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The present study delves into the exploration of wave propagation in spatially homogeneous sys-
tems governed by a Klein-Gordon-type equation with a periodically time-varying cutoff frequency.
Through a combination of analytical calculations and numerical simulations, intriguing and dis-
tinctive features in the dispersion diagram of these systems are uncovered. Unlike other systems
with spatial and temporal periodicity, the examined configurations demonstrate some remarkable
transitions as the modulation frequency increases. These transitions encompass a transformation
from a frequency gap to a wavenumber gap around q = 0, with the transition point corresponding
to a gapless Dirac dispersion with exceptional point of degeneracy. Subsequently, the q-gap under-
goes a bifurcation into two symmetric gaps at positive and negative wavenumbers. At this second
transition point, the dispersion diagram takes the form of an imaginary Dirac dispersion relation
and exhibits an isolated exceptional point at the center of the q=0 gap. These findings contribute
to a deeper understanding of wave dynamics in periodically modulated media, uncovering novel and
tunable phenomena.

I. INTRODUCTION

The Klein-Gordon equation [1, 2] in quantum physics
offers a fundamental description of relativistic spinless
particles through a scalar field. Its mathematical form,
akin to the d’ Alembert wave equation with an additional
term proportional to the field, introduces a spectral cut-
off for propagating waves. Interestingly, this equation
finds relevance in classical systems as well. For example,
in 1909, Lamb derived a similar equation to describe ver-
tically propagating acoustic waves in the atmosphere [3].
Today, Klein-Gordon-type equations have become inte-
gral in diverse fields, modeling phenomena such as prop-
agation of electromagnetic waves in waveguides [4] and
plasmas [5], Alfvén waves in nonuniform media [6], duct
acoustics [7], vibrating strings [8], upward propagation of
linear acoustic waves in a gravitationally stratified solar
atmosphere [9], etc.

In recent years, the pursuit of innovative wave appli-
cations, encompassing magnetless nonreciprocity, multi-
mode shaping, parametric amplification, and ultrafast
switching, has reignited interest in time-varying me-
dia [10]. Particularly, media with properties that vary
periodically over time exhibit wavevector gaps [11–13],
analogous to the frequency gaps occurring in spatially
periodic structures [14–16]. In a wavevector gap, only
complex-frequency solutions of the wave equation exist.
These solutions come in pairs and represent modes with
amplitudes that either grow or decay exponentially. Both
options are physically acceptable, in sharp contrast to fre-
quency gap modes where energy conservation prevents
the existence of waves with growing amplitude in the
medium.

In parallel to the studies on spatially or temporally
periodic media which can host only one type of gap,

subject of study is spatiotemporally periodic media, too.
In this context, the band structure and the associated
field eigenmodes have mainly been explored under the
assumption of a travelling wave modulation, in the ab-
sence of which the system is dispersionless [17–20]. This
scenario, depending on modulation’s phase velocity leads
either to frequency or wavevector gaps. The transition
from frequency to wavevector gap (and vice versa) oc-
curs when phase velocity is equal to wave propagation
velocity. However, at the transition point all the modes
of the unmodulated system are strongly coupled making
its study rather challenging [18, 19].

While extensive research has been conducted on peri-
odic systems and their dispersion properties concerning
wave propagation, the interplay between frequency and
wavevector gaps has received comparatively less atten-
tion [21, 22]. What is more, within most of the available
studies, frequency gaps emerge from spatial periodicity,
leaving the influence of temporal modulation on the prop-
erties of spatially homogeneous media, which inherently
possess frequency gaps, largely unexplored. Only re-
cently, an electromagnetic waveguide loaded with a one-
dimensional lattice of coupled time-periodically driven
LC resonators, an inherently gapped system, was con-
sidered [23].

In the present paper, we report a thorough theoret-
ical investigation into the interplay between the intrin-
sic frequency gap of a homogeneous medium and the
wavevector gaps arising from a temporal modulation.
The wave propagation in our study adheres to the generic
Klein-Gordon equation with a periodically varying cut-
off frequency. As a result, Klein-Gordon-type systems
allow us to explore the interplay between frequency and
wavevector gaps without assuming any specific form of
spatiotemporal modulation but rather focusing on a gen-
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eral time-periodic drive, thus departing from previous as-
sumptions [22].

The remainder of the paper is structured as follows.
In Section II, we present our theoretical framework. This
section lays the groundwork for our analysis by establish-
ing the fundamental principles upon which our study is
built. Following this, in Section III, we develop a pertur-
bative approach. This method enables us to accurately
describe our results in a simple yet consistent manner,
facilitating a deeper understanding of the phenomena un-
der investigation. Section IV is dedicated to the system-
atic analysis of dispersion diagrams as they evolve with
modulation frequency. Here, we uncover unique char-
acteristics, including Dirac dispersion, in both real and
imaginary space, with exceptional point of degeneracy,
and wavenumber gaps around q = 0. Next, in Section V,
we delve into a numerical study of the wave properties
of time-modulated Klein-Gordon media. Our primary
focus is on the case of Dirac dispersion relation with ex-
ceptional point of degeneracy. Through this analysis, we
illuminate the unusual dynamics that emerge, demon-
strating the accuracy of our theoretical framework in de-
scribing these phenomena. Finally, the paper concludes
in the last section, where we summarize our findings.

II. THEORETICAL FRAMEWORK

We start from a wave equation of the general Klein-
Gordon form in a single spatial dimension(

∂2

∂t2
− c2

∂2

∂x2
+ ω̃2

c

)
u(x, t) = 0 , (1)

where c, ω̃c are positive constants and u(x, t) is a field,
the nature of which depends on the physical system un-
der consideration. This equation type reveals a spectral
gap for propagating waves, ranging from −ω̃c to ω̃c. Con-
sequently, ω̃c is designated as the cutoff frequency.
In contrast to the common approach of temporally

modulating the constant c, which, in dispersionless sys-
tems, represents the wave propagation velocity, here, we
choose to vary the cutoff frequency ω̃c. Specifically, we
assume that

ω̃2
c = ω2

c [1 + ε cos(Ωt)], (2)

where ε, Ω are the (relative) amplitude and the frequency
of the modulation, respectively. Under this assumption,
Eq. (1) takes the form(

∂2

∂t2
− c2

∂2

∂x2
+ ω2

c

)
u(x, t) + ω2

cε cos(Ωt)u(x, t) = 0 ,

(3)
which describes a homogeneous system under the effect
of a periodic uniform modulation, of period T = 2π/Ω.
As we will show in Sec. IV, periodic time variations of
c in the Klein-Gordon equation do not lead to the same
rich wave phenomenology.

Taking advantage of the spatial homogeneity of Eq.(3),
we utilize a Fourier expansion for the general solution
with uq(t) =

∫∞
−∞ dxu(x, t) exp (−iqx), thus ensuring

that each Fourier component complies with a Mathieu’s
equation

d2uq

dt2
+

[
c2q2 + ω2

c + ω2
cε cos(Ωt)

]
uq = 0. (4)

According to Floquet theory, the solutions of Eq. (4)
can be written in the form [24]

uq(t) = e−iωtϕ(t), (5)

where ϕ(t + T ) = ϕ(t). It is worth noting that the Flo-
quet exponent, ω, is not unique, as Floquet exponents
which differ by an integer multiple of Ω correspond to an
equivalent solution. In practical terms, this means that
we can focus on a specific interval of the real part of ω
within a range of Ω. This interval is often confined to
the first Brillouin zone, represented as (−Ω/2,Ω/2].
In certain regions of the wavenumber q, referred to as

wavenumber gaps, the Floquet exponents form complex
conjugate pairs, signifying two linearly independent so-
lutions of Eq. (4): one exponentially growing and one
exponentially decaying in time. Outside these complex
regions, the linearly independent solutions correspond to
real-valued ω with opposite signs and consequently to two
periodic stable solutions. However, exceptions occur at
the center and the edges of the first Brillouin zone, where
the two solutions can coalesce [25–28], creating what is
known as exceptional points. The existence of an ex-
ceptional point gives rise to one periodic stable and one
linearly growing in time solution.
Because of the periodicity of ϕ(t), we express it as a

Fourier series, resulting in

ϕ(t) =

∞∑
n=−∞

wne
inΩt. (6)

By substituting Eq. (5) along with the expansion from
Eq. (6) into Eq. (4), we obtain

[
c2q2 + ω2

c − (ω − nΩ)2
]
wn +

ω2
cε

2
(wn+1 + wn−1) = 0 ,

(7)
which can be cast in the form of a quadratic eigenvalue
problem [

ω2
νI+ ωνA+ (B+ εP)

]−→w ν = 0 , (8)

where ων is the ν-th eigenvalue and −→w ν is a column vec-
tor which contains the Fourier coefficients wν;n of the
ν-th eigenmode. I is the unit matrix, A and B are di-
agonal matrices with elements Amn = −2mΩδmn and
Bmn = (m2Ω2 − ω2

c − c2q2)δmn, respectively, while P
is a Toeplitz tridiagonal matrix with elements Pmn =
−ω2

c (δmn+1 + δmn−1)/2, with δmn being the Kronecker
delta. Equation (8) yields Floquet eigenmodes in the re-
peated zone scheme, encompassing linearly independent
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solutions in the first Brillouin zone and equivalent solu-
tions outside it, with corresponding ω values differing by
integer multiples of Ω.

It is important to note that, at an exceptional point,
Eq. (7) provides only one of the two linearly inde-
pendent Floquet solutions, represented as u1;q(t) =
exp(−iωt)ϕ1(t). However, according to the theory of
second-order differential equations with periodic coeffi-
cients [29], the second linearly independent solution is
given by

u2;q(t) = e−iωt

[
ϕ2(t) +

t

Tρ
ϕ1(t)

]
, (9)

where ρ = exp (−iωT ). By substituting Eq. (9) into
Eq. (4) and utilizing the expansion from Eq. (6), we de-
termine that w2;n satisfy the equation

[
ω2I+ ωA+ (B+ εP)

]−→w 2 = − iΩ

2πρ
(2ωI+A)−→w 1. (10)

III. PERTURBATIVE ANALYSIS

We now assume that εP in Eq. (8) represents a small
perturbation. This assumption enables us to perturba-
tively examine the system’s properties. To achieve this,
we commence with the unmodulated system, extracting
the O(ε0) order terms of both eigenvalues and eigenvec-
tors. From Eq. (8) we obtain

ω0ν = νΩ±
√
ω2
c + c2q2, w(0)

ν;n = δnν . (11)

The above eigenvalues correspond to replicas of the usual
Klein-Gordon dispersion diagram (ν = 0), which are
spectrally shifted by integer multiples of the modulation
frequency Ω, as shown in Fig. 1. Note that, within the
Klein-Gordon frequency gap, the wavenumber assumes
imaginary values, as illustrated in Figs. 1(b) and (d).

To comprehend the effect of the periodic modulation
on these dispersion diagrams as well as their system-
atic evolution by varying the modulation frequency, it
proves beneficial to extend the wavenumber into the
complex plane, seeking solutions of Eq. (3) in the form
exp[i(qx − ωt)]ϕ(t), for given real frequency ω. In this
way, we arrive again at Eq. (7) but now this equation
should be viewed as a linear eigenvalue equation which,
for a real input value of ω within the first Brillouin zone,
yields eigenvalues λ = c2q2. This approach is also rel-
evant to problems involving sources [30], or boundary-
value problems such as wave scattering by periodically
time-modulated media in confined geometries, like finite
slabs [23, 31, 32] and isolated objects [33].

Similar to the approach of the nearly-free-electron
model for simple metal crystals [14], in the context of
perturbation theory to first order, it is straightforward to
show that replicas of the unperturbed dispersion curves
with no near degeneracy remain unaffected by the modu-
lation. Conversely, close enough to their crossing points,
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FIG. 1. Schematic representation of the first three replicas
of the dispersion diagram for the Klein-Gordon equation [see
Eq.(11)] illustrating cases for Ω < 2ωc (a, b) and Ω > 2ωc (c,
d). Horizontal gray stripes mark intersections between con-
secutive replicas where significant mode coupling takes place.

within a range of ε, coupling occurs through the off-
diagonal elements of the matrix P. We note that only
replicas of orders ν1 and ν2, with opposite signs, cross
each other. The degeneracy condition (crossing point),
ω0ν1

= ω0ν2
= (ν1 + ν2)Ω/2, yields

λ0 = c2q20 =
(ν2 − ν1)

2Ω2

4
− ω2

c . (12)

In a short range, of order ε, about the degeneracy
point, we set λ = λ0 + ελ1 + O(ε2), where λ1 = c2q21 ,
and Eq. (8) becomes[

ω2
νI+ ωνA+B(0) + ε(B(1) +P) +O(ε2)

]−→w ν = 0

(13)

where B
(0)
mn = (m2Ω2 − ω2

c − c2q20)δmn and B
(1)
mn =

−c2q21δmn. By substituting the perturbative expansions
for the eigenvalues

ω = ω0 + εω1 +O(ε2), (14)

where ω0 = ω0ν1
= ω0ν2

, and the eigenvector

−→w =
∑

ν′=ν1,ν2

cν′
−→w (0)

ν′ + ε−→w (1) +O(ε2) (15)

into Eq. (13) and keeping terms up to O(ε) we obtain

[
c2q21 − (ν2 − ν1)Ωω1

]
cν1

+
ω2
c

2
(δν1ν2+1+δν1ν2−1)cν2

= 0,

(16a)
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FIG. 2. Dispersion diagram of a Klein-Gordon-type equation
featuring a cosinusoidally varying spectral cutoff. The mod-
ulation parameters are set to Ω = 1.5ωc < Ωc1 (see below
Sec. IV) and ε = 0.5. Horizontal stripes indicate that, in the
presence of modulation, the frequency gap is not absolute.
Dashed lines represent the edges of the first Brillouin zone.
A gray rectangle highlights a second-order crossing of replicas
(ν1 = −1 and ν2 = 1), resulting in a narrow wavenumber gap,
consistent with perturbation theory. An enlarged view of this
gap is shown in the inset.

ω2
c

2
(δν2ν1+1+δν2ν1−1)cν1 +

[
c2q21 + (ν2 − ν1)Ωω1

]
cν2 = 0.

(16b)

According to Eqs. (16), mode coupling occurs in first-
order perturbation theory when and only when |ν2−ν1| =
1. This behavior is a result of the cosinusoidal modula-
tion choice, restricting first-order coupling to consecu-
tive replicas. However, it is worth noting that there is
also higher-order coupling between intersecting replicas
of non-consecutive orders. This coupling removes mode
degeneracy at the crossing points and results in narrow
wavenumber gaps, as illustrated in Fig. 2.

Our analysis will focus on the vicinity of the intersec-
tion of consecutive replicas in the dispersion diagram,
i.e., around c2q20 = Ω2/4 − ω2

c , where significant effects
are anticipated. In this case, Eqs. (16) can be cast in the
form of an eigenvalue-eigenvector problem

(
δ 1
−1 −δ

)(
cν

cν+1

)
= µ

(
cν

cν+1

)
, (17)

where δ = 2c2q21/ω
2
c and µ = 2Ωω1/ω

2
c . The eigenvalues

are

µ± = ±
√
δ2 − 1 (18)

and, recalling that c2q2 = c2q20+εc2q21 with c2q20 = Ω2/4−
ω2
c and ω = ω0 + εω1 with ω0 = (2ν + 1)Ω/2, we obtain

the dispersion relation

ω(q) = (2ν+1)
Ω

2
± 1

Ω

√(
c2q2 + ω2

c −
Ω2

4

)2

−
(
εω2

c

2

)2

.

(19)
The associated eigenvectors are given by(

cν
cν+1

)
±
=

(
−δ ∓

√
δ2 − 1

1

)
. (20)

Therefore, when δ2 ̸= 1, Eq. (5) along with Eqs. (6), (14)
and (15), to zeroth order, yield the two linearly indepen-
dent solutions

u1,2;q(t) =
[
ei

Ω
2 t −

(
δ ±

√
δ2 − 1

)
e−iΩ

2 t
]
e−iεω1±t .

(21)
If δ2 = 1, it is evident from Eq. (18) and Eq. (20) that
the two eigenvalues become degenerate and equal to zero
(ω1 = 0), while the corresponding eigenvectors coalesce,
as expected since the 2×2 matrix in Eq. (17) becomes de-
fective. Therefore, δ2 = 1, which implies ω1 = 0 and thus
ω = ω0, corresponds to an exceptional point of degener-
acy. The coalesced eigenvectors yields a single solution

u1;q(t) = ei
Ω
2 t ∓ e−iΩ

2 t , (22)

for δ = ±1, respectively. The second linearly indepen-
dent solution at the exceptional point can be obtained
with the help of Eqs. (9) and (10), taking the form

u2;q(t) =
iΩ2

επω2
c

e−
iΩ
2 t − Ωt

2π
u1;q(t) . (23)

In any case, the general solution is expressed as a linear
combination of u1;q and u2;q with coefficients determined
by the initial conditions, requiring continuity of both the
field and its first derivative.
When seeking complex-q solutions of the wave equation

at a given real frequency ω, perturbative analysis yields(
µ −1
−1 −µ

)(
cν

cν+1

)
= δ

(
cν

cν+1

)
. (24)

This equation can also be derived directly, by reformu-
lating Eq. (17) to express δ as the eigenvalue. Equa-

tion (24) presents eigenvalues δ± = ±
√
µ2 + 1 with as-

sociated eigenvectors (cν , cν+1)
T
± = (µ ±

√
µ2 + 1, 1)T,

where T denotes vector transpose. Notably, the sym-
metric form of the 2× 2 matrix in Eq. (24) prevents the
eigenvectors from coalescing. Eqs. (17) and (24) produce
the same dispersion diagram on the real q-ω plane be-
cause, in both cases, the dispersion diagram is governed
by the same equation, which is solved either with re-
spect to ω (see Eq. (19)) or with respect to q. However,
an important distinction arises: the exceptional points in
the complex-ω versus real-q representation transform into
doubly degenerate points in the complex-q versus real-ω
representation, which is in line with recent work [34].
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IV. DISCUSSION OF DISPERSION DIAGRAMS

We have already discussed the emergence of excep-
tional points in our system under consideration when
ω1 = 0. The exceptional points are located either at
q ̸= 0 (at the edges of wavenumber gaps) or at q = 0,
depending on the modulation frequency. Here, we fo-
cus on the latter case, where exceptional points lie at

(q, ω) = (0, (2ν + 1)Ω/2). These exceptional points ap-
pear at some characteristic (critical) frequencies of the
time modulation. In first-order perturbation theory,
these frequencies can be directly obtained from Eq. (19),
which, for q = 0 and ω = (2ν + 1)Ω/2, yields

Ω2
c1 = 4ω2

c

(
1− ε

2

)
, Ω2

c2 = 4ω2
c

(
1 +

ε

2

)
. (25)

Real q

-0.5 0 0.5
-0.1

0

0.1(ia) (ib) (ic) (id) (ie)

-0.5 0 0.5-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

-0.5 0 0.5
-0.1

0

0.1(iia) (iib) (iic) (iid) (iie)

-0.5 0 0.5-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

Real ω

FIG. 3. Evolution of the dispersion diagram, where δω = ω − (2ν + 1)Ω/2, for a Klein-Gordon-type equation featuring a
cosinusoidally varying spectral cutoff frequency with a relative amplitude ε = 0.1, versus the modulation frequency Ω. The
plots depict the dispersion diagram in the vicinity of two successive interacting replicas and correspond to different values of
Ω, presented from left to right as 1.9ωc, Ωc1, 1.97ωc, Ωc2, and 2.1ωc. The top and bottom sequences represent the dispersion
diagram in real frequency versus complex wavenumber and complex frequency versus real wavenumber, respectively. Solid lines
represent the real parts, while dashed lines represent the imaginary parts of the wavenumber (or frequency) associated with
the various bands. The exceptional points in the bottom sequence are denoted by squares.

As depicted in Figs. 1(a) and (b), for Ω < Ωc1, the real-
q branches of consecutive replicas in the dispersion dia-
gram do not intersect, while their imaginary-q branches
exhibit two intersections. The interaction of the latter
results in two avoided crossings, giving rise to a closed
loop on the ω-Im(q) plane, connecting the edges of the
real-q branches. However, it is important to clarify that
this closed loop does not correspond to an absolute fre-
quency gap, as real-q branches from other replicas are
also present in this spectral region, as shown in Fig. 2.
In addition, a pair of branches with larger Im(q), sym-
metrically positioned about q = 0, is formed, as depicted
in Fig. 3(ia).

As the modulation frequency increases, the edges of the
real-q branches approach each other. At Ω = Ωc1, these
branches intersect linearly at (q, ω) = (0, (2ν +1)Ωc1/2),
representing a gapless Dirac dispersion, which at the

crossing point hosts an exceptional point. Indeed, as
can be readily deduced from Eq. (19) and the first of
Eqs. (25), for q → 0

ω(q) ∼ (2ν + 1)
Ωc1

2
±

√
εωc

Ωc1
cq. (26)

Meanwhile, the two branches with larger Im(q) remain
relatively unaffected, as seen in Fig. 3(ib).
Beyond Ωc1, the intersecting bands undergo separa-

tion, leading to the emergence of an absolute wavenum-
ber gap around q = 0, as depicted in Fig. 3(ic). Within
this gap, the frequency eigenvalues are complex [see
Fig. 3(iic)], signifying waves that either grow or decay
exponentially in time. As the modulation frequency in-
creases, the gap widens and, simultaneously, the two
branches with larger Im(q) draw closer together. At
Ω = Ωc2, they ultimately converge and exhibit a linear
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variation about the convergence point (q, ω) = (0, (2ν +
1)Ωc2/2), as shown in Fig. 3(id). Indeed, for q → 0,
Eq. (19), in conjunction with the second of Eqs. (25),
yields

ω(q) ∼ (2ν + 1)
Ωc2

2
± i

√
εωc

Ωc2
cq , (27)

which represents an imaginary Dirac dispersion, similar
to [34]. At the crossing point, an isolated in-gap state
emerges, and the continuous wavenumber gap around q =
0 breaks into two parts, one at q < 0 and one at q >
0, as depicted in Fig. 3(iid). The isolated in-gap state
corresponds to an exceptional point.

For modulation frequencies above the second critical
value, Ωc2, as illustrated in Figs. 1(c) and (d), the real-
q branches of consecutive replicas in the dispersion di-
agram intersect, while their imaginary-q branches are
separated. The interaction of the former results in two
avoided crossings, giving rise to three real-q branches,
separated by two wavenumber gaps, situated symmet-
rically about q = 0. Figs. 3(ie), (iie) provide a visual
representation of this dispersion diagram, illustrating the
evolution from an isolated in-gap point at q = 0 to a real-
q closed loop around q = 0 as the modulation frequency
increases beyond Ωc2.
Remarkably, the closed-form expression in Eq. (19), de-

rived in first-order perturbation theory, accurately repro-
duces all dispersion diagrams depicted in Fig. 3, obtained
through numerical solution of Eq. (7), with exceptional
precision. Notably, the differences are imperceptible at
the scale of the figure.

It is worth noting that a distinctive aspect in the dis-
cussion of our results pertains to the evolution of disper-
sion diagrams presented in Fig. 3 when compared to cases
where the periodic modulation is applied to the velocity
rather than the cutoff frequency. In the latter scenario,
assuming a variation of the form c2[1+ε cos(Ωt)], instead
of Eq. (19) we obtain

ω(q) = (2ν + 1)
Ω

2

± 1

Ω

√(
c2q2 + ω2

c −
Ω2

4

)2

−
(
ε

2

[
ω2
c −

Ω2

4

])2

,(28)

predicting a direct transition from the frequency gap
shown in Figs. 3(ia) and (iia) to a pair of wavenum-
ber gaps symmetrically situated around q = 0, as illus-
trated in Figs. 3(ie) and (iie). At the critical frequency,
Ωc = 2ωc, we obtain a parabolic dispersion relation in-
stead of a Dirac one, given by

ω(q) = (2ν + 1)
Ωc

2
± c2q2

Ωc
. (29)

Furthermore, at any modulation frequency, the modes at
q = 0 in this case represent trivial oscillations described
by d2uq/dt

2 + ω2
cuq = 0.

In addition, it should be highlighted that only the
dispersion diagrams in Figs. 3(ie) and (iie) are analo-
gous to those of typical temporally modulated wave sys-
tems [31, 35, 36]. In this context, it is widely acknowl-
edged that a wave packet, located in q-space within a
wavenumber gap in such a dispersion diagram, under-
goes amplification due to the excitation of exponentially
growing modes [30, 37–40]. However, this is not the only
possible scenario for Klein-Gordon media. As discussed
earlier, Klein-Gordon media with periodic variations in
cutoff frequency exhibit distinctive features. Firstly, they
can host wavenumber gaps, either centered around q = 0
for Ωc1 < Ω < Ωc2 or around q ̸= 0 for Ω ≥ Ωc2. More-
over, they can have no such gaps when Ω ≤ Ωc1. This
unique behavior enables effective control over the am-
plification or propagation of a waveform by tuning only
the modulation frequency Ω while maintaining a constant
modulation amplitude ε ̸= 0. Though, their most intrigu-
ing feature is the emergence of a gapless Dirac dispersion
relation at a singular exceptional point when Ω = Ωc1.
This unprecedented phenomenon significantly influences
wave propagation as will be discussed below.
Before proceeding to the numerical investigation, it’s

noteworthy to mention recent predictions regarding Dirac
dispersion, centered at an exceptional point, in systems
described by the Schrödinger equation subject to a com-
plex potential [41]. These predictions encompass linear
Dirac dispersion in either real or imaginary space [34],
similar to our cases for Ω = Ωc1 and Ω = Ωc2, respec-
tively. Nevertheless, these so-called Dirac exceptional
points are defined in a hybrid space consisting of a mo-
mentum dimension and a synthetic dimension for the
strength of non-Hermiticity [34, 41]. In this respect,
they are distinctly different from both typical Dirac
points, commonly associated with diabolic points [42],
which may arise accidentally or due to symmetry in non-
Hermitian systems similar to those in Hermitian systems,
and the conventional exceptional points.

V. TIME INTERFACES

We now present numerical results to illustrate various
phenomena related to wave dynamics in the system under
consideration, with particular emphasis on the case with
modulation frequency Ω = Ωc1, at the exceptional point.
For our numerical simulations, we solve Eq. (1) using a
finite-difference scheme for the spatial differentiation and
a fourth-order Runge-Kutta method for the time evolu-
tion. The spatial domain is chosen to be L = 200c/ωc

and we apply periodic boundary conditions. For illustra-
tion purposes, we consider scattering at a time interface,
assuming

ω̃2
c (t) =

{
ω2
c , t < 0

ω2
c [1 + ε cos(Ωt)], t ≥ 0.

(30)

while the numerical simulation is initiated at t = t0 < 0.
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FIG. 4. Time evolution of a spatially homogeneous solution
to a Klein-Gordon-type equation, initiated at ωct0 = −10,
with a cosinusoidal modulation of the cutoff frequency acti-
vated at t = 0 according to Eq. (30). The relative amplitude
of the modulation is ε = 0.1 and we focus on three character-
istic modulation frequencies: Ωc1, 1.97ωc, and Ωc2. The dia-
grams in the left-hand panel correspond to a phase parameter
ϕ = π/3 while in the right-hand panel ϕ is chosen to prevent
excitation of the unstable solutions according to perturbation
theory (ϕ = 0 for Ω = Ωc1, ϕ ≈ 0.4768 for Ω = 1.97ωc, and
ϕ = π/2 for Ω = Ωc2). The solid and dashed curves show the
numerical and the perturbation theory results, respectively,
highlighting the remarkable agreement between the two.

A. Spatially Uniform Fields

The analysis presented in the previous section reveals
particular interest in the properties of Klein-Gordon me-
dia with a periodic cutoff frequency variation around
q = 0, i.e. spatially uniform field profiles. At this specific
point, as we have already discussed in Sec. II and Sec. III,
we have (i) two stable periodic solutions if Ω < Ωc1 or
Ω > Ωc2 since ω ∈ R, (ii) one stable periodic solution
and one linearly growing if Ω = {Ωc1,Ωc2} due to the
presence of the exceptional point, and (iii) one grow-
ing and one decaying exponentially in time solution if
Ωc1 < Ω < Ωc2 since ω ∈ C. For the aforementioned
cases, the perturbative analysis of Sec. III allows us to de-
rive exact expressions, in zeroth order of the field u(x, t)
for t ≥ 0. These solutions are uniquely defined by u(x, 0)
and ut(x, 0), where the subscript t denotes the partial
derivative with respect to time.

For t < 0, the solution to Eq. (1) for a spatially uni-
form field (q = 0), of unit amplitude, can be expressed
as u(x, t) = sin(ωct + ϕ) and the initial conditions read
u(x, t0) = sin(ωct0 + ϕ) and ut(x, t0) = ωc cos(ωct0 + ϕ).

At t = 0, when the modulation is activated, we have
u(x, 0) = sinϕ and ut(x, 0) = ωc cosϕ, which allows us
to obtain the perturbative solution in terms of the single
phase parameter ϕ. Figure 4 illustrates that this approx-
imate solution effectively captures the time evolution of
the field in both linearly and exponentially unstable op-
erating regimes. This is demonstrated by comparing the
perturbative results with numerically obtained ones.
Hence, due to the accuracy of the perturbation

method, we can estimate the initial conditions in which
the unstable eigenmode will not be excited, as illustrated
in Fig. 4. However, it is important to note that, in gen-
eral, the presence of small noise or perturbations will
eventually excite the unstable modes that will dominate
over an extended period of time.

B. Gaussian wave packets localized around the
Dirac point

As detailed in Sec. VA and Fig. 4, stable time evo-
lution can be achieved if uq=0(0) = 0. Consequently, a
wave packet, initially well-localized around q = 0 in the
q-space, will split into two counter-propagating compo-
nents, moving at constant opposite velocities dω/dq =
±
√
εcωc/Ωc1. This stands in stark contrast to com-

monly studied periodically modulated wave systems,
where moving wave packets, with Fourier components
located in q-space near the unstable wavenumber region,
undergo amplification upon activation of modulation.
In agreement with the above analysis, in Fig. 5

we show that, indeed, the excitation of the unstable
mode can be avoided. Namely, we consider a suffi-
ciently wide Gaussian initial wave packet, described by
u(x, t0) = exp[−(ωcx/15c)

2] sin(ωct0+ϕ) with ut(x, t0) =
ωc exp[−(ωcx/15c)

2] cos(ωct0 + ϕ). This specific wave
packet form implies that its q = 0 Fourier component,
evolving over time, becomes proportional to sinϕ when
temporal modulation is initiated at t = 0. Consequently,
as illustrated in Figs. 5(a) and (b), for ϕ = 0, excitation
of the (linearly) unstable mode is prevented and the ini-
tially stationary wave packet splits into two. The strong
localization of the wave packet in q-space around q = 0
ensures the propagation of the two split wave packets
with constant group velocities vg = ±

√
εωcc/Ωc1 cor-

responding to a dispersionless propagation, as expected
from the linear Dirac dispersion relation.
Contrary to this pattern, Fig. 6 reveals the manifes-

tation of the unstable mode when ϕ is set to a non-zero
value, here chosen to be ϕ = π/2. However, despite the
expected uniform linear amplitude growth, such behav-
ior is not observed. As shown in Figs. 6(b) and (c), the
wave packet adopts a square shape, with its width ex-
panding at a constant speed equal to the wave speed at
the Dirac point, vg =

√
εωcc/Ωc1. Meanwhile, its am-

plitude tends to saturate. Similar phenomena have been
encountered in the diffraction of wave packets in com-
plex crystals, where spectral singularities emerge at the
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FIG. 5. Evolution of a Gaussian wave packet, described
by u(x, t0) = exp

[
−(ωcx/15c)

2
]
sin(ωct0 + ϕ), ut(x, t0) =

ωc exp
[
−(ωcx/15c)

2
]
cos(ωct0 + ϕ) and launched at ωct0 =

−50 in a Klein-Gordon medium with cosinusoidal modula-
tion of the cutoff frequency, activated at t = 0 according to
Eq. (30). The relative modulation amplitude is ε = 0.1, the
modulation frequency is Ω = Ωc1 and the phase parameter
ϕ = 0 prevents excitation of the unstable mode, as illustrated
in (a), resulting in two wave packets propagating in opposite
directions with constant velocities dω/dq = ±

√
εωcc/Ωc1, as

indicated by the dashed lines. Corresponding snapshots of the
wave field are presented in (b), calculated numerically (solid
curves) and perturbatively (dashed curves).

PT -symmetric-breaking point [43, 44].
In Figs. 5(b) and 6(c) we also compare numerically ob-

tained field profiles with those calculated using pertur-
bative expressions, at selected snapshots. Remarkably,
excellent agreement is observed between the two sets of
results. To compute the wave packet evolution based on
our perturbation theory, we initially calculate the Fourier
transforms of u(x, 0) and ut(x, 0). These transforms pro-
vide the necessary conditions to uniquely define the time
evolution of each uq(t).
The dynamics of wave packets described above can

also be elucidated through simple analytical calculations
within the framework of our perturbation theory. In
the context of the sufficiently wide initial wave packet
we consider here, the Fourier coefficients decay rapidly
with respect to q. Moreover, for Ω = Ωc1 we have δ =
1 + 2c2q2/(εω2

c ). Therefore, assuming 2c2q2/(εω2
c ) ≪ 1,

we get δ ±
√
δ2 − 1 ≈ 1 ± 2c|q|/(

√
εωc). Substituting

this expression into Eq. (21) and considering the general
solution uq(t) = Aqu1;q(t) + Bqu2;q(t), for given initial
conditions uq(0) ̸= 0 and u̇q(0), by straightforward cal-
culation we obtain to leading order, O(1/q), Bq = −Aq =√
εωcuq(0)/(4c|q|) for q ̸= 0. Similarly, for q = 0, using

Eqs. (22) and (23) we get Bq = −iεπω2
cuq(0)/Ω

2
c1. In

accordance with the order of approximation established
in the previous case (q ̸= 0), we will focus solely on the
linearly growing term in the general solution here, which
dominates the dynamics over extended periods. This ap-
proach yields the following expression for uq(t), encom-
passing both cases: q ̸= 0 and q = 0

uq(t) = −
√
εωcuq(0)

c|q|
sin (vg|q|t) sin

(
Ωc1t

2

)
, (31)

where vg =
√
εωcc/Ωc1 is the wave speed at the Dirac

point. Equation (31) has the form of a rapid oscilla-
tion, sin(Ωc1t/2), modulated by a slowly varying enve-
lope function. If uq(0) = 0, instead of Eq. (31) we obtain

uq(t) =
2u̇q(0)

Ωc1
cos (vg|q|t) sin

(
Ωc1t

2

)
. (32)

Let us assume a sufficiently wide Gaussian wave packet
of the form u(x, t0) = exp(−x2/σ2) sinϕ with ut(x, t0) =
ωc exp(−x2/σ2) cosϕ, which, for simplicity, is launched
in the modulated Klein-Gordon medium at t0 = 0. In
this case we have uq(0) = σ

√
π exp(−σ2q2/4) sinϕ and

u̇q(0) = ωcσ
√
π exp(−σ2q2/4) cosϕ. Substituting these

initial conditions, for ϕ ̸= 0 and ϕ = 0, into Eq. (31)
and Eq. (32), respectively, the inverse Fourier transform,
u(x, t) = (2π)−1

∫∞
−∞ dquq(t) exp(iqx), can be evaluated

(a) (c)
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(b)

0

4

-4
0 200 400

0

4 ωct = 101.6

FIG. 6. Evolution of a Gaussian wave packet, described
by u(x, t0) = exp

[
−(ωcx/15c)

2
]
sin(ωct0 + ϕ), ut(x, t0) =

ωc exp
[
−(ωcx/15c)

2
]
cos(ωct0 + ϕ) and launched at ωct0 =

−50 in a Klein-Gordon medium with cosinusoidal modula-
tion of the cutoff frequency, activated at t = 0 according to
Eq. (30). The relative modulation amplitude is ε = 0.1, the
modulation frequency is Ω = Ωc1 and the phase parameter
ϕ = π/2 maximally excites the unstable mode, as illustrated
in (a). The dashed lines indicate the increasing width of the
wave packet. Their slope is dω/dq = ±

√
εωcc/Ωc1 as pre-

dicted by the Dirac dispersion relation. In (b) the numerically
obtained time evolution of u(0, t) (solid curves) is compared
with that given by the envelope function in Eq. (33) for x = 0
(dashed curves), while in (c) corresponding snapshots of the
wave field, calculated either numerically (solid curves) or per-
turbatively (dashed curves), are presented.
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analytically yielding

u(x, t) =
√
πε

σωc

4c
sinϕ

[
erf

(
x− vgt

σ

)
− erf

(
x+ vgt

σ

)]
× sin

(
Ωc1t

2

)
(33)

for ϕ ̸= 0 and

u(x, t) =
ωc

Ωc1

[
e−(x−vgt)

2/σ2

+ e−(x+vgt)
2/σ2

]
sin

(
Ωc1t

2

)
(34)

for ϕ = 0. The closed-form expressions derived in
Eqs. (33) and (34) elucidate the fundamental charac-
teristics governing the dynamics of wave packets asso-
ciated with the Dirac point, as previously discussed. In
particular, when the unstable mode remains unexcited,
Eq. (34) clearly illustrates the emergence of two Gaussian
beams, propagating without dispersion in opposite direc-
tions with constant velocities, equal to the wave speed
at the Dirac point. On the other hand, upon excit-
ing the unstable mode, the combination of the two er-
ror functions in Eq. (33) has the form of a Heaviside
step function, ∼ −2Θ(vgt − |x|), albeit with rounded
edges. This accurately accounts for the observed spread-
ing of the wave packet. Saturation of the wave ampli-
tude is also predicted to the value [

√
πεσωc/(2c)] sinϕ.

In particular, at x = 0, Eq. (33) yields u(0, t) =
−[

√
πεσωc/(2c)] sinϕ erf(vgt) sin(Ωc1t/2), in very good

agreement with our numerical calculations.

VI. SUMMARY AND CONCLUSION

In summary, our study presents a comprehensive ex-
ploration of wave dynamics in time-periodic homoge-
neous media, governed by a Klein-Gordon-type equation
subjected to temporal modulation of either its cutoff fre-
quency or velocity constant. Through a combination of
numerical simulations and analytical calculations utiliz-

ing perturbation theory, we have elucidated distinct ef-
fects arising from these modulations.
Our findings demonstrate that while variations in ve-

locity produce relatively minor effects, modulation of the
cutoff frequency yields a rich variety of wave phenomena.
Specifically, by appropriately tuning the modulation fre-
quency, we observe the transformation of the intrinsic
Klein-Gordon frequency gap into wavenumber gaps, cen-
tered at q = 0 or symmetrically positioned at q > 0 and
q < 0. At these transitions, we reveal the emergence
of Dirac dispersion with exceptional point of degeneracy
at q = 0, manifesting either in real or imaginary space.
In the latter case, we essentially have an isolated in-gap
state.
This novel behavior affords effective control over wave-

form amplification or propagation. Notably, we ob-
serve that, with precise adjustment of modulation phase,
wave packets localized around the Dirac point, in the
real-space dispersion case, undergo intriguing transfor-
mations. They either split into counter-propagating
wavepackets moving at constant opposite velocities or ex-
hibit spreading at a constant speed with their amplitude
saturating. Furthermore, our study provides a coher-
ent interpretation of the underlying mechanisms, sup-
ported by simple, analytical closed-form formulas that
accurately replicate our results, thus offering valuable
physical insights.
In conclusion, our work advances our understanding

of wave dynamics in periodically modulated media. The
nuanced control over wave properties uncovered in this
study holds promise for the development of innovative
technologies and theoretical frameworks in various scien-
tific disciplines.
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