β-

cyclodextrin:citric acid (1:14)
20 7800 (30 °C) 1360 (30 °C) – 220 No 452.51 € [10]

Hydroxypropyl-β-
cyclodextrin:lactic acid (1:35)

14.5 98 (30 °C) 1150 (30 °C) – 140 No 244.14 € [10]

Hydroxypropyl-β-
cyclodextrin:choline chloride 
(2:35)

20 320 (30 °C) 1110 (30 °C) – 270 No 306.62 € [10]

α-Cyclodextrin:citric acid (1:5) – 5.2⋅105 (25 °C) –  − 33 258.3 No 93.2 € [90]
α-Cyclodextrin:citric acid (1:10) – 1⋅104 (25 °C) –  − 43 225.2 No 51.04 € [90]
α-Cyclodextrin:L-(-)-malic acid 

(1:5)
– 8.5⋅104 (25 °C) –  − 29 282.2 No 489.79 € [90]

α-Cyclodextrin:L-(-)-malic acid 
(1:10)

– 2.05⋅104 (25 °C) –  − 50 276.7 No 507.63 € [90]

α-Cyclodextrin:L-( +)-tartaric acid 
(1:5)

– 1.28⋅104 (25 °C) –  − 23 271.1 No 132.84 € [90]

α-Cyclodextrin:L-( +)-tartaric acid 
(1:10)

– 4⋅105 (25 °C) –  − 36 262.3 No 118.12 € [90]

β-Cyclodextrin:citric acid (1:5) – 1.1⋅106 (25 °C) –  − 24 225.2 No 58.06 € [90]
β-Cyclodextrin:citric acid (1:8) 2 mL 125 (20 °C) 1423.4 (20 °C) – – No 48.2 € [16]
β-Cyclodextrin:citric acid (1:10) – 2.5⋅103 (25 °C) –  − 41 207.9 No 31.89 € [90]
β-Cyclodextrin:L-(-)-malic acid 

(1:5)
– 5⋅107 (25 °C) – 2 284.8 No 454.65 € [90]

β-Cyclodextrin:L-(-)-malic acid 
(1:10)

– 3.2⋅106 (25 °C) –  − 44 346.9 No 488.49 € [90]

β-Cyclodextrin:L-( +)-tartaric acid 
(1:5)

– 4⋅107 (25 °C) –  − 25 270.1 No 97.71 € [90]

β-Cyclodextrin:L-( +)-tartaric acid 
(1:10)

– 3.6⋅106 (25 °C) –  − 29 264.6 No 98.98 € [90]

γ-Cyclodextrin:citric acid (1:5) – 5.2⋅107 (25 °C) –  − 30 264.8 No 119.34 € [90]
γ-Cyclodextrin:citric acid (1:10) – 8.4⋅105 (25 °C) –  − 41 243.9 No 89.11 € [90]
γ-Cyclodextrin:L-(-)-malic acid 

(1:5)
– 6⋅1010 (25 °C) –  − 22 287.7 No 515.94 € [90]

γ-Cyclodextrin:L-(-)-malic acid 
(1:10)

– 6⋅105 (25 °C) –  − 40 278.5 No 521.9 € [90]

γ-Cyclodextrin:L-( +)-tartaric acid 
(1:5)

– 1.1⋅108 (25 °C) –  − 18 279.6 No 159.0 € [90]

γ-Cyclodextrin:L-( +)-tartaric acid 
(1:10)

– 7.9⋅105 (25 °C) –  − 40 260.1 No 132.38 € [90]

Ternary SUPRADES

Choline chloride:urea (1:2) + 2% 
α-cyclodextrin

– 668 (30 °C) 1198.9 (30 °C) – – No 45.38 € [39]

Choline chloride:urea 
(1:2) + 10% α-cyclodextrin

– 746 (30 °C) 1216.1 (30 °C) – – No 69.56 € [39]

Choline chloride:urea (1:2) + 2% 
β-cyclodextrin

– 758 (30 °C) 1197.8 (30 °C) – – No 45.38 € [39]

Choline chloride:urea 
(1:2) + 10% β-cyclodextrin

– 661 (30 °C) 1214.2 (30 °C) – – No 48.52 € [39]

Choline chloride:urea 
(1:2) + 10% β-cyclodextrin

– 639 (30 °C) 1212.7 (30 °C) – – No 48.52 € [26]
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and sample preparation processes, such as direct solvent 
dispensing into the hot injector of a gas chromatograph. 
At high temperatures, the structure of SUPRADES may 
undergo phase changes, breakdown of hydrogen bonds, and 
electrostatic interactions between hydrogen bond accep-
tor, hydrogen bond donor, and cyclodextrin. Therefore, an 
assessment of the thermal stability of SUPRADES provides 
valuable information on the temperature at which the solvent 
can be used without undergoing structural changes [50, 76].

Thermogravimetric analysis curves for the binary 
SUPRADES indicated two distinct weight losses. The 
first, which was relatively minor, occurred between 100 °C 
and 140 °C. This was attributed to the loss of water from 
the SUPRADES structures, including those that were not 

intentionally hydrated [37]. However, cyclodextrins' char-
acteristic cavity structure facilitates water adsorption and 
hinders its removal. The second weight loss corresponded 
to the decomposition of SUPRADES and occurred at tem-
peratures ranging from 207 to 287.7  °C. Nevertheless, 
the exact values varied depending on the components and 
stoichiometry of SUPRADES. As the cyclodextrin con-
tent in the SUPRADES structure increased from 1:10 to 
1:5 (cyclodextrin:hydrogen bond donor), the decomposi-
tion temperature increased [90]. This can be attributed to 
the high decomposition temperatures of cyclodextrins and 
the strong bonds between hydrogen bond donor and cyclo-
dextrin. SUPRADES based on levulinic acid and lactic 
acid exhibited relatively low decomposition temperatures 

Table 2   (continued)

Ternary SUPRADES

Choline chloride:urea 
(1:2) + 20% β-cyclodextrin

0.667 2104 (21.3 °C) – – – No 52.44 € [30]

Choline chloride:urea (1:2) + 2% 
γ-cyclodextrin

– 775 (30 °C) 1198.1 (30 °C) – – No 52.72 € [39]

Choline chloride:urea 
(1:2) + 10% γ-cyclodextrin

– 1127 (30 °C) 1215.2 (30 °C) – – No 85.22 € [39]

Choline chloride:urea (1:2) + 2% 
hydroxypropyl-β-cyclodextrin

– 802 (30 °C) 1197.2 (30 °C) – – No 199.56 € [39]

Choline chloride:urea 
(1:2) + hydroxypropyl-β-
cyclodextrin

– 1487 (30 °C) 1210.1 (30 °C) – – No 264.14 € [39]

Choline chloride:urea (1:2) + 2% 
low methylated-β-cyclodextrin

– 666 (30 °C) 1196.9 (30 °C) – – No 134.51 € [39]

Choline chloride:urea 
(1:2) + 10% low methylated-β-
cyclodextrin

– 257 (30 °C) 1204.2 (30 °C) – – No 494.14 € [39]

Thymol:heptanoic acid 
(2:1) + 2,6-di-O-methyl-β-
cyclodextrin

– – –  − 80.0 196.17 Yes 260.89 € [97]

Thymol:heptanoic acid 
(2:1) + randomly methylated-β-
cyclodextrin

– – –  − 78.4 197.31 Yes 622.30 € [97]

Thymol:heptanoic acid 
(2:1) + hydroxypropyl-β-
cyclodextrin

– – –  − 79.6 194.83 Yes 851.54 € [97]

Choline chloride:lactic 
acid:hydroxypropyl-β-
cyclodextrin (17.5:35:2)

8.5 760 (30 °C) 1180 (30 °C) – 270 No 438.09 € [10]

Citric acid:Lactic 
acid:hydroxypropyl-β-
cyclodextrin (14:35:2)

8.2 4265 (30 °C) 1290 (30 °C) – 220 No 423.37 € [10]

Choline chloride:citric 
acid:hydroxypropyl-β-
cyclodextrin (17.5:14.5:2)

20 1020 (30 °C) 1230 (30 °C) – 220 No 454.59 € [10]

Binary SUPRADES are obtained by mixing one cyclodextrin with one hydrogen bond donor, while ternary SUPRADES are obtained by adding 
one cyclodextrin in an already prepared deep eutectic solvent. The cyclodextrin is therefore considered as an additive in this case. Density plays 
a significant role in separation processes, particularly in extraction as well as viscosity since high viscosity of the extractants could impede the 
mass transfer process. The water content could affect these physicochemical properties
MP melting point, TG glass transition temperature
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of 127.6, 137.7, 130.4, 130.4, and 120  °C for SBE-β-
CD:levulinic acid (1:44), CRYSMEB:levulinic acid (1:25), 
HP-β-CD:levulinic acid (1:32), and RAMEB:levulinic acid 
(1:27), HP-β-CD:lactic acid (1:35), respectively [29]. The 
lower boiling points of both acids likely contributed to their 
lower decomposition temperatures. For binary SUPRADES, 
much less data are available in the literature. However, it 
can be observed that the approximate degradation tempera-
tures for binary SUPRADES range from 195 to 270 °C. In 
addition, an increased number of components in eutectic 
mixtures are associated with increased steps associated with 
distinct T-onset values [10, 97].

Density

Solvent density is a crucial thermophysical property that 
plays a significant role in separation processes, particularly 
in extraction. To effectively separate the phases, the density 
of SUPPRADES needs to be either higher or lower than the 
density of the sample matrix. Conventionally, deep eutec-
tic solvents have a higher density than water, ranging from 
1.0 g/cm3 to 1.35 g/cm3 at 20 °C [27, 63]. The majority of 
the binary and ternary SUPRADES have similar densities. 
Their densities range from 1.1 to 1.36 g/cm3 at 20 °C [10, 
26, 29, 39, 41]. Only RAMEB:1,3-butanediol (1:40) has a 
much lower density of 1.01 g/cm3, which results from the 
density of the butanediol [41]. In this case, the cyclodextrin 
content was minimal and only slightly changed the density of 
SUPRADES. Increasing the cyclodextrin content in the deep 
eutectic solvents structure increased its density. To lower the 
density, it is possible to add water to SUPRADES. However, 
this modification is limited to hydrophilic SUPRADES. Tem-
perature is another parameter that significantly influences the 
density. A decrease in temperature results in a reduction of 
the kinetic energy of SUPRADES molecules, which leads 
to an increase in density (Fig. 3). This is because, at low 
temperatures, the decrease in the movement of SUPRADES 
molecules and the consequent reduction of the molar volume 
of the eutectic complexes can be observed [2, 15]. However, 
economic considerations make many industrial processes 
require temperatures close to room temperature. Addition-
ally, in the extraction process, a change in the temperature of 
the solvent also affects the temperature of the second phase, 
which does not improve phase separation.

Viscosity

Viscosity is a critical factor for several SUPRADES applica-
tions. The low viscosity of SUPRADES simplifies the man-
agement of solvents and reduces energy costs. However, the 
high viscosity of the extractants impedes the mass transfer 
process. Main conventional deep eutectic solvents exhibit 
high viscosities (greater than 100 mPa⋅s at room temperature 

and normal pressure). Unfortunately, the viscosity of major 
SUPRADES is even higher [1, 27, 61, 63, 79]. Compared to 
choline chloride: urea (1:2), with a viscosity of 1358 mPa⋅s, 
SUPRADES based on the same deep eutectic solvent con-
taining β-CD exhibited a higher value of 2104 mPa⋅s [30]. 
This increased viscosity in SUPRADES can be attributed to 
several factors, such as the strong hydrogen bonds between 
the cyclodextrins and hydrogen bond donor, which restrict 
the mobility of free species within the eutectic molecule. 
Additionally, the larger size of the cyclodextrins molecules 
and smaller empty volumes contributed to increased viscos-
ity. This phenomenon is known as the steric effect. It can be 
quantified using hole theory, which takes into account the 
strong electrostatic and van der Waals interactions between 
cyclodextrins and hydrogen bond donors [2, 45, 61].

The viscosity of SUPRADES is mainly influenced by the 
type and amount of cyclodextrin in its structure. In binary 
SUPRADES systems composed of neat cyclodextrins, the 
viscosity increased in the following order for a same hydro-
gen bond donor: α-CD < β-CD < γ-CD. The differences in 
viscosities were almost an order of magnitude. Furthermore, 
as the SUPRADES content increased, its viscosity increased 
significantly by up to three orders of magnitude after chang-
ing the molar ratio from 1:10 to 1:5 (cyclodextrin:hydrogen 
bond donor) [90]. However, replacing neat cyclodextrins 
with modified cyclodextrins can significantly reduce the 
viscosity of SUPRADES. Compared to the viscosity of 
β-CD:N,N′-dimethylurea (1165 mPa⋅s), replacing β-CD by 
hydroxypropylated or methylated β-cyclodextrins leads to 
significantly reduced viscosity, with values of 205, 445, and 
235 mPa s, respectively [31]. Furthermore, it is possible to 
add water to ternary SUPRADES to decrease its dynamic 
viscosity. As the water content in the system increases, the 
viscosity decreases. This decrease in viscosity can be attrib-
uted to the lower viscosity of water than that of the deep 
eutectic solvents. Moreover, the viscosity of SUPRADES 
decreases considerably as the temperature increases, which 
can be attributed to either the Arrhenius or Vogel-Fulcher-
Tammann model (Fig. 3). This occurs because an increase in 
temperature results in a surge in the average velocity of the 
SUPRADES components in the liquid phase, which dimin-
ishes intermolecular forces, lowering the fluid resistance to 
flow and altering viscosity [45].

Furthermore, it is crucial to determine whether the new 
extraction solvents are Newtonian or non-Newtonian. New-
tonian fluids maintain a constant viscosity regardless of the 
shear rate, making their behavior predictable and straightfor-
ward to model [70]. This characteristic can be beneficial in 
processes where consistent fluid behavior is essential, such as 
in specific liquid–liquid extraction procedures that require pre-
cise control over mixing and separation. Although few studies 
have explored this parameter, all the experiments conducted to 
date have displayed Newtonian properties [10, 29, 90].
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Hydrophobicity and hydrophilicity

When selecting an extraction solvent, it is essential to con-
sider its compatibility with the sample matrix. An ideal sol-
vent should have minimal solubility in the matrix or not 
dissolve in it at all. Extraction solvents can be classified 
into two categories: hydrophobic and hydrophilic solvents. 
Hydrophobic substances do not attract water and typically 
reject water. Solvents that absorb more than 0.2% of their 

weight in water are generally categorized as hydrophilic 
[94]. Most SUPRADES are hydrophilic solvents because 
of the strong hygroscopic nature of the cyclodextrins. The 
water solubilities of individual cyclodextrins at 25 °C were 
145, 18.5, 232, > 600, > 500, > 500, and > 500 mg/mL for 
α-CD, β-CD, γ-CD, HP-β-CD, SBE-β-CD, RAMEB, and 
HP-γ-CD, respectively [11]. Despite the hydrophobic cavity 
of cyclodextrins, non-covalent bonds are more easily formed 
with other hydrophilic substances because of the hydrophilic 
properties of the outer layer of the cyclodextrins. In most 
cases, to obtain a liquid at room temperature, the prerequi-
site is using hydrophilic hydrogen bond donors or hydrogen 
bond acceptor:hydrogen bond donor. The combination of 
two or three hydrophilic substances allows SUPRADES to 
be dissolved in water in any proportion and can easily absorb 
water from the air, causing significant changes in the phys-
icochemical properties of SUPRADES. However, a major 
disadvantage is that SUPRADES cannot be used to extract 
substances from water or wastewater.

The current scientific literature has only reported a sin-
gle paper that has investigated hydrophobic SUPRADES 
composed of thymol:heptanoic acid (1:1) and its deriva-
tives, including 2,6- DM-β-CD, HP-β-CD, and RAMEB. 
The hydrophobic properties of SUPRADES were assessed 
based on the wetting angle. The initial water contact angle of 
RAMEB-thymol:heptanoic acid (1:1) was 31.25°; however, 
upon interaction with the alkaline proton donor, the contact 
angle of RAMEB- thymol:heptanoic acid (1:1) increased to 
110.05°, indicating the strong hydrophobicity of the prepared 
SUPRADES. Additionally, the results of the aforementioned 
study demonstrated that the hydrophobicity/hydrophilicity of 
SUPRADES could be adjusted by altering the pH [97].

Price of supramolecular deep eutectic solvents

The cost of organic solvents is a critical factor for indus-
trial applications. However, the commercial availability of 
SUPRADES has not yet been established, necessitating 
estimating their cost by considering the expenses associated 
with individual cyclodextrins, hydrogen bond acceptors, and 
hydrogen bond donors on a laboratory scale. Consequently, the 
price of SUPRADES tends to be relatively high. The prices 
were estimated following the methods employed in previous 
studies [60], in which SUPRADES prices were calculated 
by averaging the market prices (per kilogram) of commonly 
sold chemicals. The cost of SUPRADES was then determined 
based on the stoichiometry of the individual components. 
The prices for high-purity (98% or greater) SUPRADES 
components were estimated. The price varies from €15.66 
to €3869.17 per kilogram, primarily influenced by the type 
and amount of cyclodextrins present. As the concentration 
of the cyclodextrins increased, the overall cost of the solvent 
increased significantly. Consequently, SUPRADES that utilize 

Fig. 3   a Viscosity and b density of supramolecular deep eutectic 
solvents at various temperatures [16, 26, 29, 41]. The viscosity of 
SUPRADES decreases considerably as the temperature increases, 
which can be attributed to either the Arrhenius or Vogel-Fulcher-
Tammann model. A decrease in temperature results in a reduction 
of the kinetic energy of SUPRADES molecules, which leads to an 
increase in density. ( ) Sulfobutylether-β-cyclodextrin:levulinic 
acid (1:44); ( ) Low methylated-β-cyclodextrin:levulinic acid 
(1:25); ( ) Hydroxypropyl-β-cyclodextrin:levulinic acid (1:32); 
( ) Randomly methylated-β-cyclodextrin:levulinic acid (1:27); 
( ) Randomly methylated-β-cyclodextrin:benzyl alcohol (1:40); 
( ) Randomly methylated-β-cyclodextrin:ethylene glycol (1:40); 
( ) Randomly methylated-β-cyclodextrin:1,2-propanediol (1:40); 
( ) Randomly methylated-β-cyclodextrin:1,3-butanediol (1:40); 
( ) Choline chloride:urea (1:2) + 10% β-cyclodextrin; ( ) 
β-cyclodextrin:citric acid (1:8)
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cyclodextrins as additives are less expensive. Moreover, the 
cost heavily depends on the type of cyclodextrin used in pre-
paring the new solvent. SUPRADES derived from modified 
cyclodextrins are generally more costly because of their higher 
unit price, attributed to the intricate synthesis process involved. 
Although bulk purchases are typically associated with lower 
costs, it is widely accepted that the expense of industrial-grade 
solvents is only 10% of that of laboratory-grade extractants 
[32]. Nevertheless, reducing the purity of SUPRADES com-
ponents may result in decreased costs. However, this approach 
could hurt the physicochemical properties of SUPRADES and 
the extraction procedure. Further studies are required to inves-
tigate this hypothesis.

Applications of supramolecular deep 
eutectic solvents in extraction processes

Fuel desulfurization

Supramolecular deep eutectic solvents are adequate for the 
desulfurization of fuels, particularly in removing difficult-
to-extract organosulfur compounds such as thiophene, ben-
zothiophene, dibenzothiophene, and 4,6-dimethyl dibenzo-
thiophene. Numerous studies have demonstrated the high 
removal efficiency of thiophenes using conventional deep 
eutectic solvents [3, 14, 40, 62, 83] and aqueous solutions 
of cyclodextrins [25, 59]. However, the use of SUPRADES 
for oxidative desulfurization and extractive desulfurization 
of fuels was first reported in 2022 [39]. The authors tested 
eight different binary SUPRADES systems using neat and 
methylated-β-cyclodextrin as hydrogen bond acceptors and 
carboxylic acids, such as formic acid, acetic acid, and pro-
pionic acid, as hydrogen bond donors. The efficiency of 
eliminating sulfur compounds with SUPRADES based on 
oxidative desulfurization was higher than that with extrac-
tive desulfurization. Under the optimal experimental con-
ditions, the desulfurization rate of SUPRADES prepared 
using methylated-β-cyclodextrin and formic acid reached 
99.6%. The conventional extraction process demonstrated 
an extraction efficiency of less than 10%. This suggests 
that the desulfurization performance of dibenzothiophene 
is insufficient in the absence of oxidants, such as H2O2. 
This is primarily due to deep eutectic solvents's high cat-
alytic oxidation capacity, and to polar sulfones that are 
more soluble in methylated-β-cyclodextrin:formic acid 
(1:3), indicating that the oxidant plays a crucial role in 
desulfurization. Density functional theory (DFT) calcula-
tions revealed that the reaction barrier for hydrogen per-
oxide to oxidize acid groups to peroxy-acid decreased by 
81% in SUPRADES, demonstrating the exceptional cata-
lytic performance of cyclodextrins. Furthermore, the den-
sity functional theory results suggest that the structure of 

dibenzothiophene is disrupted during its interaction with 
SUPRADES [39].

Another study presented a novel strategy involving the 
utilization of β-CD as the hydrogen bond acceptor and cit-
ric acid as the hydrogen bond donor. Additionally, carbon 
quantum dots were incorporated into the oxidative desul-
furization. This study demonstrates that adding a carbon 
quantum dots solution enhances the catalytic performance 
of β-CD: citric acid/carbon quantum dots and improves 
their H-bonding stability, making them more convenient to 
store. By adjusting the content of the carbon quantum dots 
solution, the viscosity of β-CD:citric acid/carbon quantum 
dots can be easily modified without altering the eutectic 
nature of the SUPRADES. The sulfur removal efficiency 
of β-CD:citric acid/carbon quantum dots was 99.32% at 
50 °C. The researchers confirmed that the powerful interac-
tion between the β-CD:citric acid/carbon quantum dots and 
dibenzothiophene diminished the aromaticity of dibenzo-
thiophene and made it prone to oxidation. In addition, the 
carboxylic acids in β-CD:citric acid/carbon quantum dots 
can be oxidized by H2O2 to form peracids, which can be 
simultaneously utilized as oxidants for sulfur compounds 
[16]. A summary of the application of SUPRADES in fuel 
desulfurization is summarized in Table 3.

Extraction of biologically active compounds

Georgantzi et al. prepared a novel SUPRADES consisting 
of L-lactic acid:nicotinamide (7:1) and 1.5% (w/v) β-CD. 
This SUPRADES was further tested as an extraction sol-
vent in ultrasound-assisted extraction to extract polyphenols 
from Greek medicinal plants (Thyme, Oregano, Greek sage, 
and sage). The performance of SUPRADES in extracting 
polyphenols was significantly higher than that achieved 
with 60% (v/v) aqueous ethanol/water and conventional 
deep eutectic solvents. This study revealed that polyphe-
nols may exhibit properties of hydrogen bon donors and 
interact with the hydrogen bond acceptor of SUPRADES, 
potentially leading to some form of antagonism. This may 
result from β-cyclodextrin-weakening polyphenol-hydrogen 
bond acceptor interactions due to the strong hydrogen bond 
formation associated with β-CD/polyphenol inclusion com-
plex formation. However, β-cyclodextrin also increases the 
solubility of less polar polyphenols by entrapping them, 
thereby influencing the overall outcome [36]. Similar results 
were obtained for the extraction of polyphenols from Fenu-
greek Seeds (Trigonella foenum-graecum) using choline 
chloride:glycerol with β-CD and from Olea europaea leaf 
using lactic acid:ammonium acetate (7:1) with β-CD as 
the extraction solvents. The results of the aforementioned 
studies revealed that the incorporation of β-CD led to a 
marked enhancement in the efficiency of polyphenol extrac-
tion [13, 34]. Polyphenols were also successfully extracted 
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from Olea europaea leaves using SUPRADES based on 
glycerol:glycine:water (7:1:3) and methyl-β-cyclodextrin. 
The results revealed that the extraction efficiency of poly-
phenols using SUPRADES was considerably more signifi-
cant than that achieved using aqueous ethanol. Furthermore, 
SUPRADES extract exhibited enhanced antioxidant prop-
erties, which could not be solely attributed to the higher 
concentration of polyphenols. The authors suggested that 
the interactions of polyphenols with cyclodextrin may have 
played a significant role [8].

According to Jovanović et al., nine different SUPRADES 
were examined as extractants for anthocyanins (cyani-
din-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-
arabinoside, and total anthocyanins) from chokeberry fruits 
using ultrasound-assisted extraction. They discovered that 
a deep eutectic solvent composed of choline chloride and 
malic acid was the most effective for extracting chokeberry 
anthocyanins. The study revealed that the extraction effi-
ciency was significantly enhanced by using HP-β-CD at 
concentrations up to 3% (w/w), whereas increasing the con-
centration to 6% (w/w) diminished this effect. The enhanced 
anthocyanin extraction was ascribed to the formation of 
inclusion complexes, which increased their stability and 
solubility. However, the increased concentration of HP-β-CD 
resulted in a decrease in the extraction efficiency owing to 
the increase in viscosity caused by adding this sugar com-
pounds. Density functional theory analysis indicated that 
cyanidin molecules interacted with choline chloride and 
malic acid through conventional and carbon-hydrogen bonds 
and cation-π interactions. Moreover, chloride anions and 
water molecules interact with ligands and solvent molecules, 
acting as bridges between them [53].

Zhang et  al. described an application of switchable 
SUPRADES (N,N-dimethylbenzylamine:acetic acid + 5.5% 
wt percent β-CD) to extract flavonoids (baicalin, wogono-
side, and baicalin) from Scutellariae Radix. Flavonoids were 
investigated using high-performance liquid chromatography 
equipped with UV detector (HPLC–UV), and the results 
demonstrated that SUPRADES exhibited a superior extrac-
tion yield of total flavonoids, amounting to 157.95 mg/g, 
compared to pure deep eutectic solvents, which yielded 
135 mg/g, and traditional organic solvents, such as 60% etha-
nol, which produced 104.87 mg/g. As in previous research, 
the incorporation of β-CD led to the capture of flavonoids 
through host/guest interactions, significantly improving the 
extraction yield. In addition, homogeneous extraction and 
rapid two-phase separation were achieved thanks to the dis-
tinct polarity-switching properties of SUPRADES [100].

In another investigation, researchers studied the extrac-
tion of secoiridoids, including gentiopicroside, loganic 
acid, swertiamaroside, and sweroside, from the roots and 
rhizomes of Gentiana Rigescens. They used β-CD as the 
booster and a glycine:glycerol solvent mixture in a 1:3 

ratio, along with ultrasound-assisted extraction. The results 
of this study indicate that in an aqueous deep eutectic sol-
vents, β-CD interacts with secoiridoids via non-covalent and 
hydrogen bonds, and that the four secoiridoids compounds 
fit well into the hydrophobic cavity of β-CD. The number 
of hydrogen bonds between the secoiridoids and β-CD was 
substantial. The extraction process yielded 39.82 mg/g of 
gentiopicroside, 6.61 mg/g of loganic acid, 0.79 mg/g of 
swertiamaroside, and 0.57 mg/g of sweroside. Overall, the 
proposed method demonstrated that aqueous SUPRADES 
extraction was more effective than conventional solvents for 
secoiridoid compounds from G. rigescens [93].

Sample preparation and microextraction

Sample preparation is an essential aspect of green analytical 
chemistry, as it helps minimize the utilization of organic sol-
vents or replace them with environmentally harmful alterna-
tives. The use of SUPRADES as extraction solvents in com-
bination with liquid–liquid microextraction and solid–liquid 
microextraction techniques single-drop microextraction, 
dispersive liquid–liquid microextraction, homogeneous liq-
uid–liquid microextraction, and solid-phase microextraction 
has gained significant attraction in analytical sample prepa-
ration [54].

In 2021, a first study was published that focused on test-
ing of SUPRADES as extractants for the microextraction 
of 18 aromatic organic pollutants, including UV filters, 
polycyclic aromatic hydrocarbons, alkylphenols, plasticiz-
ers, and food ingredients from aqueous samples, [30]. In 
this study, headspace single-drop microextraction technique 
was used. The authors compared the pollutant extraction 
efficiencies achieved for SUPRADES and conventional 
deep eutectic solvents. Although the enrichment factors for 
individual analytes were higher for the tetrabutylammonium 
chloride:lactic acid (1:2) deep eutectic solvent compared to 
the tested β-CD:lactic acid (1:4) SUPRADES, the enrich-
ment factor values obtained for choline chloride:urea + 20 
wt% β-CD were significantly higher than those of the con-
ventional choline chloride:urea (1:2) deep eutectic solvents. 
The results show that the presence of cyclodextrins effec-
tively influenced the extraction efficiency of the analytes. 
The calibration curves for the analytes using SUPRADES 
showed excellent linearity (R2 > 0.983) and low limit of 
detection values for all analytes (< 14.6 µg/L). To attain 
the most favorable outcomes, the process required a solvent 
microdroplet of 6.5 µl, a stirring rate of 1000 revolutions per 
minute, a salt concentration of 30% (w/v), and a temperature 
of 40 °C [30].

A novel method for concentrating parathion methylene 
in water, juice, tea, and vinegar was explored using disper-
sive liquid–liquid microextraction. This study used hexanoic 
acid:menthol (1:1) as the extractant and an aqueous solution 
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%
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) N
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l
C
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H

s =
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μg
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–
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l
C
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H

s =
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–
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/v
) N

aC
l

C
PA
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l b
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l p
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–
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H
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H
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ra
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%
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a
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.5
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e

89
%

–

O
xy

te
tra

cy
cl

in
e

M
in

er
al

 w
at

er
(s

up
er

m
ar

ke
t i

n 
Te

hr
an

, I
ra
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R
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at
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V c
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ra
te

: 7
00

0 
rp

m
/ 5

 m
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–
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.9
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–
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lfa
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5.
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–
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–
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%
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–
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ra
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(I
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H
P-
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 o
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L
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 80

0 
µL

V
 D
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 µ

L
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ra
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d 
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m
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 e

m
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.6

%
–
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1]
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 (I

I)
10

5.
2%

–
M

n 
(I

I)
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1.
5%

–
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m

, 2
5 

°C
pH

 =
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f c
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ra
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 m
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ifl
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-
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 p

ro
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e 
he

m
o-

gl
ob

in
27

.8
4 

m
g/
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m
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m
e:

 1
2 

h
Te

m
pe

ra
tu

re
: 5

0 
°C

Sh
ak

er
: 1

50
 rp

m
Fe

rm
en

ta
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m
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 m
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of cyclodextrin as the dispersant. Cyclodextrin increased the 
contact area between the promoter and analyte, resulting 
in improved recovery rates ranging from 80.4% to 105.7%. 
After hydrolysis under alkaline conditions, the extracted 
sample was analyzed using a smartphone digital chroma-
togram, transforming it into a yellow substance [43]. In 
another study, hydrophobic SUPRADES were developed and 
utilized as disperser/extraction solvent mixtures in dispersive 
liquid–liquid microextraction of tetracyclines from water 
samples. The extraction efficiency of thymol:octanoic acid 
in 1:1 molar ratio was compared with that of SUPRADES 
thymol:octanoic acid (1:1)-β-CD, and it was found that the 
extraction efficiency was enhanced by a factor of two. A 
limit of detection (LOD) lower than 4.38 μg/L was obtained. 
In this study, the addition of β-CD to the extraction phase 
led to enhanced extraction efficiencies through the selective 
supramolecular host/guest inclusion of tetracyclines. Cyclo-
dextrin improved the dispersibility of the extraction solvent 
and contributed to the formation of a highly stable, cloudy 
solution. This contributed to the high efficiency of dispersive 
liquid–liquid microextraction extraction [77].

Wu et al. investigated the application of SUPRADES 
as an extraction solvent for the enrichment of six sulfona-
mides in environmental waters using vortex-assisted dis-
persive liquid–liquid microextraction. Sulfonylamines were 
determined using high-performance liquid chromatography 
equipped with photodiode array detector (HPLC–PDA). This 
research project entailed the development of a hydrophobic 
deep eutectic solvents by combining two precursors (benzyl-
triethylammonium chloride and thymol) and incorporating 
HP-β-CD, which resulted in a substantial improvement in the 
enrichment factor for sulfonylamines, reaching 21.6%. The 
newly developed method exhibited a wide linear range of 
1.1–500 μg/L and a low detection limit of 0.3–1.1 μg/L [91]. 
The same extraction technique was employed to separate and 
concentrate trace metals (Cu, Zn, and Mn) from the edible 
oil samples. This study is the first to apply SUPRADES to 
trace metal extraction. Inductively coupled plasma-optical 
emission spectrometry was used to measure metal concen-
trations. HP-β-CD:lactic acid (1:4) was used as an extrac-
tion solvent. The authors demonstrated that by increasing 
the solubility of metal ions through host–guest interactions 
and mixing with an aqueous solution, water molecules are 
released within the cavities, creating a driving force for the 
target to enter the cavities. At the microscopic level, hydro-
philic interactions mediated by hydrogen bonds and hydro-
phobic mitigation of complex interactions between cyclo-
dextrin and the solute components lead to energy-favorable 
cyclodextrin solvation. The optimal conditions yielded 
99.6%, 105.2%, and 101.5% extraction rates for Cu, Zn, and 
Mn, respectively [81].

Recently, Zhang et al. reported using hydrophobic switch-
able deep eutectic solvents based on cyclodextrin to extract 

antibiotics from livestock farming wastewater at trace lev-
els. These solvents undergo a pH-responsive reversible 
phase transition in an aqueous phase and can extract 13 qui-
nolones and 15 sulfonamides. Homogeneous liquid–liquid 
microextraction was used as the microextraction technique, 
and liquid chromatography-triple quadrupole tandem mass 
spectrometry was used for final determination. They con-
structed non-covalent interaction-dominated pH-responsive 
ternary SUPRADES by doping DM-β-CD, RAMEB, and 
HP-β-CD with thymol:fatty acids switchable deep eutectic 
solvents. The method had a low limit of detection in the 
range of 0.0021–0.0334 ng/mL limits of quantification of 
0.0073–0.1114 ng/mL and an overall enrichment factor of 
157–201 [97].

Lignocellulose valorization

Lignocellulose is the primary component of plant bio-
mass and is a valuable raw material for producing various 
bioproducts. Converting lignocellulose into useful prod-
ucts, known as lignocellulose valorization, is increasingly 
essential for sustainable development and environmental 
protection. This process allows for the efficient utilization 
of agricultural and forestry waste. Lignocellulose valoriza-
tion enables the production of biofuels, such as bioethanol 
and biogas, which can serve as alternatives to traditional 
fossil fuels [4]. Additionally, lignocellulose can be trans-
formed into biochemicals, like lactic acid or furfural, used 
in the chemical and pharmaceutical industries [51]. Prod-
ucts derived from lignocellulose valorization, such as bio-
composites and nanocellulose, are utilized in construction, 
automotive, and packaging production, providing ecological 
alternatives to traditional materials [24, 48, 49, 89]. Ligno-
cellulose can be processed using different methods, such as 
chemical, thermal, biological, or mechanical extraction [87].

Tan et al. carried out the delignification process of wheat 
straw using SUPRADES, which was created by combin-
ing 3.5% β-CD with ethylene glycol:citric acid ( 5:1) deep 
eutectic solvent [84]. The study showed that the proposed 
ethylene glycol:citric acid + β-CD significantly increased the 
delignification rate, cellulose saccharification, and hemicel-
lulose removal by 90.45%, 97.3%, and 87.24%, respectively. 
High efficiency of lignocellulose pretreatment was achieved 
due to the unique intrinsic hydrophobicity of β-CD, which 
enabled high extraction capacity/adsorption of degraded 
lignin/lignin monomers. It was also observed that ethylene 
glycol prevented condensation and excessive lignin degra-
dation. As a result of the synergistic action of β-CD, cit-
ric acid and ethylene glycol resulted in high efficiency of 
lignin fractionation and in situ protection. The proposed 
method of wheat straw treatment with ethylene glycol:citric 
acid + β-CD enabled the practical growing of Trichosporon 
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cutaneum, which produced 8.8 g of total lipids per 100 g of 
wheat straw.

In another study, a deep eutectic solvent based on lactic 
acid combined with ammonium acetate in a molar ratio of 
7:1 in addition to 0.7% (w/v) β-CD was used to extract poly-
phenols from olive leaves (Olea europaea L.) [47]. Due to 
their ability to form inclusion complexes, cyclodextrins were 
used as metabolite stabilizers. In this study, the extraction 
efficiency was assessed based on the content of polyphenols 
in the extracts. The highest extraction efficiency of 2.35 was 
obtained using new green extractants containing cyclodex-
trins in their structure, which indicates the effectiveness 
of the proposed new solutions. Zhang et al., proposed the 
extraction of polyphenols from millet using SUPRADES 
[96]. In the extraction process, deep eutectic solvent based 
on octanoic acid combined with linalool and β-CD was 
used. The highest yield was obtained under optimal condi-
tions, including deep eutectic solvent in a molar ratio 1:1, 
solid–liquid ratio of 1:10 g/mL, extraction time of 80 s, and 
β-CD content at 16 mg/mL. The antioxidant efficiency of the 
extract was always higher by 10–20% compared to the tradi-
tional ethanol extract. Additionally, SUPRADES showed up 
to 5 regeneration cycles a constant polyphenols extraction 
efficiency of 5.85 mg/g.

These works have shown that SUPRADES are a promis-
ing medium for valorizing lignocellulose. This is because 
SUPRADES can form inclusion complexes with various 
chemical compounds. Additionally, SUPRADES enable 
the stability of extracted compounds, protecting them from 
degradation and oxidation, which is crucial in sustainable 
biomass processing.

Other applications

Cyclodextrins, particularly β-CD derivatives, are widely 
used in the pharmaceutical industry due to their availability 
and non-toxic nature. In a study by Moradi et al., various β-
CD derivatives, such as HP-β-CD, CM-β-CD and S-β-CD, 
were investigated for their potential as chiral selectors [66]. 
The study aimed to find the most effective chiral selector for 
separating ofloxacin enantiomers using liquid–liquid extrac-
tion based on hydrophobic deep eutectic liquid systems. The 
highest efficiency in separating R/S-ofloxacin enantiomers 
was achieved using a deep eutectic solvent based on deca-
noic and dodecanoic acids in a 2:1 molar ratio coupled with 
CM-β-CD as the chiral selector. They found that the selectiv-
ity of the R/S-ofloxacin separation was most influenced by 
three variables: pH, an excess of the chiral selector, and the 
ratio of deep eutectic solvent to water (v/v). Under optimal 
conditions, which included a 77-fold excess of the chiral 
selector, a pH of 3.5, and a deep eutectic solvents-water 
ratio of 1:2 (v/v), the highest selectivity (α) level of 3.8 ± 0.3 
was achieved in a single liquid–liquid extraction step. This 

study offers numerous practical benefits, particularly in the 
pharmaceutical field. Since enantiomers can have different 
pharmacological properties, successful separation of ofloxa-
cin enantiomers is essential to produce drugs with increased 
efficacy and reduced side effects, thus ensuring drug safety 
and efficacy.

Other research focused on extracting trypsin from protein 
solutions. Magnetic beads were utilized for extraction, modi-
fied using cyclodextrin combined with deep eutectic solvents 
based on trifluoroacetamide and benzyl trimethylammonium 
chloride [92]. Modification of the magnetic beads surface 
with cyclodextrin-deep eutectic solvent allows combining of 
the advantages of cyclodextrin and deep eutectic solvents, 
resulting in a significant increase in the extraction capacity 
of tryptophan through dipole–dipole interaction, hydropho-
bic interactions, and π-π. When studying trypsin extraction 
using magnetic beds-NH2@CD@DES, the following pro-
cess parameters were optimized: time, temperature, solution 
pH, ionic strength, initial trypsin concentration, sample vol-
ume, type of buffer, and eluent. Under optimal conditions, 
solid-phase extraction was carried out for both model sam-
ples and actual bovine pancreas crude. Trypsin extraction 
results were 540.56 mg/g and 549.87 mg/g from the model 
protein solution and bovine pancreas crude sample, respec-
tively. The new extractant maintained a high capacity for up 
to 10 cycles, which confirmed that magnetic beds-NH2@
CD@DES is an effective and selective trypsin extraction 
material.

Conclusion

SUPRADES represent a new class of organic solvents 
with immense potential for diverse extraction techniques, 
although their practical use presents certain challenges. 
These solvents have garnered considerable attention due to 
their distinctive properties, including their ability to form 
non-covalent interactions with analytes and their inclusion 
capabilities. However, understanding their physicochemi-
cal properties is limited, with parameters such as viscosity, 
density, water content, and melting and degradation tem-
peratures not routinely measured. This makes it challenging 
to accurately compare and predict their properties. Future 
research is needed to address several critical parameters, 
including vapor pressure, surface tension, toxicity, and bio-
degradability, as well as to improve their high viscosity and 
hydrophilicity, which currently reduce extraction efficiency.

Despite these challenges, SUPRADES demonstrate con-
siderable potential as effective extractants, and it is antici-
pated that there will be an increase in research efforts to 
elucidate their full capabilities. Many SUPRADES are 
formulated using non-toxic, biodegradable, and renewable 
raw materials, aligning perfectly with sustainability goals. 
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Ongoing research plays a vital role in enhancing their util-
ity by improving analyte solubility and reducing viscosity. 
The innovative use of cyclodextrin in preparing SUPRADES 
shows the potential to increase the value of biomass by-
products, positively impacting the circular economy. Future 
investigations are key to addressing the industrial scalability 
of SUPRADES and ensuring cost-effective large-scale pro-
duction and utilization. Obtaining regulatory approval for 
their use in industrial processes will be a significant mile-
stone, given that most cyclodextrins used in SUPRADES 
production are already approved for use in the food and 
pharmaceutical industries, making a favorable outcome 
likely. The future of SUPRADES is bright, with numerous 
opportunities for groundbreaking research and innovative 
applications.
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