
HAL Id: hal-04800910
https://hal.science/hal-04800910v1

Submitted on 24 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Wasserstein-Based Evolutionary Operators for
Optimizing Sets of Points: Application to Wind-Farm

Layout Design
Babacar Sow, Rodolphe Le Riche, Julien Pelamatti, Merlin Keller, Sanaa

Zannane

To cite this version:
Babacar Sow, Rodolphe Le Riche, Julien Pelamatti, Merlin Keller, Sanaa Zannane. Wasserstein-Based
Evolutionary Operators for Optimizing Sets of Points: Application to Wind-Farm Layout Design.
Applied Sciences, 2024, 14 (17), pp.7916. �10.3390/app14177916�. �hal-04800910�

https://hal.science/hal-04800910v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Citation: Sow, B.; Le Riche, R.;

Pelamatti J; Keller M; Zannane S.

Wasserstein-Based Evolutionary

Operators for Optimizing Sets of

Points: Application to Wind-Farm

Layout Design. Appl. Sci. 2024, 14,

7916. https://doi.org/10.3390/

app14177916

Academic Editor: Vincent A. Cicirello

Received: 18 June 2024

Revised: 20 August 2024

Accepted: 28 August 2024

Published: 5 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Wasserstein-Based Evolutionary Operators for Optimizing Sets
of Points: Application to Wind-Farm Layout Design
Babacar Sow 1,2,*, Rodolphe Le Riche 2,* , Julien Pelamatti 3, Merlin Keller 3 and Sanaa Zannane 3

1 Ecole Nationale Supérieure des Mines de Saint-Etienne (EMSE), 42100 Saint-Étienne, France
2 Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS), 63178 Aubiere, France
3 EDF R&D, 78401 Chatou, France; julien.pelamatti@edf.fr (J.P.); merlin.keller@edf.fr (M.K.);

zannane.sanaa@edfenergy.com (S.Z.)
* Correspondence: sowbabacar30@gmail.com or babacar.sow@emse.fr (B.S.); leriche@emse.fr (R.L.R.)

Abstract: This paper introduces an evolutionary algorithm for objective functions defined over clouds
of points of varying sizes. Such design variables are modeled as uniform discrete measures with finite
support and the crossover and mutation operators of the algorithm are defined using the Wasserstein
barycenter. We prove that the Wasserstein-based crossover has a contracting property in the sense
that the support of the generated measure is included in the closed convex hull of the union of the
two parents’ supports. We introduce boundary mutations to counteract this contraction. Variants
of evolutionary operators based on Wasserstein barycenters are studied. We compare the resulting
algorithm to a more classical, sequence-based, evolutionary algorithm on a family of test functions
that include a wind-farm layout problem. The results show that Wasserstein-based evolutionary
operators better capture the underlying geometrical structures of the considered test functions and
outperform a reference evolutionary algorithm in the vast majority of the cases. The tests indicate
that the mutation operators play a major part in the performances of the algorithms.

Keywords: clouds of points; evolutionary; operators; Wasserstein distance; barycenter

1. Introduction and Related Work
1.1. General Context

This work concerns the optimization of functions defined over clouds (or sets) of
points. The decision variables are sets of points, {x1, . . . , xn}, where each point is a d-
dimensional vector of continuous numbers, ∀ i = 1, . . . n, xi ∈ Rd . An important property
of such sets is that they are invariant with respect to a change in numbering of the points.

Many functions of practical interest are black-box functions over clouds of points. The
example that initiated this work and that will be used as a test problem is the optimization
of the layout of a wind farm. The longitude and latitude of the wind turbines is a point;
the decision variable is the number and placement of the set of wind turbines. A typical
objective is to maximize the average power produced by the wind farm while minimizing
the total incurred cost. Such a problem has received a lot of attention lately. For instance, a
code to simulate the wind farm and optimize it can be found in [1]. The operations research
community has seized the problem of wind-farm layout design [2–4], installation [5]
and operation [6]. There are other problems related to wind-farm design such as cable
routing [7]. Here, we focus on the optimization of the positions, which boil down to
optimizing sets of points.

Numerous other problems involve sets of points, such as the positioning of sensors
and actuators in a given domain [8], the optimization of an experimental design [9] and
optimal uncertainty quantification [10], where critical densities can be seen as set of points,
and mixture modeling [11].

Appl. Sci. 2024, 14, 7916. https://doi.org/10.3390/app14177916 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177916
https://doi.org/10.3390/app14177916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3518-2110
https://doi.org/10.3390/app14177916
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177916?type=check_update&version=1

Appl. Sci. 2024, 14, 7916 2 of 32

The associated optimization problem is formulated in Equation (1). For each variable
{x1, . . . , xn} and for each i ∈ {1, ..., n} , xi varies in a continuous compact domain, D, of Rd:

max
X={x1,...,xn}

F(X) ,

n ∈ {nmin, . . . , nmax} , (1)

∀i, xi ∈ D ⊂ Rd .

The number of points is an integer bounded by nmin and nmax. Two examples of clouds
of points are given in Figure 1. They have different sizes and patterns so that there is no
obvious method to define a topology over these sets. The nature of these design variables
makes the function F invariant under a permutation of the points in the cloud X. The
space of clouds of points is continuous in the sense that each point can move continuously
within the domain, but the number of points is an integer, thus a cloud cannot be directly
represented as a continuous vector of fixed dimension. In addition, function F is seen as
a black-box in the sense that no information related to its convexity and/or smoothness
is assumed. These features of the problem make it hard to rely on standard optimization
methods, such as gradient-based algorithms. In this article, we propose and investigate an
ad hoc evolutionary algorithm [12,13].

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

10 8 6 4 2 0 2 4
x

6

4

2

0

2

4

6

8
y

Figure 1. Two clouds of points for d = 2, n = 20 on the left and n = 10 on the right.

1.2. Related Work

Although optimization problems over clouds of points are common in real life applica-
tions, the literature on algorithms for solving such problems is rarely generic, but it is typically
attached to specific applications. We therefore focus on the wind-farm layout problem, which
has mainly been tackled by mathematical programming and evolutionary approaches.

1.2.1. Mathematical Programming Techniques

To optimize wind-farm layouts, Pérez et al. [14] proceed in two steps: the number of
turbines is chosen a priori, the positions of the turbines are carefully initialized, and then
they are locally tuned by mathematical programming techniques in continuous variables,
such as those described in [15]. The algorithms suppose that the variables are ordered and
they cannot deal with varying size clouds of points.

Mixed integer (non-)linear programming methods can be applied by considering a
discretization of the domain D with a binary turbine presence/absence variable introduced
at each discretization node.

The optimal layout of wind farms is treated in such a way in [16]. The number of wind
turbines can vary but the set of possible candidate positions is fixed. The design variables
take the form of a graph where the nodes correspond to the positions and the edges to the
paths of connection cables between the turbines. Our work, which, beyond wind farms,
targets general problems with clouds of points, does not include cable routing variables.

Appl. Sci. 2024, 14, 7916 3 of 32

In [17], optimization problems where the decision variables can be compared to a set
of positions with a varying size are tackled. The authors discuss formulations where mixed
integer linear problems solvers can be employed. Again, binary values encode the presence
of turbines, and there are constraints such as a minimal distance between the points of each
set. This formulation does not handle continuous point positions.

In mathematical programming, a concept related to variables of varying size is that
of cardinality and cardinality constraints, as discussed in [18]. In this family of mixed
integer non-linear programming approaches, the interval of possible values for n is divided
through inequalities on n and bounds on achievable objective function in the manner of
branch-and-bound and cutting-plane methods. Cutting-plane methods are not general and
have been derived for specific (linear) problems. Branch-and-bound methods are general
but may turn into a comprehensive enumeration of the n values if the bounds are not
tight enough.

1.2.2. Evolutionary and Other Stochastic Algorithms

Evolutionary algorithms are very flexible in both the type of problems they can handle
and the interfacing with other algorithms they allow. The flexibility comes from the
possibility to choose the encoding of the variables and the stochastic variation operators
(crossover and mutation) and adapt them to the problem at hand, as theorized with the
formula in [19]. These are key reasons for the great interest shown by the computer science
community for evolutionary optimization algorithms, as can be seen in [12,13,20]. In the
literature, some variants of evolutionary algorithms allow us to deal with the optimization
over clouds of points. Instances of recombination and mutation operators for (multi-)sets
of discrete elements have been described and put in a formal theory in [21], but these
operators do not properly capture the continuous nature of the position vectors. This is
further discussed after the presentation of the Wasserstein-based crossovers.

In the work of [22], the number of turbines is fixed and their positions are optimized
as continuous variables in a given domain. The authors compare two stochastic methods, a
genetic algorithm and an ant colony optimization algorithm. The paper concludes in favor
of the ant colony optimization. A similar problem formulation is considered in [23], where
a stochastic greedy algorithm perturbs in a continuous manner an initial layout.

Discrete formulations of the wind-farm layout where the possible positions of the
turbines are fixed a priori have also been tackled with stochastic methods. A simulated
annealing algorithm is used in [24] to find an optimal set of points. A predefined grid of
position cells is populated with binary occupied/empty variables.

In both [2,25], the production capacity of a wind farm is maximized while controlling
the number of turbines and the land acreage. The layout is represented as a binary vector,
optimized by a genetic algorithm.

The article accompanying the development of the TOPFARM tool, [26], compares
a sequential linear programming algorithm from [27] to a standard genetic algorithm
from [28]. The authors discuss two modelings of the decision variable. The first one maps
the functions and decision variables into a linear space to benefit from the efficiency of
linear programming. The second approach searches over a predefined grid of the domain.
Both methods suppose a fixed number of vectors in the set.

The optimization of a cloud of continuous points is also discussed in [29], where a
two-stage genetic algorithm is used to search for an optimal placement. The first stage
applies a binary search over possible locations. The number of wind turbines varies during
this step. Once a solution in a binary form with a fixed size is obtained, the optimal
positions are considered as the centers of cells. The second stage consists of improving this
solution, which is used as the initialization for a local continuous search. Our algorithm,
which we present soon, has a single step, because no prior information regarding good
initial solutions is known and the freezing of the number of points may cause a loss of
global optimality.

Appl. Sci. 2024, 14, 7916 4 of 32

Ref. [30] also adopts a two stage-method. The first step generates a grid of possible
positions, i.e., it performs a discretization of the space. Next, a genetic algorithm is applied
where the new variable is a vector containing binary strings. A continuation to this
work can be found in [31], where the above genetic algorithm is compared to a particle
swarm optimization.

1.3. Contribution of This Work

In this paper, we consider optimization problems where the decision variable is a
cloud of points defined in a continuous domain with a varying number of points. We make
the following claims:

• A cloud of continuous vectors can be modeled as a uniform discrete measure with
finite support.

• This model helps defining a topology in the space of clouds of points using the
Wasserstein distance between measures.

• We propose evolutionary crossover and mutation operators relying on the concept of
the Wasserstein barycenter.

In Section 2, we introduce crossovers and mutations based on the notion of barycenter using
the Wasserstein distance borrowed from optimal transport theory, [32]. In Section 3, we
present the baseline algorithm, the test functions and the family of experiments. The results
of the experiments, their discussion and a summary of results are included in Section 4.
Some perspectives for future work are given in Section 5.

2. Wasserstein Barycenters for the Evolutionary Optimization of Sets

In this work, we consider evolutionary algorithms with a classical ES-(µ + λ) structure,
as described in the overview papers [33,34] and summarized in Algorithm 1. Such a search
method produces new generations of candidate solutions, which, in our problem, are
clouds of continuous vectors, using crossover and/or mutation operations applied to the
previous generation. At each iteration, the new generation is made of the best clouds among
those of the previous generation and the newly created clouds. This version of ES is elitist
in the sense that the best observed solution is always transmitted to the next population.
In order to generate new candidate solutions, we introduce in Section 2.2 new crossover
and mutation operators that can be applied to clouds of points. We do not fine-tune the
different hyper-parameters, such as the population size, the number of generations and the
mutation rate. In our implementation, the number of offspring is λ = 2µ. Instead, we focus
in the rest of the paper on the fundamental definitions of the different operators.

Algorithm 1 Structure of the ES-(µ + λ) Algorithm
Input: µ the population size, Niter the number of iterations, F a function defined over

clouds of points,
Output: the best cloud of points found and its fitness value;

1: Choose µ clouds randomly to initialize Pop = {Xi, i = 1, ..., µ}.
2: for j = 1, . . . , Niter do
3: Compute F(Xi) for i = 1, ..., µ.
4: n_child = 0
5: while n_child < λ do
6: Choose randomly Xk and Xl in Pop
7: Create crossover(s) of Xk and Xl
8: Mutate each cloud coming from crossover
9: Add the new clouds to Pop

10: Add to n_child the number of new clouds
11: end while
12: Keep the µ best clouds of points according to their fitness in Pop for next generation
13: end for
14: Return the best cloud of Pop.

Appl. Sci. 2024, 14, 7916 5 of 32

2.1. Fréchet Mean to Wasserstein Barycenter

Recall that δxi is the Dirac measure at xi. To each cloud of points X = {x1, ..., xn},
we associate the measure PX = 1

n ∑n
i=1 δxi . This mapping allows us to reformulate the

considered problems as optimizations over the space of discrete uniform measures with a
finite support. With this representation, we define crossovers based on the Fréchet mean
(a notion developed in [35] for details). We adopt as distance between two measures the
Wasserstein distance. Please note that in the literature, this concept is sometimes also called
the Kantorovich metric, as in [36]. We remind readers of the following definitions.

Definition 1. For two measures µ and ν defined over Rd, the Wasserstein distance of order p is
defined as follows: W p

p (µ, ν) = infπ∈Π(µ,ν)
∫
Rd×Rd ρ(x, x′)pdß(x, x′)

• ρ(x, x′) corresponds to the Euclidean distance between x and x′

• Π(µ, ν) is the set of all probability measures defined over Rd ×Rd with marginals µ and ν.

Definition 2. A barycenter (ν∗) of N measuring ν1, ..., νN is the minimizer of f (ν) = ∑N
i=1 ϵiW

p
p (ν, νi),

with ϵi ≥ 0, ∑N
i=1 ϵi = 1.

Algorithms to compute this minimum for a fixed size are discussed in [37] and are
implemented in the POT Python library [38]. For more information on this topic, specifically
with regards to the existence and uniqueness of the barycenter, please refer to [39].

In the following, we consider the Euclidean distance with p = 2. We show in Figure 2
an example of such a mean between two clouds of points represented as uniform discrete
measures. We can see that the barycenter inherits the shapes of the two clouds. We can
demonstrate the following result, that can be interpreted as the contracting or shrinking
effect of the Wasserstein barycenter.

4 2 0 2 4
x

4

2

0

2

4

y

4 2 0 2 4
x

4

2

0

2

4

y

4 2 0 2 4
x

4

2

0

2

4

y

Figure 2. Two initial clouds at the (left, in black) and (right, in red) and their equal weight Wasserstein
barycenter (i.e., their mean) in the (middle, in blue).

Theorem 1. Consider P ′ to be the set of discrete measures over Rd with finite support and ϵ ∈ [0, 1].
Let PX1 , PX2 and PX∗ be defined, respectively, as

• ∑n
i=1 αiδx1

i
, ∑n

i=1 αi = 1, αi > 0 ,

• ∑m
j=1 β jδx2

j
, ∑m

j=1 β j = 1, β j > 0 ,

• ∑k
l=1 λlδx∗l

, ∑k
l=1 λl = 1, λl > 0 ,

with PX∗ the unique minimizer of arg
PX∈P ′

min ϵW2
2 (PX , PX1) + (1 − ϵ)W2

2 (PX , PX2).

If the above is verified, we have

∀l ∈ {1, ..., k}, x∗l ∈ Conv(x1
1, ..., x1

n, x2
1, ..., x2

m)

Appl. Sci. 2024, 14, 7916 6 of 32

where Conv(x1
1, ..., x1

n, x2
1, ..., x2

m) is the closed convex hull of the set {x1
1, ..., x1

n, x2
1, ..., x2

m}.

The proof for this theorem is provided in Appendix A. This contracting effect, when
at work through the Wasserstein-barycenter-based evolutionary operators, can lead to the
desertion of the edges of the search space in favor of the center of the space. We propose in
the following paragraphs a way to correct this effect.

2.2. Wasserstein-Based Crossover and Mutation Operators

Within the framework of the proposed evolutionary algorithm, we rely on the Wasser-
stein barycenter in order to define crossover and mutation operators between two clouds
of points represented as discrete uniform measures. Both operators are defined in the
following paragraphs.

2.2.1. Crossover

Definition 3. For two measures (PX1 and PX2), we can compute their crossover with one of the
following operators:

• Equal weight crossover: take

PXc = arg min
PX ,#X=n

(W2
2 (PX , PX1) + W2

2 (PX , PX2)), (2)

to be a new design.
• Random weight crossover: draw random ϵ ∈ [0, 1] and consider

PXc = arg min
PX ,#X=n

ϵW2
2 (PX , PX1) + (1 − ϵ)W2

2 (PX , PX2) (3)

as a new design.

The support’s size of PXc , n, is chosen as follows:

• If #X1 = #X2, then n = #X1
• Otherwise, if #X1 ̸= #X2, generate two crossovers, PXc1 and PXc2 , with #Xc1 = #X1 and

#Xc2 = #X2

A numerical illustration of the proposed crossover using the Wasserstein barycenter is
given in Figure 3. One can notice that the generated clouds of points verify Theorem 1 and
inherit the morphology of the parent clouds.

The above crossovers are different from the examples of recombination operators for
sets described by Radcliffe in [21] because they act on the clouds as a whole, as opposed
to acting on the points of the sets. A consequence is that if two clouds share a point, the
Wasserstein-based crossover may move this point in order to minimize global transport,
while the genetic set recombination operators will always preserve it (the “respect” prop-
erty). Fundamentally, the difference is the equivalence class underlying each crossover: in
genetic set recombination, the equivalence class is the presence (or absence) of elements
(points); in the Wasserstein-based crossover, there is a continuum of elements (the points
with their positions), and the equivalence relation is based on the mass of points within sub-
regions of the domain. With equivalence classes based on mass of points within regions, the
Wasserstein-based crossovers are instances of the very general operators (random respectful
recombination —R3— and random transmitting recombination —RTR—) described by
Surry and Radcliffe [19].

Appl. Sci. 2024, 14, 7916 7 of 32

0 2 4 6 8 10
x

2

4

6

8

10

y

X1
X2
X

0 2 4 6 8 10
x

0

2

4

6

8

10

y

X1
X2
X

4 2 0 2 4
x

4

2

0

2

4

y

X1
X2
X

4 2 0 2 4
x

4

2

0

2

4

y

X1
X2
X

Figure 3. X1 and X2 are two initial clouds and X represents their equal weight Wasserstein barycenter.

2.2.2. Mutation

We introduce below the boundary mutation, which includes points located at the
border of the domain in order to dilate the clouds and counteract the previously discussed
shrinking effect.

Definition 4. The boundary mutation of a cloud of points PXc is defined as

PXm = arg min
PX ,#X=#Xc

ϵW2
2 (PX , PXc) + (1 − ϵ)W2

2 (PX , PXc∪Xbound),

where Xbound is a cloud of points at the domain boundary that can be randomly sampled. In the
union Xc ∪ Xbound, the repetitions of identical points are allowed. To clarify, for a polygon, Xbound
is the union of points randomly sampled on its sides. For this mutation, the size of the support of
PXm is permitted to be equal to the one of PXc .

We also introduce a more general mutation, defined as follows:

Definition 5. The full domain mutation of a cloud of points PXc is defined as

PXm = arg min
PX ,#X=m

ϵW2
2 (PX , PXc) + (1 − ϵ)W2

2 (PX , PXrand),

where Xrand is the union of points uniformly sampled in the domain. Its size is chosen randomly
with one of the two following schemes:

• in the space of all possible sizes: full size choice
• in {n − 1, n, n + 1} with n = #Xc: ternary size choice.

Appl. Sci. 2024, 14, 7916 8 of 32

The number of the resulting clouds of points and their supports’ sizes are determined with the same
method as the one used in the crossover.

The proposed boundary mutation can be compared to the Levy flight jumps used in
particle swarm optimization (PSO) [40]. Both boundary mutation and Levy flights enable
large perturbations of the current solutions. When the random weight ϵ is almost null,
the produced clouds differ a lot from the clouds before the mutation, and similarly, the
Levy flights can result in substantial movement of a given particle. Both mechanisms help
avoiding premature convergence, which is a risk coming from the contracting crossover
and the elitist population replacement. However, the boundary mutation and Levy flights
differ substantially:

• The weight ϵ is uniformly random, whereas Levy flights jumps occur deterministically
in case of prolonged stagnation.

• In the space of clouds, the boundary mutation is focused towards expanding the cloud
of points, which is a design choice meant to counteract the effect of crossover, whereas
the Levy flights have no preferential direction of perturbation.

Figure 4 illustrates the boundary mutation of an initial cloud (X) on the left and its
full domain mutation on the right. With boundary mutation, the points only move slightly
and some of them are dilated outside of the initial cloud, whereas the full domain mutation
disrupts the cloud more noticeably and in a way less oriented towards the boundary.

4 2 0 2 4
x

4

2

0

2

4

y

X
Xm

4 2 0 2 4
x

4

2

0

2

4

y

X
Xm

Figure 4. X and Xm are, respectively, the initial cloud and the cloud mutated with a Wasserstein-based
mutation. Boundary mutation on the (left) and full domain mutation on the (right).

If #Xrand = #Xc, then m = #Xc. Otherwise, the mutation produces two sets, one with
m = #Xc and one with m = #Xrand. The two (Boundary and Full Domain) mutations can
be arranged in the different ways, as explained below.

2.3. An Alternating Mutation

A first type of mutation based on Wasserstein operators alternates, with a random
weight, prob, between the boundary and the full domain mutations. It is detailed in
Algorithm 2. prob is the probability to apply a boundary mutation, 1-prob is the probability
to apply a full domain mutation.

Algorithm 2 Alternating Wasserstein mutation
Input: X cloud to mutate, prob the probability to perform a Boundary mutation
Output: The mutated cloud(s)

1: Draw ϵ and r uniformly in [0, 1]
2: if r ≥ prob then
3: Do Full Domain mutation with weight ϵ
4: else
5: Do Boundary mutation with weight ϵ
6: end if

Appl. Sci. 2024, 14, 7916 9 of 32

2.4. Successive Boundary and Full Domain Mutations

Boundary mutation and full domain mutation may be called successively in a deter-
ministic fashion. Two alternative ways to weight the barycenters are considered.

2.4.1. Successive Mutations with Independent Random Weights

The first version of the successive mutation considers independent random weights in
the mutations and is given in Algorithm 3. The choice of two different weights allows us to
differentiate the importance of the two operators.

Algorithm 3 Independently Weighted (Wasserstein) mutation
Input: X cloud to mutate
Output: The mutated cloud(s);

1: Draw ϵ1 and ϵ2 uniformly in [0, 1]
2: Do Full Domain mutation with weight ϵ1
3: Do Boundary mutation with weight ϵ2

The boundary mutation is executed at the end because it is designed to correct statis-
tically the contracting effect of the Wasserstein barycenter in the bounded domain of the
optimization problem.

2.4.2. Successive Mutations with a Single Random Weight

The last mutation follows the same sequential, systematic call to the boundary and full
domain operators but considers a single weight for the two operators, as described in Algorithm 4.

Algorithm 4 Uniquely Weighted (Wasserstein) mutation
Input: X cloud to mutate
Output: The mutated cloud(s);

1: Draw ϵ uniformly in [0, 1]
2: Do Full Domain mutation with probability ϵ
3: Do Boundary mutation with probability ϵ

Given a cloud of points X, the number of resulting clouds after a mutation is either
one or two. In fact, the boundary mutation always gives a single output, while full domain
mutation can give two if the the size of Xrand is different from the one of X. By combining
crossover and mutation operations, the number of resulting clouds of points after the entire
processing of X is between one and four, since two crossovers may occur.

It can be interesting to point out that the full domain mutation with full size choice
allows us, in theory, to evaluate any cloud of points X within the boundaries at any given
iteration of the optimization procedure. Indeed, with a value of ϵ ≈ 0, we obtain that PXm

is in the neighborhood of PXrand . In the case of ternary size choice, the exploration of any
cloud of points may, instead, require several iterations but is still possible. The introduced
operators can therefore attain any cloud of points, which asymptotically guarantees a global
convergence. Reaching the global optimum through such a random mechanism may be very
slow, which is why the proposed algorithm has other features allowing us to speed it up.

3. Numerical Analysis

In this section, we present a baseline algorithm and a set of test functions defined over
clouds of points that will allow us to assess the performance of the proposed algorithms.

3.1. A Classical Evolutionary Algorithm Applied to Sets

In order to provide a baseline algorithm, we consider an evolutionary algorithm based
on classical operators that, by default, processes sequences of vectors. It can be applied
to sets of points with minor modifications, namely, by using the crossover and mutation

Appl. Sci. 2024, 14, 7916 10 of 32

operators defined below. This algorithm is thought to be a default implementation, serving
as a comparison baseline. It is important to note that it does not account for the property of
sets of being invariant under point permutation.

3.1.1. Baseline Algorithm Encoding and Crossover

The first step of the algorithm consists of modeling the design variable as an ordered
concatenation of points padded with a no-point symbol up to a given maximal cardinality,
X = {x1, ..., xn, ∅n+1, ..., ∅nmax}. The empty points indicate that the size of the set of vectors
is not maximal. With such encoding, it is natural to rely on a uniform crossover that
randomly switches portions of the sequences corresponding to points between the two
parents. The only subtlety being that the no-point symbols are pushed to the right of the
sequence to accelerate the convergence towards solutions with an optimal cloud cardinality.
The crossover operator is presented in Algorithm 5.

Algorithm 5 Uniform crossover between sequences

Input: X1 = {x1
1, ..., x1

n1
, ∅n1+1, ..., ∅nmax} and X2 = {x2

1, ..., x2
n2

, ∅n2+1, ..., ∅nmax}
Output: Xc their crossover

1: Xc = {}
2: for i = 1, . . . , nmax do
3: Draw x in {x1

i, x2
i}

4: Add x to Xc
5: end for
6: Rearrange Xc to place the empty symbols on the right side
7: Return Xc.

Four examples of uniform crossovers on sequences are given in Figure 5. Contrary
to the Wasserstein-based crossovers of Figure 3, the newly generated clouds only contain
points drawn from the two parents. In probabilistic terms, the support of the resulting
discrete distribution is a subset of the union of the supports of the parent distributions, a
mechanism fundamentally different from Wasserstein barycenters.

0 2 4 6 8 10
x

2

4

6

8

10

y

X1
X2
X

0 2 4 6 8 10
x

0

2

4

6

8

10

y

X1
X2
X

4 2 0 2 4
x

4

2

0

2

4

y

X1
X2
X

4 2 0 2 4
x

4

2

0

2

4

y

X1
X2
X

Figure 5. X1 (black crosses) and X2 (red stars) are two initial clouds, and X (blue circles) represent
samples of uniform crossings on sequences.

Appl. Sci. 2024, 14, 7916 11 of 32

3.1.2. Mutation

During the mutation, the size of each cloud is changed randomly within the interval
bounded by its two nearest integers, and each point is disturbed with an isotropic Gaus-
sian noise. This fairly classical operator, called the Gaussian mutation [41], is detailed in
Algorithm 6. In order to avoid obtaining points outside of the domain or with an incoherent
cardinality, truncated versions of the discrete law on the cloud size and of the Gaussian
perturbations are used. In evolution strategies, the parametrization of the Gaussian muta-
tion standard deviation, σ, is a key to the optimization dynamics and is sometimes adapted
along the search [42]. Here, in the spirit of genetic algorithms, a fixed mutation strength is
chosen. More details about σ are given in Section 3.2.1.

Algorithm 6 Gaussian mutation

Input: X = {x1, ...xn, ∅n+1, ..., ∅nmax}, σ2

Output: A mutation of X
1: Sample m randomly in {n − 1, n, n + 1} ∩ {nmin, ..., nmax}
2: if m = n − 1 then
3: Remove a point randomly in X
4: else if m = n then
5: Do nothing
6: else
7: Choose randomly a point in the domain and add it to the right of the non-empty

part of the X sequence
8: end if
9: for i = 1, . . . , m do

10: Replace xi with xi +N (0, σ2Id), truncated to stay in D
11: end for
12: Return X

We show in Figure 6 the effect of a Gaussian mutation on a given cloud of points, where
we can see how all the points are perturbed, as well as the effect of the noise truncation.

4 2 0 2 4
x

4

2

0

2

4

y

X
Xm

Figure 6. X (red crosses) and Xm (blue points) are, respectively, the initial cloud and an instance of
the mutated cloud with the truncated Gaussian mutation. The value of σ2 is 3.333.

Appl. Sci. 2024, 14, 7916 12 of 32

The complete algorithm, consistent with the structure outlined in Algorithm 1 and
characterized by the uniform crossover on the sequence encoding and the truncated Gaus-
sian mutation, serves as a reference evolutionary algorithm and is referred to as Ref_alg in
the remainder of this work.

3.2. Experimental Protocol

In the following paragraphs, we provide some information regarding the numerical
experiments that were performed in order to assess the performance of the algorithms.

3.2.1. Algorithms Settings

For all the experiments, the algorithms’ hyperparameters are set as follows:

• We consider square search domains. The length of each side is 100.
• A discretization of step 1 is applied to each side for the sampling on the boundaries

for boundary mutation. Continuous alternatives, however, should also work.
• nmin = 10, nmax = 20, d = 2.
• The population size is set equal to 10 times the average number of active components

in each set, µ = 10d(1/(nmax − nmin + 1))∑nmax
i=nmin

i = 300, and the maximum number
of iterations of the algorithms is Niter = 500.

• Regarding the choice of σ2, we consider it proportional to E∥X − X′∥2, where X and X′

are points sampled uniformly in the domain. The latter quantity is the mean squared
distance between two points sampled uniformly in the domain. In a centered-squared
domain of side L, we obtain E∥X − X′∥2 = 4 ∗ Var(U) with Var(U), the variance of a
uniform continuous law. In our case, σ2 = 0.01E∥X − X′∥2 = 0.01 ∗ 4 ∗ L2/12 = 33.33.

• The default value of prob (Algorithm 2), if not specified, is 0.5.

We denote the proposed evolutionary algorithm, with Wasserstein barycenter-based
operators, as Wasserstein-barycenter-based generator evolutionary algorithm (WBGEA).
The different versions of this algorithm that we are studying are identified with specific
names and presented in Table 1.

Table 1. Acronyms of the algorithms studied and names of their evolution operators.

Algorithm Crossover Mutation

WBGEA_1 Equal Weight crossover (Equation (2)) Alternating mutation (Algorithm 2). Full
size choice (Definition 5).

WBGEA_2 Equal Weight crossover (Equation (2))
Successive independently weighted
mutation (Algorithm 3). Full size choice
(Definition 5).

WBGEA_3 Equal Weight crossover (Equation (2)) Successive equally weighted mutation
(Algorithm 4). Full size choice (Definition 5).

WBGEA_1t (t for ternary) Equal Weight crossover (Equation (2)) Alternating mutation (Algorithm 2). Ternary
size choice (Definition 5).

WBGEA_1t_nc (nc for no crossover) No crossover Alternating mutation (Algorithm 2). Ternary
size choice (Definition 5).

WBGEA_1t_rc (rc for random weight in crossover) Random Weight crossover (Equation (3))
The mutation is carried out with
Algorithm 2. Ternary size choice
(Definition 5).

Ref_alg Uniform crossover on sequences
(Algorithm 5) Gaussian mutation (Algorithm 6)

Ref_alg_nc No crossover Gaussian mutation (Algorithm 6)

Ref_wass Uniform crossover on sequences
(Algorithm 5)

Alternating mutation (Algorithm 2). Ternary
size choice (Definition 5).

Wass_gauss Equal Weight crossover (Equation (2)) Gaussian mutation (Algorithm 6)

Appl. Sci. 2024, 14, 7916 13 of 32

Comparing specific versions of these algorithms with each other sheds some light on
specific questions. These experiments and the questions addressed are detailed in Table 2.

Table 2. The different experiments and the associated scientific questions.

Experiments Compared Algorithms The Scientific Questions

Alternating vs. successive
Boundary and Full
Domain mutations

WBGEA_1, WBGEA_2,
WBGEA_3

Are there major differences
between the three mutations
in WBGEA?

Handling of set size in mutation:
ternary vs. full size WBGEA_1, WBGEA_1t

How does the size of Xrand
affect the performances of
the algorithms?

Wasserstein-based vs. reference
evolutionary algorithm WBGEA_1t, Ref_alg

How does the default
Wasserstein-based evolutionary
algorithm compare to a more
classical evolutionary algorithm?

Wasserstein vs. classical
evolution operators

WBGEA_1t, Ref_alg, Ref_wass,
Wass_gauss

How do the different operators
behave when composed
together differently?

Role of crossover
WBGEA_1t, WBGEA_1t_rc,
WBGEA_1t_nc, Ref_alg,
Ref_alg_nc

Are there noticeable differences
between the random and the
equal weight crossovers in
WBGEA? Does the crossover play
a major role in the performance of
the algorithms?

Role of the boundary mutation WBGEA_1t_nc with four different
prob: 1, 0.5, 0.1, 0.05 and 0

What happens if we diminish the
chances of performing a boundary
mutation in the absence of
crossover?

The test functions used in order to perform the previously described experiments are
presented in Section 3.3.

3.2.2. Performance Metrics

Two performance metrics are observed: the objective function value of the best solution
so far and the population diversity. The population diversity allows us to check if all clouds
of the population have converged to the same design, which may impair the ability of the
search to locate the optimal solution if this convergence is premature. The diversity can be
calculated at each iteration in the following way:

Div(pop) =
1
µ ∑

Xi∈pop
W2

2 (PX∗ , PXi) , (4)

where pop = {Xi, i = 1, ..., µ} is a population of sets, PXi the associated discrete measures,
and PX∗ is the Wasserstein barycenter of the clouds of pop. The support’s size of PX∗ is
chosen to be the mode of all sizes in pop. As an alternative to the population diversity, one
can look at the variance of the objective function values for the clouds in the population.
Although it is cheaper to calculate than the diversity, it is more difficult to interpret as its
scale depends on the objective function, if the output functions are not normalized. A very
flat function would have a low population function variance even if its population is diverse.
The population diversity and the best so far objective function provide complementary
information. On the one hand, when an evolutionary algorithm has a high performance
and a low diversity, it is likely converging towards a global optimum. On the other
hand, a low population diversity associated with a poor best objective is a sign that
convergence is occurring prematurely to a non-optimal set. Other diversity-performance
configurations can occur: for example, a very explorative algorithm maintains by definition
a high population diversity, yet it can be high performing if its search operators are biased
towards the global optima.

Appl. Sci. 2024, 14, 7916 14 of 32

In the numerical experiments reported later, the mean and the standard deviation of
both metrics, the best so far objective function and the population diversity are estimated
over the 20 repetitions for each algorithm’s variant and each test function.

3.3. Analytical Test Functions

The algorithms described above are tested on several functions taking sets of vectors
as inputs. These functions are simplifications of some of the many situations which can be
naturally be parameterized as sets of vectors. Wind farms and well fields are two examples,
inspiring the wind farm proxy below. Design of experiments can, in some cases, be seen
as the optimization of a function taking sets of vectors as inputs, as is the case for the
maximin function [43] Finally, the inertia function is also considered. This function can
be encountered in multi-component systems such as the accumulated energy or as the
regularization term in ridge regression problems. Within the framework of optimization
problems, all these test functions need to be maximized.

3.3.1. Wind Farm Proxy

A first family of test functions emulates the energy production of a wind farm. Each
wind turbine yields a certain amount of energy which depends on the wake effect caused
by neighboring turbines. The inputs are in the form of a cloud of points X = {x1, ..., xn},
with xi = (xi, yi) ∈ R2 (d = 2). Each xi represents the Cartesian coordinates of a turbine.
The test function given below represents the total yield considering all turbines,

Fθ({x1, ..., xn}) =
n

∑
i=1

(
∏

j, j ̸= i
fpθ(xj, xi)

)
f0(xi) .

Details about the function fpθ (representing the gain factor of the turbine xi due to the
wake effect of xj) and f0 (a constant representing the maximal yield of a given turbine) may
be found in Appendix C. In the remainder of the paper, we use the following notations:

• Fθ stands for functions that account for wind coming from a single direction θ ∈ (0, 360).
• Fnd = 1

n ∑n
i=1 Fθi stands for functions modeling the average effect of n wind directions

chosen in (0, 360).

We consider the following test functions: F0, F90, F45, F4d. The function F4d calculates
the average production over four directions: 0, 60, 120 (0 is chosen two times). We provide
graphical representations of xi −→ fpθ(xj, xi) with xj = (0, 0) for the four scenarios in
Figure 7. These graphics show the amplitude of the wake interaction between two turbines,
depending on their relative position and the direction of the wind. For instance, in the case
θ = 0, we can notice that the scale of the interaction is more important in the direction of
the wind and only occurs behind the fixed turbine.

Fθ is obtained by summing the contribution of each point. We give two examples
(F0 and F45) of the function layouts in Figure 8, where nine points are fixed and one is
allowed to vary. The values next to the points show their individual contribution to the
total production. There is no unit of measure. We can see that the yield of an additional
point depends on the direction of the wind and the placement of the existing points. F0 and
F90 are just rotations of one another and the interest in keeping both of them is to check the
invariance of the algorithms with respect to a rotation of the solution, a property that is not
satisfied by all optimization algorithms, as discussed in [44].

Appl. Sci. 2024, 14, 7916 15 of 32

40 20 0 20 40
x

40

20

0

20

40

y

0.04

0.16

0.28

0.40

0.52

0.64

0.76

0.88

1.00

40 20 0 20 40
x

40

20

0

20

40

y

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

40 20 0 20 40
x

40

20

0

20

40

y

0.04

0.16

0.28

0.40

0.52

0.64

0.76

0.88

1.00

40 20 0 20 40
x

40

20

0

20

40

y

0.325

0.400

0.475

0.550

0.625

0.700

0.775

0.850

0.925

1.000

Figure 7. Representation of fpθ with θ = 90 at (top left), θ = 45 (top right), θ = 0 (bottom left), and
averaged directions at (bottom right).

40 20 0 20 40
x

40

20

0

20

40

y

2.88

5.0 3.1

4.47

3.7

1.35
2.76

4.33

4.22

Total contribution of 9 points:
 31.8

29.50

30.25

31.00

31.75

32.50

33.25

34.00

34.75

35.50

36.25

 F
0

40 20 0 20 40
x

40

20

0

20

40

4.26

5.0 2.08

5.0

3.17

1.27
1.53

4.93

4.51

Total contribution of 9 points:
 31.74

30.00

30.75

31.50

32.25

33.00

33.75

34.50

35.25

36.00

36.75

 F
45

Figure 8. Representation of F0 and F45 with nine fixed points and one varying. The maximal
contribution of a point is fixed to 5.

3.3.2. MinDist Function

Maximizing the smallest distance between points is a popular criterion for designing
experiments. It provides another example of a function with a set of vectors as input. We
denote a design as X = (x1, ..., xn) with xi ∈ Rd for some d ∈ N. Let us consider our second
test function FminDist to be

FminDist(X) = min
i ̸=j

||xi − xj||. (5)

It is noteworthy that, de facto, this function only depends on the values of two com-
ponents of the input set, namely, the two closest ones, as opposed to the other considered
functions that factor in all of the set components.

Appl. Sci. 2024, 14, 7916 16 of 32

3.3.3. Inertia Function

Lastly, we consider the function modeling the inertia of a group of points in Rd. For
X = {x1, ..., xn}, it is given by

Finert(X) =
n

∑
i=1

||xi − X̄||2 (6)

where X̄ is the center of mass of the point coordinates, X̄ = 1
n ∑n

i=1 xi.
The family of test functions have been chosen to offer, a priori, a good diversity of

situations: for Finert, one of its global optimum is a cloud where the points are split between
the corners of the domain, while FminDist takes a space-filling cloud as solution, and the
wind-farm functions Fθ are maximized by clouds with some alignments that depend on θ.
Samples of good designs are plotted in Figure 9.

40 20 0 20 40
x for F0

40

20

0

20

40

y
fo

r
F 0

40 20 0 20 40
x for F90

40

20

0

20

40

y
fo

r
F 9

0

40 20 0 20 40
x for F45

40

20

0

20

40

y
fo

r
F 4

5

40 20 0 20 40
x for F4d

40

20

0

20

40

y
fo

r
F 4

d

40 20 0 20 40
x for Finert

40

20

0

20

40

y
fo

r
F i

ne
rt

40 20 0 20 40
x for FminDist

40

20

0

20

40

y
fo

r
F m

in
D

is
t

Figure 9. Best observed designs corresponding, respectively, to the test cases F0, F90, F45, F4d, Finert

and FminDist (left to right, top to bottom).

3.4. Designs Returned by the Algorithm WBGEA_1t_nc

Figure 9 gathers the best designs found by the WBGEA_1t_nc (Wasserstein-based,
ternary mutation of the size, no crossover, as explained in Table 2) variant of the algorithm.
These designs are also the best overall observed solutions for the test functions. The best
observed solutions correspond to what is produced by a stochastic, evolutionary algorithm
after 500 iterations with a population size of µ = 300 and an initial population of 300,
which sums up to 150,300 calls to the objective function. They are not fully converged and
could be fine tuned by a local search. We have chosen to show these solutions, produced
by the evolutionary algorithms without local fine tuning, for a more realistic reporting
of their performance. It can be seen that the designs are consistent with the simulated
physical phenomena. The points are placed optimally according to the wind directions
for the wind-farm functions. For instance, concerning F0’s best design, we see that the
vertical distances between the points are smaller than the horizontal ones, and there is an
alignment of some of the wind turbines at the domain boundary where the wind enters
(x = −40). The optimal number of points (i.e., turbines) in the set is nmax = 20, as all
possible turbines are used to maximize power production. The best observed design for
F90 is approximately a 90◦ rotation of the F0 solution. The solutions to F45 and F4d are not
rotations of the solutions F0 or F90 because the square domain D is not rotation invariant for
these angles. The best designs for Finert have n = nmax points located in the corners, where
they contribute the most to the total inertia. The optimal design for FminDist has, logically,
nmin = 10 points that are spread over all of the domain.

Appl. Sci. 2024, 14, 7916 17 of 32

4. Results and Discussions

The series of questions listed in Table 2 are addressed one by one. In order to be
brief, concerning wind-farm functions, only the statistics of the performances on F4d are
represented. F4d, Finert and FminDist have their results presented separately. For each
experiment, and for each function, we first discuss the evolution of the current optimum
during the optimization iterations and then the evolution of the population diversity.

4.1. Study of a Wasserstein-Based Evolutionary Algorithm

The analysis of Wasserstein evolutionary operators is designed through two series of
experiments. The first series studies the implementation of the boundary and full domain
mutations; the second is about the sampling of the set size.

4.1.1. Alternating vs. Successive Boundary and Full Domain Mutations

In this experiment, we compare the performances of the three mutations defined in
Algorithms 2–4. They are all combined with the crossover defined in (2), and correspond to
the algorithms named WBGEA_1, WBGEA_2 and WBGEA_3, respectively. Figures 10–12
show (on their lefts) statistics of the best so far objective function values throughout the
iterations for the wind farm, the inertia and the point minimum distance cases, respectively.
In all of the plots, the implementation WBGEA_1 (which has the alternating mutation)
clearly outperforms WBGEA_2 and WBGEA_3 (which have successive mutations). In
a more subtle way, WBGEA_2 yields better results than WBGEA_3 in all tests with a
compromised speed on FminDist. When considering the associated diversity measures
in Figures 10–12 (on their rights), it is observed that populations in WBGEA_1 always
converge faster than those in WBGEA_2 and WBGEA_3. The diversity drops faster with
WBGEA_3 than with WBGEA_2 except on Finert.

The fact that the boundary and the full domain mutations occur one at a time is the
determining advantage of WBGEA_1 over WBGEA_2 and WBGEA_3. If one of the two
mutations is detrimental, it will be avoided in fifty percent (prob = 0.5) of the sample cases.
The difference between WBGEA_2 and WBGEA_3 follows the same independence idea in
a less perceptible way: there will be situations where ϵ1 is large and ϵ2 small, or vice versa,
creating some independence between the two mutations. On the contrary, in WBGEA_3, the
boundary and full domain mutations are always applied together with the same intensity.
These tests suggest a mutation independence principle: for composite mutations made of
different types of perturbations, like the boundary and the full domain mutations, the
perturbations should be applied independently. The population’s diversity drops faster in
WBGEA_1 than in WBGEA_2 and WBGEA_3, suggesting, in conjunction with its better
objective values, that WBGEA_1 is more efficiently converging towards the global optima.
Conversely, WBGEA_3 is more prone to premature convergence than WBGEA_2, therefore
losing diversity faster. With the inertia function, Finert, neither WBGEA_2 nor WBGEA_3
manage to converge: the population diversity plateaus at a relatively high level (about 8).

0 100 200 300 400 500
Iterations

80

82

84

86

88

Ma
xim

um
 of

 F 4
d in

 Po
p

WBGEA_1
WBGEA_2
WBGEA_3

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

Div
ers

ity
 of

 F 4
d o

ve
r P

op

WBGEA_1
WBGEA_2
WBGEA_3

Figure 10. Alternating vs. Successive Boundary and Full Domain Mutations. The test function is the
wind-farm layout problem averaged over 4 directions, F4d. (Left): mean ± std. deviation of the best
so far solution. (Right): mean ± std. deviation of the population diversity. Statistics calculated from
20 independent runs.

Appl. Sci. 2024, 14, 7916 18 of 32

0 100 200 300 400 500
Iterations

40,000

45,000

50,000

55,000

60,000

65,000

70,000

75,000

Ma
xim

um
 of

 F in
er

t in
 Po

p
WBGEA_1
WBGEA_2
WBGEA_3

0 100 200 300 400 500
Iterations

4

6

8

10

12

14

Div
ers

ity
 of

 F in
er

t o
ve

r P
op

WBGEA_1
WBGEA_2
WBGEA_3

Figure 11. Alternating vs. Successive Boundary and Full Domain Mutations. The test function is the
inertia function, Finert. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std.
deviation of the population diversity. Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

22

24

26

28

30

32

Ma
xim

um
 of

 F m
inD

ist
 in

 Po
p

WBGEA_1
WBGEA_2
WBGEA_3

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

Div
ers

ity
 of

 F m
inD

ist
 ov

er
Po

p WBGEA_1
WBGEA_2
WBGEA_3

Figure 12. Alternating vs. Successive Boundary and Full Domain Mutations. The test function is the
MinDist function, FminDist. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std.
deviation of the population diversity. Statistics calculated from 20 independent runs.

4.1.2. Handling of Set Size in Mutation: Ternary vs. Full Size

We investigate the role of the size of Xrand (Definition 5 for the full domain muta-
tion) in the performances of WBGEA_1. To this aim, the two algorithms compared are
WBGEA_1 and WBGEA_1t. In WBGEA_1t, during the full domain mutation, the size of
the random cloud is chosen in the triplet composed of the size of the cloud to be mutated
and its two nearest integers, while in WBGEA_1, it is chosen in the set of all possible
sizes. There is not a great difference in terms of the optimal values returned by the two
algorithms except on Finert. Nevertheless, the difference between full and ternary mutations
for the size is always to the benefit of the ternary mutation. More details are given in
Appendix B. In the following, the ternary mutation, which is more efficient, serves as the
default implementation.

4.2. Comparison of Wasserstein and Sequence-Based Operators
4.2.1. Wasserstein-Based vs. Reference Evolutionary Algorithm

In this Section, the default Wasserstein-based algorithm, WBGEA_1t, is compared to
the baseline evolutionary algorithm, Ref_alg (Table 1 for the acronyms).

We observe that WBGEA_1t works better than Ref_alg in terms of both convergence
speed and final value on the wind-farm problem (Figure 13). Ref_alg, with its classical
crossover and Gaussian mutation, is not efficient at learning designs with specific geometri-
cal characteristics such as alignments, which are important in the case of wind farms. The
left plot in Figure 14 shows that WBGEA_1t converges faster than Ref_alg on FminDist.

As is often seen in the experiments, the behavior of the algorithms is different with
the inertia function, Finert. There, as seen on the left plot of Figure 15, Ref_alg outperforms
WBGEA_1t. To explain this, another version of WBGEA_1t is tried where the probability to
apply the boundary mutation, prob, is raised to 1, which simultaneously prohibits any full
domain mutation. The boundary mutation is, of course, adapted to Finert since its optimum
has points only on the boundary. WBGEA_1t with only boundary mutations (prob = 1)
yields similar final Finert values as Ref_alg, although it converges more slowly (left plot of
the Figure 15).

Appl. Sci. 2024, 14, 7916 19 of 32

The diversity of WBGEA_1t decreases to zero more rapidly on the wind farm proxy
(right plot of the Figure 13) and FminDist (right plot of Figure 14) than on Finert, where
the drop is slower (right plot of Figure 15). For these situations, the loss of diversity is
associated with a convergence towards a global optimum. For the same reason, increasing
the rate of application of the boundary mutation by changing prob from 0.5 to 1 helps in
locating global optima and decreases diversity.

Concerning Ref_alg, the diversities of the populations stagnate at a high level for all
the test functions (see right plot in Figures 13–15). While a convergence of the population
to a global optimum induces, by definition, a loss of diversity, the experiment with Ref_alg
on function Finert shows that evolutionary algorithms have other long term behaviors: the
population remains very diverse, yet the best points approach the optimum consistently
throughout repeated runs. The preservation of a high diversity is thought to be an effect of
the constant Gaussian mutation strength, σ, and of the crossover over sequences, which
exchange points from the crossed sets.

0 100 200 300 400 500
Iterations

78

80

82

84

86

88

Ma
xim

um
 of

 F 4
d o

ve
r P

op

WBGEA_1t
Ref_wass
Ref_alg
Wass_gauss

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

16

Div
ers

ity
 of

 Po
p w

ith
 F

4d
WBGEA_1t
Ref_wass
Ref_alg
Wass_gauss

Figure 13. Wasserstein vs. Classical Evolutionary Operators. The test function is the wind-farm
layout problem averaged over 4 directions, F4d. (Left): mean ± std. deviation of the best so far
solution. (Right): mean ± std. deviation of the population diversity. Statistics calculated from
20 independent runs.

0 100 200 300 400 500
Iterations

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Ma
xim

um
 of

 F m
in

Di
st

 in
 Po

p

WBGEA_1t
Ref_alg

0 100 200 300 400 500
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Div
ers

ity
 of

 F m
in

Di
st

 ov
er

Po
p WBGEA_1t

Ref_alg

Figure 14. Wasserstein-Based vs. Reference Evolutionary Algorithm. The test function is the MinDist
function, FminDist. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std.
deviation of the population diversity. Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

40,000

50,000

60,000

70,000

80,000

Ma
xim

um
 of

 F i
ne

rt i
n P

op

WBGEA_1t with prob = 1
WBGEA_1t
Ref_alg

0 100 200 300 400 500
Iterations

2

4

6

8

10

12

14

16

Div
ers

ity
 of

 F i
ne

rt o
ve

r P
op

WBGEA_1t with prob = 1
WBGEA_1t
Ref_alg

Figure 15. Wasserstein-Based vs. Reference Evolutionary Algorithm. The test function is the inertia
function, Finert. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std.
deviation of the population diversity. Statistics calculated from 20 independent runs.

4.2.2. Wasserstein vs. Classical Evolutionary Operators

In order to better understand the role of the operators, we now invert the mutations of
WBGEA_1t and Ref_alg, and the two new obtained algorithms are denoted by Wass_gauss
and Ref_wass.

Appl. Sci. 2024, 14, 7916 20 of 32

The left plots of Figures 13–17 illustrate that in general, the Wasserstein crossover
(Equation (2)) outperforms the uniform crossover on sequences (Algorithm 5) when the
mutation is the same. Compare Ref_alg to Wass_gauss, which both have a Gaussian
mutation, and Ref_wass to WBGEA_1t, which both have an a Wasserstein mutation: the
versions with the Wasserstein crossover perform best on all the test functions except Finert.
By comparing Ref_wass to Ref_alg, the same graphics demonstrate that, when combined to
the uniform crossover, the Wasserstein-based mutation is better than the Gaussian mutation
on the wind farm and Finert tests. The performances of WBGEA_1t and Wass_gauss on the
left plots of Figures 13–17 show that the alternating Wasserstein mutation (Algorithm 2)
outdoes the Gaussian mutation (Algorithm 6) when the crossover is Wasserstein-based
only on the wind-farm problem.

The right plots of Figures 13–17 illustrate also that the presence of the classical oper-
ators, the uniform crossover on sequences and the Gaussian mutation in the algorithms
Ref_alg, Ref_wass and Wass_gauss result in large population diversities on all the test
functions. On the contrary, WBGEA_1t, which is based uniquely on Wasserstein operators,
has vanishing diversities.

The good results achieved by the algorithms based on Wasserstein operators on the
wind farm can be explained by the geometrical properties of their optimal designs: the
good solutions for such problems are expected to possess more restrictive geometrical
properties, such as regular alignments. On the contrary, the optimal design of Finert has
points grouped at the four corners of the domain, which, as will soon be seen, is very
favorable to the uniform crossover on sequences. FminDist, with its good designs made of
points spread over the domain, has an intermediate status made of some alignments for
the highest performance solutions but is otherwise sensitive to point local positions.

0 100 200 300 400 500
Iterations

40,000

50,000

60,000

70,000

80,000

90,000

Ma
xim

um
 of

 F i
ne

rt i
n P

op

WBGEA_1t
Ref_alg
Ref_wass
Wass_gauss

0 100 200 300 400 500
Iterations

2

4

6

8

10

12

14

16

Di
ve

rsi
ty

of
F in

er
t o

ve
r P

op

WBGEA_1t
Ref_alg
Ref_wass
Wass_gauss

Figure 16. Wasserstein vs. Classical Evolutionary Operators. The test function is the inertia function,
Finert. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std. deviation of the
population diversity. Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ma
xim

um
 of

 F m
inD

ist
 ov

er
Po

p

WBGEA_1t
Ref_alg
Ref_wass
Wass_gauss

0 100 200 300 400 500
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Div
ers

ity
 of

 F m
inD

ist
 ov

er
Po

p

WBGEA_1t
Ref_alg
Ref_wass
Wass_gauss

Figure 17. Wasserstein vs. Classical Evolutionary Operators. The test function is the MinDist function,
FminDist. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std. deviation of
the population diversity. Statistics calculated from 20 independent runs.

4.3. Investigating the Role of the Mutation and the Crossover
4.3.1. Role of Crossover

In this section, we investigate the role of crossover, starting from the equal weight
crossover, finishing with no crossover and going through a random weight crossover.

Appl. Sci. 2024, 14, 7916 21 of 32

Relaxed Crossover

The crossover used so far has equal weights as in Equation (2) and is compared to the
random weight crossover of Equation (3). Having random weights is a form of relaxation
in the sense that small and large weights make the crossover result similar to one from
the parent cloud. The algorithms with equal and random weight crossovers are denoted
WBGEA_1t and WBGEA_1t_rc, respectively.

The left plots of Figures 18–20 show that the random weight crossover is more competitive
than the equal weight crossover for all the considered test functions, (but on F45, see Table 3).

The superiority of the random weight crossover is related to its ability to produce
clouds close to one from their parent when the weight ϵ is close to 0 or 1. This allows us
to not always destroy the previously selected designs. Such an explanation follows the
same line as the mutation independence principle mentioned in Section 4.1.1: because the
evolutionary operators may not always lead to better solutions, in particular when applied
to already selected high-performing solutions, it is useful to be able to, sometimes, diminish
their effect due to randomness.

0 100 200 300 400 500
Iterations

78

80

82

84

86

88

Ma
xim

um
 of

 F 4
d o

ve
r P

op

WBGEA_1t
WBGEA_1t_rc
WBGEA_1t_nc
Ref_alg
Ref_alg_nc

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

16

Div
ers

ity
 of

 Po
p w

ith
 F

4d
WBGEA_1t
WBGEA_1t_rc
WBGEA_1t_nc
Ref_alg
Ref_alg_nc

Figure 18. Relaxed Crossover. The test function is the wind-farm layout problem averaged over
4 directions, F4d. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std.
deviation of the population diversity. Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

40,000

50,000

60,000

70,000

80,000

Ma
xim

um
 of

 F i
ne

rt o
ve

r P
op

WBGEA_1t
WBGEA_1t_rc
WBGEA_1t_nc
Ref_alg
Ref_alg_nc

0 100 200 300 400 500
Iterations

2

4

6

8

10

12

14

16

Div
ers

ity
 of

 F i
ne

rt o
ve

r P
op

WBGEA_1t
WBGEA_1t_rc
WBGEA_1t_nc
Ref_alg
Ref_alg_nc

Figure 19. Relaxed Crossover. The test function is the inertia function, Finert. (Left): mean ± std.
deviation of the best so far solution. (Right): mean ± std. deviation of the population diversity.
Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ma
xim

um
 of

 F m
inD

ist
 ov

er
Po

p

WBGEA_1t
WBGEA_1t_rc
WBGEA_1t_nc
Ref_alg
Ref_alg_nc

0 100 200 300 400 500
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Div
ers

ity
 of

 F m
inD

ist
 ov

er
Po

p WBGEA_1t
WBGEA_1t_rc
WBGEA_1t_nc
Ref_alg
Ref_alg_nc

Figure 20. Relaxed Crossover. The test function is the MinDist function, FminDist. (Left): mean ± std.
deviation of the best so far solution. (Right): mean ± std. deviation of the population diversity.
Statistics calculated from 20 independent runs.

Appl. Sci. 2024, 14, 7916 22 of 32

Table 3. Mean (with 5 significant digits) ± std. deviation of the best values returned by the algorithms,
calculated over 20 independent repetitions for each test function. For each function, the best results
are boldfaced.

Algorithm F0 F90 F45 F4d FminDist Finert

WBGEA_1 89.158 (±0.196) 89.183 (±0.133) 89.714 (±0.193) 87.908 (±0.157) 31.785 (±0.530) 71,112 (±700)

WBGEA_2 88.147 (±0.148) 88.279 (±0.139) 88.704 (±0.112) 86.936 (±0.137) 31.279 (±0.455) 67,451 (±462)

WBGEA_3 88.117 (±0.219) 88.033 (±0.140) 88.476 (±0.132) 86.672 (±0.129) 30.977 (±0.467) 63,510 (±538)

WBGEA_1t 89.270 (±0.163) 89.334 (±0.154) 89.872 (±0.208) 87.908 (±0.157) 31.892 (±0.404) 76,480 (±566)

Ref_alg 87.281 (±0.438) 87.345 (±0.408) 87.398 (±0.319) 85.742 (±0.307) 31.923 (±1.337) 81,869 (±758)

Ref_alg_nc 88.734 (±0.208) 88.681 (±0.281) 88.891 (±0.222) 87.453 (±0.179) 35.780 (±0.495) 79,562 (±737)

Ref_wass 88.938 (±0.293) 89.036 (±0.378) 88.906 (±0.265) 86.974 (±0.228) 30.769 (±0.572) 94,211 (±616)

Wass_gauss 88.430 (±0.242) 88.383 (±0.257) 88.667 (±0.191) 87.199 (±0.166) 35.108 (±0.857) 79,116 (±1575)

WBGEA_1t_nc 89.939 (±0.237) 89.928 (±0.183) 89.895 (±0.161) 88.269 (±0.185) 34.561 (±0.525) 82,375 (±484)

WBGEA_1t_nc
(prob = 1) 89.879 (±0.251) 89.823 (±0.211) 89.952 (±0.231) 87.997 (±0.220) 34.635 (±0.578) 85,947 (±625)

WBGEA_1t_nc
(prob = 0.1) 89.612 (±0.212) 89.698 (±0.189) 89.737 (±0.105) 88.065 (±0.160) 33.051 (±0.742) 74,948 (±521)

WBGEA_1t_nc
(prob = 0.05) 89.346 (±0.205) 89.399 (±0.216) 89.438 (±0.111) 87.846 (±0.113) 32.447 (±.641) 71,907 (±898)

WBGEA_1t_nc
(prob = 0) 88.195 (±0.201) 88.166 (±0.182) 88.316 (±0.124 86.921 (±0.216) 30.986 (±0.491) 51,306 (±1195)

WBGEA_1t_rc 89.649 (±0.191) 89.613 (±0.220) 89.686 (±0.168) 88.097 (±0.166) 32.785 (±0.655) 78,888 (±604)

The evolution of the population diversities of WBGEA_1t_rc and WBGEA_1t on the right
of Figures 18–20 shows a faster decrease in diversity with the random weight crossover in the
wind-farm case, which may be explained by a faster convergence to good solutions. No clear
difference in diversity evolution is observed for functions Finert and FminDist.

Absence of Crossover

Variants of the algorithms where no crossover takes place are tested under the names
WBGEA_1t_nc and Ref_alg_nc, i.e., they are equipped solely with mutations. We observe
on the left of Figures 18–20 that the absence of crossover improves the performances of both
algorithms, WBGEA_1t and Ref_alg, on all the test functions, with the exception of Ref_alg
on Finert. The single Wasserstein mutation (WBGEA_1t_nc) makes the best algorithm for
the wind-farm test function. The effect of the crossover on the diversity, as reported on the
right of Figures 18–20, is different between the uniform crossover on the sequence encoding
and the Wasserstein-based crossover. The uniform crossover, through its point shuffling
effect, is a provider of diversity. Removing it from the algorithm decreases diversity. The
Wasserstein-based crossover replaces pairs of clouds by their barycenter, therefore reducing
diversity. Removing it from the algorithm increases diversity, which is visible after about
100 iterations in the wind-farm case. Often, this effect is not as clear with Finert, presumably
because removing the crossover from WBGEA_1t makes it converge to the optimum, which
contributes to reducing diversity.

4.3.2. Role of the Boundary Mutation

The following results further investigate the role of the boundary mutation within
the alternating Wasserstein mutation (Algorithm 2). This mutation carries out a boundary
mutation with a probability of prob or a full domain mutation with a probability of 1-prob.

The different values of prob studied are 1, 0.5, 0.1, 0.05 and 0 within the WBGEA_1t_nc
algorithm (i.e., there is no crossover).

Appl. Sci. 2024, 14, 7916 23 of 32

We observe on the left of Figures 21–23 that when we diminish the probability of
performing the boundary mutation (prob) from 0.5 to 0, the performances of the algorithms
(speed and optimality) decrease on all the test functions. However, a maximal value of prob
is not the optimal configuration of WBGEA_1t_nc since when prob = 1, the performance of
F4d is inferior to the one with prob = 0.5.

The diversity varies in the opposite way of the performances (right plot of Figures 21–23),
except for WBGEA_1t_nc with prob = 0 and prob = 1.

The small chances of boundary mutation favor the contracting property stated in
Theorem 1 of the Wasserstein barycenter in the full domain mutation. During the latter
(full domain mutation), the clouds of points are randomly sampled in the domain and their
barycenters are contained in the convex hull of their unions, which contain points in the
boundaries with small probabilities. The optimal solutions of the functions making the
test cases contain some points neighboring the domain boundaries, which explains why
high values of prob favor good performances. Here, the boundary mutation constitutes an
essential ingredient in the design of optimal clouds of points.

The increase in diversity with 1-prob comes from the fact that with the shortage of the
boundary mutation and the associated increase in full domain mutation, the algorithms
bear a closer resemblance to a random research.

0 100 200 300 400 500
Iterations

80

82

84

86

88

Ma
xim

um
 of

 F 4
d i

n P
op

WBGEA_1t_nc with prob=1
WBGEA_1t_nc with prob=0.5
WBGEA_1t_nc with prob=0.1
WBGEA_1t_nc with prob=0.05
WBGEA_1t_nc with prob=0

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

16

Div
ers

ity
 of

 F 4
d o

ve
r P

op

WBGEA_1t_nc with prob=1
WBGEA_1t_nc with prob=0.5
WBGEA_1t_nc with prob=0.1
WBGEA_1t_nc with prob=0.05
WBGEA_1t_nc with prob=0

Figure 21. Role of the Boundary Mutation. The test function is the wind-farm layout problem averaged
over 4 directions, F4d. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std.
deviation of the population diversity. Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

40,000

50,000

60,000

70,000

80,000

Ma
xim

um
 of

 F i
ne

rt i
n P

op

WBGEA_1t_nc with prob=1
WBGEA_1t_nc with prob=0.5
WBGEA_1t_nc with prob=0.1
WBGEA_1t_nc with prob=0.05
WBGEA_1t_nc with prob=0

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

16

Div
ers

ity
 of

 F i
ne

rt o
ve

r P
op

WBGEA_1t_nc with prob=1
WBGEA_1t_nc with prob=0.5
WBGEA_1t_nc with prob=0.1
WBGEA_1t_nc with prob=0.05
WBGEA_1t_nc with prob=0

Figure 22. Role of the Boundary Mutation. The test function is the inertia function, Finert.
(Left): mean ± std. deviation of the best so far solution. (Right): mean ± std. deviation of the
population diversity. Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ma
xim

um
 of

 F m
in

Di
st

 ov
er

Po
p

WBGEA_1t_nc with prob=1
WBGEA_1t_nc with prob=0.5
WBGEA_1t_nc with prob=0.1
WBGEA_1t_nc with prob=0.05
WBGEA_1t_nc with prob=0

0 100 200 300 400 500
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Div
ers

ity
 of

 F m
in

Di
st

 ov
er

Po
p WBGEA_1t_nc with prob=1

WBGEA_1t_nc with prob=0.5
WBGEA_1t_nc with prob=0.1
WBGEA_1t_nc with prob=0.05
WBGEA_1t_nc with prob=0

Figure 23. Role of the Boundary Mutation. The test function is the MinDist function, FminDist.
(Left): mean ± std. deviation of the best so far solution. (Right): mean ± std. deviation of the
population diversity. Statistics calculated from 20 independent runs.

Appl. Sci. 2024, 14, 7916 24 of 32

4.4. Synthesis

In Table 3, the mean best values plus/minus their standard deviations obtained by each
algorithm over 20 repetitions are given. These values are found after 500 iterations with a
population size of µ = 300 and an initial population of 300, which sums up to 150,300 calls
to the objective function. At such an evaluation budget, the following phenomena take
place: on all functions but the inertia, Finert, crossover is counterproductive. Finert stands
as an exception with an optimal design made of points symmetrically divided between
the corners of the domain, and it benefits from the mixing effect of the classical uniform
crossover. Wasserstein-based operators are better at preserving global point structures
than sequence based operators and are thus best fitted for problems such as the wind-
farm layouts. The smallest distance between points, FminDist, is conditioned by individual
point positions (as opposed to global structures) and is a good match to the Gaussian
mutation. With this in mind, WBGEA_1t_nc yields the best results on the wind-farm test
functions. The Gaussian mutation provides (Ref_alg_nc) the best results only on FminDist,
and Ref_wass is the best contestant for Finert.

The main conclusions, derived from the different experiments, are summarized in
Table 4. The following, complementary, general comments should be made.

Table 4. Summary of experimental questions and conclusions.

Experiments The Scientific Questions Conclusions

Alternating vs. successive
boundary and full
domain mutations

Are there major differences
between the three mutations
in WBGEA?

Alternating Wasserstein
mutation (Algorithm 2) yields
the best results when coupled
with equal weight crossover
on all the functions.

Handling of sets size in
mutation: ternary vs. full
size choice

How does the size of Xrand
affect the performance of
the algorithms?

The two schemes for choosing
the size of Xrand do not make
a significant difference.

Wasserstein-based vs.
reference evolutionary
algorithm

How does the default
Wasserstein-based
evolutionary algorithm
compare to a more classical
evolutionary algorithm?

WBGEA, compared to Ref_alg,
yields better results on
wind-farm test functions and
converges faster on FminDist.
An adapted tuning helps to
obtain similar results on Finert.

Wasserstein vs. classical
evolution operators

How do the different
operators behave when
composed together
differently?

Wasserstein-based operators
improve over sequence-based
operators on all the test
functions but Finert.

Role of crossover

Are there noticeable
differences between the
random and the equal weight
crossovers in WBGEA ? Does
the crossover play a major role
in the performance of
the algorithms?

WBGEA with random weight
crossover (Equation (3))
improves over equal weight,
but removing the crossover is
an even better choice.

Role of the boundary
mutation

What happens if we diminish
the chances of performing a
Boundary mutation in the
absence of crossover?

High values of the boundary
mutation probability (around
0.5) are adapted to the tested
suite of functions.

4.4.1. Wasserstein-Based Operators

A key result of this study is that when all other components of the algorithms are
kept the same, switching from a sequence-based to a Wasserstein-based operator is ben-
eficial. The only exception is the uniform crossover with Finert. We believe that this is
related to the conservation of geometrical structure that is allowed by the Wasserstein

Appl. Sci. 2024, 14, 7916 25 of 32

barycenters underlying the studied evolutionary operators. Figures 2–4 illustrate this
conservation property.

4.4.2. The Test Suite

The six problems tested give consistent results to the exception of the inertia function,
Finert. It is likely that this is because Finert is almost an additive function: it is an additive
function provided that the center of inertia of the points, X̄ in Equation (6), does not
change. Such functions match well with the building blocks assumption of the Schemata
Theorem [12], in a manner similar to the royal road functions [45], and benefit from the
action of the traditional uniform crossover. The four wind turbine layout problems yield
close results. It is confirmed that all the algorithms investigated are rotation invariant
as the same statistics (up to the confidence intervals accuracy) are found with F0 and F90.
This is consistent with the operator (Gaussian mutation, Wasserstein barycenters, uniform
crossovers) definitions that are all isotropic, i.e., they handle directions in the same way.
Results advocating a high rate of use for the boundary mutation show that our test suite is
slightly biased towards operators that help putting points on the domain boundary.

4.4.3. On the Random Choice of Operators

The choice of the best evolutionary operators is a difficult problem as it depends in a
nonlinear fashion on the objective function and on the search budget [46]. In many ways,
it can be considered most of the research in evolutionary computation deals with this
question, and the current study is no exception. When it comes to choosing between several
operators, the boundary or the full domain mutation, or the equal weight or no crossover,
we found that a simple strategy is robust and well-performing, even though it may not
be the overall best: choose randomly between the options while allowing each of them
to act alone. The alternating mutation applies at random either the boundary or the full
domain mutation. The random crossover has effects that range between those of the equal
weight crossover and those of no crossover. Such a randomized choice of operator has the
advantage of keeping the possibility that each operator contributes to candidate solutions,
sometimes without the addition of the effect of the other operators. This constitutes an
element of robustness with respect to changing functions and population compositions. It
comes at the cost of missing the best operator tuning for a specific task.

4.4.4. Population Diversity: Summary of Results and Visualization

The experimental results present the population diversity, defined in Equation (4), as a
complement to the best so far objective function values. The pair of metrics, objective value
and population diversity, was anticipated to allow us to discriminate between premature
and global convergences. The results have further shown that a variety of scenarios occur
in evolutionary optimization: the Wasserstein-based algorithms (WBGEA_. . .) typically
have low population diversities, while sequence-based algorithms (Ref_. . .) maintain more
diverse populations throughout the search.

The objective function impacts the diversity: all versions of algorithms tested, whether
Wasserstein or sequence-based, are slow at reducing the diversity when applied to Finert,
the inertia function. In the other functions, the diversity of Wasserstein-based optimizers
drops to near 0 after about 200 iterations.

Diversity in itself is not indicative of an algorithm’s performance. For example, in
Figure 19, looking at Finert, WBGEA_1t_nc and Ref_alg_nc attain comparable objectives but
WBGEA_1t_nc and Ref_alg_nc have a low and a high diversity, respectively.

In addition to diversity, the variance of the functions in the populations has been
recorded. The information provided by variance is similar to that of diversity, with the
additional difficulty created by the varying functions scales. For this reason, we do not
report variance results here.

Appl. Sci. 2024, 14, 7916 26 of 32

5. Conclusions and Perspectives

We have proposed new evolutionary algorithms made to optimize functions defined
over sets of points. The mutation and crossover operators are based on Wasserstein
barycenters. The performances of the algorithms were tested on a family of test functions
including wind-farm layout emulators. We have proven that the Wasserstein barycenter
contracts the points within the convex hull of existing points. To counteract this effect, we
have introduced the boundary mutation that biases the Wasserstein barycenters towards
the domain boundaries. Our experiments have shown that because Wasserstein-based
operators better preserve the geometrical structure of point sets than traditional sequence-
based operators, they allow performance gains: replacing a classical operator with its
Wasserstein equivalent always improved the search. As a side result, we have found that on
our point set test suite, the crossovers are, on average, detrimental to the search. The designs
returned by the Wasserstein-based evolutionary algorithm were satisfactory in that they
made physical sense: the best wind-farm layouts spread the turbines over the entire design
domain and had alignments perpendicular to dominating wind directions; the designs for
inertia had points grouped at the corners of the domain; the designs for maximin point
distance had uniformly spread points. Of course, these solutions, which were generated
by stochastic (evolutionary) optimizers, would benefit from a final fine-tuning with a
local search.

This work would benefit from three short term continuations. First, the domain of
definition of the points in the set might be non convex. For example, one could consider
domains with a hole inside, as happens with overland wind farms. The current opera-
tors, through the Wasserstein barycenters, will create points in such a hole and need to
be upgraded.

Another continuation is to investigate the effectiveness of the algorithm for clouds of
points of dimensions greater than two.

Third, when dealing with computationally expensive functions over point sets, the pro-
posed evolutionary algorithm could be included within a Bayesian optimization algorithm,
where it would allow us to optimize the acquisition criteria.

A longer term continuation to this work is to extend it to clouds of colored points.
An example would be to optimally select the technology of the wind turbines (the color)
within a catalog while optimizing the farm layout.

Author Contributions: Conceptualization, B.S., R.L.R., J.P., M.K. and S.Z.; methodology, B.S., R.L.R.
and J.P.; software, B.S.; formal analysis, B.S., R.L.R. and J.P.; writing—original draft preparation, B.S.;
writing—review and editing, B.S., R.L.R., J.P., M.K. and S.Z.; visualization, B.S.; supervision, R.L.R.,
J.P., M.K. and S.Z.; project administration, R.L.R., M.K., J.P. and S.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was funded in part by the French Agence Nationale de la Recherche through the
SAMOURAI project, ANR-20-CE46-0013.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The pseudo-code of the algorithms and the test functions are described
in the paper. The hyper-parameters of the algorithms are also given. For any question for future use,
please contact authors.

Conflicts of Interest: Authors Julien Pelamatti, Merlin Keller and Sanaa Zannane were employed
by the company EDF R&D. The remaining authors declare that the re-search was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

Appl. Sci. 2024, 14, 7916 27 of 32

Abbreviations
Main notations and abbreviations

d ∈ N Dimension of a vector
D ⊂ Rd A compact subset of Rd

Div(pop) The diversity of pop, a population of sets
n, nmin, nmax ∈ N Size of sets of vectors
prob Probability to perform a boundary mutation
PX A measure associated with a set of points X
P ′ The set of discrete measures with finite support
δa Dirac function
σ2 Gaussian mutation variance
X ∈ X Set of n unordered points {x1, . . . , xn} where xi ∈ D, i = 1, . . . , n and

nmin ≤ n ≤ nmax. It will be referred to as a cloud, set or bag of points
(or vectors). Compared to an (ordered) list of points, X is invariant
with respect to any point permutation because it is a set.

#X Number of vectors in X

Appendix A. Proof That the Wasserstein Barycenter Is Contracting

Let P ′ be the set of discrete measures over Rd with finite support. Let

PX1 =
n

∑
i=1

αiδx1
i

,
n

∑
i=1

αi = 1 , αi > 0

PX2 =
m

∑
j=1

β jδx2
j

,
m

∑
j=1

β j = 1 , β j > 0

PX∗ =
k

∑
l=1

λlδx∗l
,

k

∑
l=1

λl = 1 , λl > 0

Consider the Wasserstein barycenter loss function as follows:

g :
∣∣∣∣ P ′ −→ R+

PX 7−→ (ϵW2
2 (PX , PX1) + (1 − ϵ)W2

2 (PX , PX2)) .

The barycenter stems from the minimization of this loss,

PX∗ = arg min g
PX∈P ′

(PX) .

We prove that the points of support of PX∗ belong to the convex closure of all the
points contained in X1 and X2. The proof works by showing that a point of X∗ cannot be
outside of the closure, otherwise it yields the absurd result that it is both outside and inside.
We start the proof with a complementary lemma that will soon be useful.

Lemma A1. If C is a convex set of Rd, so is C̄ (the adherence of C).

Proof. Let x and y be two elements of C̄ and t ∈ [0, 1]. There exist two sequences xn and yn
of C such that limn→+∞ xn = x and limn→+∞ yn = y. Therefore, limn→+∞(txn + (1 − t)yn)
= tx+ (1− t)y. C being convex, ∀n, (txn + (1− t)yn) ∈ C. We have constructed a sequence
having its elements in C that tends to tx + (1 − t)y; therefore, tx + (1 − t)y ∈ C̄.

Conv(x1
1, ..., x1

n, x2
1, ..., x2

m) is a convex set by definition, since it is the smallest convex set
containing the points X1 and X2. By the above lemma, Conv(x1

1, ..., x1
n, x2

1, ..., x2
m) is convex.

Suppose that there exists a point outside of the closure of the convex set,
x∗l′ /∈ Conv(x1

1, ..., x1
n, x2

1, ..., x2
m). Rd equipped with the canonical scalar product (with

Appl. Sci. 2024, 14, 7916 28 of 32

∥∥ the associated distance) is a Hilbert Space and Conv(x1
1, ..., x1

n, x2
1, ..., x2

m) being a non
empty, closed convex set, there exists x∗∗l′ in Conv(x1

1, ..., x1
n, x2

1, ..., x2
m) such that

∥x∗l′ − x∗∗l′ ∥= dist(x∗l′ , Conv(x1
1, ..., x1

n, x2
1, ..., x2

m)

with dist denoting the distance, see Theorem 8.3.1 in [47] for the proof. Using the projection
property as stated in the Proposition 8.3.5 in [47], we have

∀x ∈ Conv(x1
1, ..., x1

n, x2
1, ..., x2

m), ⟨x∗l′ − x∗∗l′ , x − x∗∗l′ ⟩ ≤ 0

Now, let us compare ∥x − x∗∗l′ ∥ and ∥x − x∗l′∥ ∀x ∈ Conv(x1
1, ..., x1

n, x2
1, ..., x2

m). We have

∥x − x∗l′∥
2= ∥(x − x∗∗l′)− (x∗l′ − x∗∗l′)∥

2= ∥x − x∗∗l′ ∥
2+∥x∗l′ − x∗∗l′ ∥

2−2⟨x − x∗∗l′ , x∗l′ − x∗∗l′ ⟩

Since ∥x∗l′ − x∗∗l′ ∥
2> 0 and −2⟨x∗l′ − x∗∗l′ , x − x∗∗l′ ⟩ ≥ 0, we obtain the following:

∥x − x∗∗l′ ∥
2< ∥x − x∗l′∥

2 (A1)

Now, consider the discrete measure

PX∗∗ =
k

∑
l=1, ̸=l′

λlδx∗l
+ λl′δx∗∗

l′
(A2)

We apply the definition of Wasserstein distance as in [48] to the discrete case. Let us
denote Mkn(R+) and Mkm(R+) the set of matrices with k rows and, respectively, n and m
columns. Consider the two following families of matrices: Π1 = {π(li) ∈ Mkn, ∑n

i=1 πli = λl,

∑k
l=1 πli = αi, πli ≥ 0} and Π2 = {π(l j) ∈ Mkm, ∑m

j=1 πl j = λl , ∑k
l=1 πl j = β j, πl j ≥ 0}

such that

g(PX∗) = ϵ min
π∈Π1

(
k

∑
l=1

n

∑
i=1

πli∥x∗l − x1
i ∥2

)
+ (1 − ϵ) min

π∈Π2

(
k

∑
l=1

m

∑
j=1

πl j∥x∗l − x2
j ∥2

)

We introduce the function h∗ over Π1 × Π2:

∀π1 ∈ Π1, π2 ∈ Π2, h∗(π1, π2) = ϵ

(
k

∑
l=1

n

∑
i=1

π1
li∥x∗l − x1

i ∥2

)
+ (1 − ϵ)

(
k

∑
l=1

m

∑
j=1

π2
l j∥x∗l − x2

j ∥2

)

= ϵ

(
k

∑
l=1, ̸=l′

n

∑
i=1

π1
li∥x∗l − x1

i ∥2+
n

∑
i=1

π1
l′i∥x∗l′ − x1

i ∥2

)
+

(1 − ϵ)

(
k

∑
l=1, ̸=l′

m

∑
j=1

π2
l j∥x∗l − x2

j ∥2+
m

∑
j=1

π2
l′ j∥x∗l′ − x2

j ∥2

)

≥ ϵ

(
k

∑
l=1, ̸=l′

n

∑
i=1

π1
li∥x∗l − x1

i ∥2+
n

∑
i=1

π1
l′i∥x∗∗l′ − x1

i ∥2

)
+

(1 − ϵ)

(
k

∑
l=1, ̸=l′

m

∑
j=1

π2
l j∥x∗l − x2

j ∥2+
m

∑
j=1

π2
l′ j∥x∗∗l′ − x2

j ∥2

)

The right-hand side of the inequality defines a new function h∗∗ over Π1 × Π2. There-
fore, we obtain

∀π1 ∈ Π1, π2 ∈ Π2, h∗∗(π1, π2) ≤ h∗(π1, π2)

=⇒ min
π1∈Π1,π2∈Π2

h∗∗(π1, π2) ≤ min
π1∈Π1,π2∈Π2

h∗(π1, π2)

Appl. Sci. 2024, 14, 7916 29 of 32

By definition,

min
π1∈Π1,π2∈Π2

h∗∗(π1, π2) = g(PX∗∗), min
π1∈Π1,π2∈Π2

h∗(π1, π2) = g(PX∗)

=⇒ g(PX∗∗) ≤ g(PX∗)

With the hypothesis of unicity, it means that PX∗∗ = PX∗ and x∗∗l′ = x∗l′ , which is a
contradiction since we assume that x∗l′ is not in the closure while x∗∗l′ is. Therefore, x∗l′ cannot
be outside of the closure, and Wasserstein barycenters produce clouds that are contracting.

Appendix B. Handling of Set Size in Mutation: Supplementary Results

We observe on the left of Figures A1–A3 that the convergence of WBGEA_1t is slightly
quicker than the one of WBGEA_1 on the wind-farm problem, and on Finert and FminDist,
respectively. The difference in performance is more noticeable with Finert. The population
diversities of the two algorithms computed on the wind-farm function F4d, Finert and
FminDist have the same appearance, as is shown on the right of Figures A1–A3: even though
the diversity decreases slightly more slowly with WBGEA_1 than with WBGEA_1t, during
the first iterations, the final decrease is the same. The results indicate a stagnation in the
diversity for all the functions, except for Finert where the decrease continues at 500 iterations.

The diversity measure, as described in Section 3.2.2, is more sensitive to the set sizes
than the test functions. It explains the difference between the diversities during the first
iterations for the wind farm and FminDist functions. The diversity for Finert continues
to decrease because the algorithm has not yet converged but progresses towards the
optimal solution.

0 100 200 300 400 500
Iterations

80

82

84

86

88

Ma
xim

um
 of

 F 4
d o

ve
r P

op

WBGEA_1t
WBGEA_1

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

Div
ers

ity
 of

 F 4
d o

ve
r P

op

WBGEA_1t
WBGEA_1

Figure A1. Handling of Set Size in Mutation. The test function is the wind-farm layout problem averaged
over 4 directions, F4d. (Left): mean ± std. deviation of the best so far solution. (Right): mean ± std.
deviation of the population diversity. Statistics calculated from 20 independent runs.

0 100 200 300 400 500
Iterations

40,000

45,000

50,000

55,000

60,000

65,000

70,000

75,000

Ma
xim

um
 of

 F i
ne

rt i
n P

op

WBGEA_1t
WBGEA_1

0 100 200 300 400 500
Iterations

2

4

6

8

10

12

14

Div
ers

ity
 of

 F i
ne

rt o
ve

r P
op

WBGEA_1t
WBGEA_1

Figure A2. Handling of Set Size in Mutation. The test function is the inertia function, Finert.
(Left): mean ± std. deviation of the best so far solution. (Right): mean ± std. deviation of the
population diversity. Statistics calculated from 20 independent runs.

Appl. Sci. 2024, 14, 7916 30 of 32

0 100 200 300 400 500
Iterations

20

22

24

26

28

30

32

Ma
xim

um
 of

 F m
inD

ist
 in

 Po
p

WBGEA_1t
WBGEA_1

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

12

14

16

Div
ers

ity
 of

 F m
inD

ist
 ov

er
Po

p WBGEA_1t
WBGEA_1

Figure A3. Handling of Set Size in Mutation. The test function is the MinDist function, FminDist.
(Left): mean ± std. deviation of the best so far solution. (Right): mean ± std. deviation of the
population diversity. Statistics calculated from 20 independent runs.

Appendix C. Details about Wind Farm Proxy

Let the canonical basis of the plane be (e1, e2) with e1 = (1, 0) ∈ R2 and e2 = (0, 1) ∈ R2.

We denote by Rα the rotation matrix
[

cos α − sin α
sin α cos α

]
. The formula of the wind farm proxy

function is given below for a wind in the direction of e1:

F({x1, ..., xn}) =
n

∑
i=1

(
∏

j, j ̸= i
fpθ(xj, xi)

)
f0(xi) . (A3)

f0 is supposed to be constant, and fpθ(xj, xi) expresses the penalty factor on the yield
of the turbine at xi that is caused by a turbine at xj. When the direction of interaction
coincides with the x-axis, the interaction loss between rotors at xi and xj is

fpθ(xj, xi) =

{
1 if xi ≤ xj ,

(
||xi−xj ||

1+||xi−xj ||
fL(xj, xi) +

1
1+||xi−xj ||

fθ(xj, xi)) fprox(xj, xi) if xi > xj .
(A4)

Before explaining fL, fθ and fprox, we mention that the two terms of fpθ are weighted
with non-fixed functions depending on the distance between the two points. fL corresponds
to a power gain increasing with the distance between rotors and having a maximum of 1.
Its expression is the following:

fL =
1

1 + exp(−p1(∆ − l))
,

In regards to the second term, we have

fθ(xj, xi) =

0 if xi = xj
1 if xi = xj, xi ̸= xj
2
π arctan(

|yi−yj |
|xi−xj |

) otherwise
(A5)

The component fθ quantifies the gain depending on the angle −̂→u ,−→xixj, with −→u the
direction of interaction. The result is multiplied with a third function in order to further
penalize the proximity between turbines. We have

fprox(xj, xi) =
1

1 + exp(−p2(∆′ − radius))

with p2, radius positive parameters and ∆′ = ∥xi − xj∥. We can notice that all the terms
of Equation (A5) are between 0 and 1, which results in fpθ ∈ [0, 1]. In order to implement
a function modeling the effect of a wind in the direction of Rαe1 (with α ∈ (0, 2π)), we
compute the coordinates of the inputs on the basis (Rαe1, Rα+π/2e1) and apply the last
function on the new inputs (with the new coordinates). The values of p1, p2 for the three

Appl. Sci. 2024, 14, 7916 31 of 32

functions defined above are, respectively, 0.15 and 0.5. We choose l = 10 and radius = 3 for
F0 and F45.

References
1. Larsen, G.C.; Réthoré, P.E. TOPFARM—A tool for wind farm optimization. Energy Procedia 2013, 35, 317–324. [CrossRef]
2. Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm.

J. Wind Eng. Ind. Aerodyn. 1994, 51, 105–116. [CrossRef]
3. Kusiak, A.; Song, Z. Design of wind farm layout for maximum wind energy capture. Renew. Energy 2010, 35, 685–694. [CrossRef]
4. Cazzaro, D.; Pisinger, D. Variable neighborhood search for large offshore wind farm layout optimization. Comput. Oper. Res.

2022, 138, 105588. [CrossRef]
5. Amorosi, L.; Fischetti, M.; Paradiso, R.; Roberti, R. Optimization models for the installation planning of offshore wind farms. Eur.

J. Oper. Res. 2024, 315, 1182–1196. [CrossRef]
6. Zhong, J.; Li, Y.; Wu, Y.; Cao, Y.; Li, Z.; Peng, Y.; Qiao, X.; Xu, Y.; Yu, Q.; Yang, X.; et al. Optimal operation of energy hub: An

integrated model combined distributionally robust optimization method with Stackelberg game. IEEE Trans. Sustain. Energy
2023, 14, 1835–1848. [CrossRef]

7. Bauer, J.; Lysgaard, J. The offshore wind farm array cable layout problem: A planar open vehicle routing problem. J. Oper. Res.
Soc. 2015, 66, 360–368. [CrossRef]

8. Alarie, S.; Audet, C.; Garnier, V.; Le Digabel, S.; Leclaire, L. Snow water equivalent estimation using blackbox optimization. Pac.
J. Optim. 2013, 9, 1–21.

9. Chaloner, K.; Verdinelli, I. Bayesian Experimental Design: A Review. Stat. Sci. 1995, 10, 273–304. [CrossRef]
10. Stenger, J. Optimal Uncertainty Quantification of a Risk Measurement from a Computer Code. Ph.D. Thesis, Université Paul

Sabatier-Toulouse III, Toulouse, France, 2020.
11. McLachlan, G.J.; Basford, K.E. Mixture Models. Inference and Applications to Clustering; M. Dekker: New York, NY, USA, 1988.
12. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015.
13. Hansen, N.; Arnold, D.V.; Auger, A. Evolution Strategies. In Handbook of Computational Intelligence; Kacprzyk, J., Pedrycz, W.,

Eds.; Number 871-898; Springer: Berlin/Heidelberg, Germany, 2015.
14. Pérez, B.; Mínguez, R.; Guanche, R. Offshore wind farm layout optimization using mathematical programming techniques.

Renew. Energy 2013, 53, 389–399. [CrossRef]
15. Byrd, R.H.; Nocedal, J.; Waltz, R.A. K nitro: An integrated package for nonlinear optimization. In Large-Scale Nonlinear

Optimization; Springer: Boston, MA, USA, 2006; pp. 35–59.
16. Fagerfjäll, P. Optimizing Wind Farm Layout: More Bang for the Buck Using Mixed Integer Linear Programming. Master’s Thesis,

Chalmers University of Technology and Gothenburg University, Göteborg, Sweden, 2010; Volume 111.
17. Fischetti, M.; Pisinger, D. Mathematical optimization and algorithms for offshore wind farm design: An overview. Bus. Inf. Syst.

Eng. 2019, 61, 469–485. [CrossRef]
18. Kim, J. Cardinality Constrained Optimization Problems. Ph.D. Dissertation, Purdue University, West Lafayette, IN, USA, 2016.
19. Surry, P.D.; Radcliffe, N.J. Formal search algorithms + problem characterisations = executable search strategies. In Theory and

Principled Methods for the Design of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 247–270.
20. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 1996.
21. Radcliffe, N.J. Genetic Set Recombination. In Foundations of Genetic Algorithms; Whitley, L.D., Ed.; Elsevier: Amsterdam, The

Netherlands, 1993; Volume 2, pp. 203–219. [CrossRef]
22. Eroğlu, Y.; Seçkiner, S.U. Design of wind farm layout using ant colony algorithm. Renew. Energy 2012, 44, 53–62. [CrossRef]
23. Feng, J.; Shen, W.Z. Solving the wind farm layout optimization problem using random search algorithm. Renew. Energy 2015,

78, 182–192. [CrossRef]
24. Bilbao, M.; Alba, E. Simulated annealing for optimization of wind farm annual profit. In Proceedings of the 2009 2nd International

Symposium on Logistics and Industrial Informatics, Linz, Austria, 10–12 September 2009; IEEE: Piscataway, NJ, USA, 2009;
pp. 1–5.

25. Grady, S.; Hussaini, M.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270.
[CrossRef]

26. Réthoré, P.E.; Fuglsang, P.; Larsen, G.C.; Buhl, T.; Larsen, T.J.; Madsen, H.A. TOPFARM: Multi-fidelity optimization of wind
farms. Wind Energy 2014, 17, 1797–1816. [CrossRef]

27. Arora, J.S. Introduction to Optimum Design; Elsevier: Amsterdam, The Netherlands, 2004.
28. Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addion Wesley: Reading, MA, USA, 1989.
29. Song, S.; Li, Q.; Felder, F.A.; Wang, H.; Coit, D.W. Integrated optimization of offshore wind farm layout design and turbine

opportunistic condition-based maintenance. Comput. Ind. Eng. 2018, 120, 288–297. [CrossRef]
30. Pillai, A.C.; Chick, J.; Johanning, L.; Khorasanchi, M.; Pelissier, S. Optimisation of offshore wind farms using a genetic algorithm.

Int. J. Offshore Polar Eng. 2016, 26, 225–234. [CrossRef]

http://doi.org/10.1016/j.egypro.2013.07.184
http://dx.doi.org/10.1016/0167-6105(94)90080-9
http://dx.doi.org/10.1016/j.renene.2009.08.019
http://dx.doi.org/10.1016/j.cor.2021.105588
http://dx.doi.org/10.1016/j.ejor.2024.01.011
http://dx.doi.org/10.1109/TSTE.2023.3252519
http://dx.doi.org/10.1057/jors.2013.188
http://dx.doi.org/10.1214/ss/1177009939
http://dx.doi.org/10.1016/j.renene.2012.12.007
http://dx.doi.org/10.1007/s12599-018-0538-0
http://dx.doi.org/10.1016/B978-0-08-094832-4.50019-2
http://dx.doi.org/10.1016/j.renene.2011.12.013
http://dx.doi.org/10.1016/j.renene.2015.01.005
http://dx.doi.org/10.1016/j.renene.2004.05.007
http://dx.doi.org/10.1002/we.1667
http://dx.doi.org/10.1016/j.cie.2018.04.051
http://dx.doi.org/10.17736/ijope.2016.mmr16

Appl. Sci. 2024, 14, 7916 32 of 32

31. Pillai, A.C.; Chick, J.; Johanning, L.; Khorasanchi, M.; Barbouchi, S. Comparison of offshore wind farm layout optimization using
a genetic algorithm and a particle swarm optimizer. In Proceedings of the International Conference on Offshore Mechanics and
Arctic Engineering, Busan, Republic of Korea, 19–24 June 2016; Volume 49972, p. V006T09A033.

32. Villani, C. Optimal Transport: Old and New; Springer: Berlin/Heidelberg, Germany, 2009; Volume 338.
33. Sloss, A.N.; Gustafson, S. 2019 evolutionary algorithms review. arXiv 2019, arXiv:1906.08870.
34. Bartz-Beielstein, T.; Branke, J.; Mehnen, J.; Mersmann, O. Evolutionary algorithms. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.

2014, 4, 178–195. [CrossRef]
35. Cao, X. Poincaré Fréchet mean. Pattern Recognit. 2023, 137, 109302. [CrossRef]
36. Montrucchio, L.; Pistone, G. Kantorovich distance on a finite metric space. arXiv 2019, arXiv:1905.07547.
37. Cuturi, M.; Doucet, A. Fast computation of Wasserstein barycenters. In Proceedings of the International Conference on Machine

Learning, PMLR, Beijing, China, 22–24 June 2014; pp. 685–693.
38. Flamary, R.; Courty, N.; Gramfort, A.; Alaya, M.Z.; Boisbunon, A.; Chambon, S.; Chapel, L.; Corenflos, A.; Fatras, K.;

Fournier, N.; et al. Pot: Python optimal transport. J. Mach. Learn. Res. 2021, 22, 1–8.
39. Agueh, M.; Carlier, G. Barycenters in the Wasserstein space. SIAM J. Math. Anal. 2011, 43, 904–924. [CrossRef]
40. Haklı, H.; Uğuz, H. A novel particle swarm optimization algorithm with Levy flight. Appl. Soft Comput. 2014, 23, 333–345.

[CrossRef]
41. Sebag, M.; Ducoulombier, A. Extending population-based incremental learning to continuous search spaces. In Proceedings of

the Parallel Problem Solving from Nature—PPSN V, Amsterdam, The Netherlands, 27–30 September 1998; Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 418–427.

42. Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation: Advances in the
Estimation of Distribution Algorithms; Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–102.

43. Santner, T.J.; Williams, B.J.; Notz, W.I.; Williams, B.J. The Design and Analysis of Computer Experiments; Springer: New York, NY,
USA, 2003; Volume 1.

44. Hansen, N.; Ros, R.; Mauny, N.; Schoenauer, M.; Auger, A. Impacts of invariance in search: When CMA-ES and PSO face
ill-conditioned and non-separable problems. Appl. Soft Comput. 2011, 11, 5755–5769. [CrossRef]

45. Jansen, T.; Wegener, I. Real royal road functions-where crossover provably is essential. Discret. Appl. Math. 2005, 149, 111–125.
[CrossRef]

46. Consoli, P.A.; Mei, Y.; Minku, L.L.; Yao, X. Dynamic selection of evolutionary operators based on online learning and fitness
landscape analysis. Soft Comput. 2016, 20, 3889–3914. [CrossRef]

47. El, N.; Hassan, H. Topologie Générale et Espaces Normés; ZI des Hauts, no. Édition, 54692; Dunod: Malakoff, France, 2011.
48. Paty, F.P.; Cuturi, M. Subspace robust Wasserstein distances. In Proceedings of the International Conference on Machine Learning,

PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5072–5081.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/widm.1124
http://dx.doi.org/10.1016/j.patcog.2023.109302
http://dx.doi.org/10.1137/100805741
http://dx.doi.org/10.1016/j.asoc.2014.06.034
http://dx.doi.org/10.1016/j.asoc.2011.03.001
http://dx.doi.org/10.1016/j.dam.2004.02.019
http://dx.doi.org/10.1007/s00500-016-2126-x

	Introduction and Related Work
	General Context
	Related Work
	Mathematical Programming Techniques
	Evolutionary and Other Stochastic Algorithms

	Contribution of This Work

	Wasserstein Barycenters for the Evolutionary Optimization of Sets
	Fréchet Mean to Wasserstein Barycenter
	Wasserstein-Based Crossover and Mutation Operators
	Crossover
	Mutation

	An Alternating Mutation
	Successive Boundary and Full Domain Mutations
	Successive Mutations with Independent Random Weights
	Successive Mutations with a Single Random Weight

	Numerical Analysis
	A Classical Evolutionary Algorithm Applied to Sets
	Baseline Algorithm Encoding and Crossover
	Mutation

	Experimental Protocol
	Algorithms Settings
	Performance Metrics

	Analytical Test Functions
	Wind Farm Proxy
	MinDist Function
	Inertia Function

	Designs Returned by the Algorithm WBGEA_1t_nc

	Results and Discussions
	Study of a Wasserstein-Based Evolutionary Algorithm
	Alternating vs. Successive Boundary and Full Domain Mutations
	Handling of Set Size in Mutation: Ternary vs. Full Size

	Comparison of Wasserstein and Sequence-Based Operators
	Wasserstein-Based vs. Reference Evolutionary Algorithm
	Wasserstein vs. Classical Evolutionary Operators

	Investigating the Role of the Mutation and the Crossover
	Role of Crossover
	Role of the Boundary Mutation

	Synthesis
	Wasserstein-Based Operators
	The Test Suite
	On the Random Choice of Operators
	Population Diversity: Summary of Results and Visualization

	Conclusions and Perspectives
	Appendix A
	Handling of Set Size in Mutation: Supplementary Results
	Details about Wind Farm Proxy
	References

