
HAL Id: hal-04800898
https://hal.science/hal-04800898v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transition waves in bistable systems generated by
collision of moving breathers

A. Paliovaios, Georgios Theocharis, V. Achilleos, V. Tournat

To cite this version:
A. Paliovaios, Georgios Theocharis, V. Achilleos, V. Tournat. Transition waves in bistable sys-
tems generated by collision of moving breathers. Extreme Mechanics Letters, 2024, 71, pp.102199.
�10.1016/j.eml.2024.102199�. �hal-04800898�

https://hal.science/hal-04800898v1
https://hal.archives-ouvertes.fr


Transition waves in bistable systems generated by collision of moving breathers

A. Paliovaios,1, 2 G. Theocharis,1 V. Achilleos,1 and V. Tournat1

1Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613,
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Mechanical metamaterials with multistability can support transition waves, propagation fronts
that change the state of the material as they progress, and thus confer reconfigurability. The next
step is to control where and when the transition wave is triggered. In this work, motivated by
the existence of discrete breathers in Klein-Gordon lattices, we demonstrate that colliding moving
breathers are able to trigger transition waves in bistable mechanical systems. We numerically
generate counter-propagating breathers using drivers located at both ends of a finite bistable lattice,
and when they collide, transition fronts can be formed. Our study reveals that fine-tuning the
generated breathers allows us to control where the transition front forms in the system, and enables
complex collision and transition wave triggering scenarios. The parameters of the system considered
have been chosen according to experimental works on bistable lattice models under the presence
of an asymmetric bistable on-site potential. Consequently, the method we propose for the remote
generation of transition waves offers a new way of finely controlling the reconfiguration of mechanical
systems with multiple equilibrium states.

I. INTRODUCTION

Bistability or even multistability is very common in na-
ture. It is used and can be found in a great variety of sys-
tems and is a key ingredient across scales and processes,
e.g. dislocations in crystal lattices [1–4], domain walls in
magnetic systems [5–8], structural phase transitions [9–
11], solitons in polyacetylene [12] or DNA [13, 14], mi-
cromechanical systems [15, 16], buckled beams [17, 18],
just to name a few.

All these examples share common features regarding
the theoretical tools used to describe the processes arising
from bistability. Recently, flexible mechanical metamate-
rials (FlexMMs) [19], which can be defined as artificial,
architected structures possessing the ability to deform
substantially, repeatedly and reversibly [20], are the sub-
ject of an important scientific interest for several reasons,
i) the great variety of structures that can now be fabri-
cated, ii) the new modeling and simulation tools to de-
scribe their behavior, iii) the range of applications in en-
gineering and beyond. Indeed, advanced manufacturing
techniques, such as multimaterial additive manufactur-
ing, additive 3D polymer printing and laser cutting [21],
are now widely available, giving the opportunity to de-
sign mechanical metamaterials with, e.g., negative Pois-
son’s ratio [22, 23], negative thermal expansion [24], neg-
ative compressibility [25], negative density or mass [26]
and topologically protected states [27–29]. These ex-
treme or fine properties have potential uses and appli-
cations [30, 31], e.g., as programmable structures [32],
soft robots [33–35], energy harvesters [36–38], energy ab-
sorbers [39] and mechanical logic devices [40].

Among the others, FlexMMs which are able to support
non-linear waves can also be manufactured [41] and ac-
curately modeled. For example, vector solitons [42] and
their collisions [43] have been analyzed in systems with

coupled rotational and translational degrees of freedom,
rarefaction solitary waves [44, 45] in strain-softening ma-
terials, solitary waves in systems with bistable coupling
elements [46] or bistable on-site potential [47] and tran-
sition waves in multi-stable systems [48–52]. The latter
non-linear waves, of particular interest here, are tran-
sition waves or wavefronts that can propagate along a
lattice exhibiting multistability. They separate domains
which are in distinct stable states, representing as such
a reconfiguration front of the FlexMM. Because of this,
controlling in space and time the generation and the
spreading of transition waves in FlexMM paves the way
for the controllable mechanical reconfiguration of ad-
vanced structures.

Until now, despite the numerical, analytical and ex-
perimental investigation on non-linear FlexMMs, there
is a lack of understanding of their dynamic response un-
der modulated wave excitations, such as vibrations in-
duced by drivers at a given position of the sample which
is a common experimental technique to excite a struc-
ture. Furthermore, the generation of transition waves is
most often induced quasi-statically, and their dynamics
or spatio-temporally controllable generation stays almost
unexplored. As a consequence, the high level of control
that multistable FlexMMs offer cannot be fully exploited.
Nevertheless, from the existing studies it is demonstrated
that in order to produce transition waves, large ampli-
tude excitations (local deformations of 30-50%) are usu-
ally required [49–52].

It has also been reported that transition waves can be
triggered remotely, within a multi-stable chain of rotating
units and not only at its boundary, by the collision of two
counter-propagating solitons generated at both ends of
the multi-stable FlexMM [53]. These pulse solitons, anal-
ogous to KdV solitons, have a spatial extent of 5-10 unit-
cells of the FlexMM and whether or not they nucleate a
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transition wave upon collision mostly depend on their
amplitude (or equivalently energy, or velocity, or width),
via a threshold effect. A step forward has recently been
taken in the same vein by analyzing a two-dimensional
collision configuration of these impulse solitons, offering
richer collision scenarios and results [54]. Interestingly,
some of the systems studied earlier for transition waves
are nonlinear Klein-Gordon lattices [21], known as well to
support envelope solitons [55]. Consequently, the ques-
tions we ask are the following: can we make use of the
collision of robust modulated waves such as envelope soli-
tons to trigger transition waves in multi-stable nonlinear
Klein-Gordon lattices, and what are the collision condi-
tions to achieve transition wave nucleation?

Therefore, in the present article, we consider a one-
dimensional Klein-Gordon model and, starting from the
existence of intrinsic localized propagating modes in non-
linear lattices, we show that under certain conditions,
their collisions can trigger the generation of transition
waves. In addition, to allow for an experimentally realiz-
able configuration, we produce these modes using drivers
located at the extremities of the chain. Because the
drivers can be activated at controlled times, excited wave-
packets can collide at different locations in the lattice,
allowing us to control the excitation of transition waves
in space.

The remainder of this article is organized as follows.
In Sec. II starting from the discrete model under consid-
eration and the corresponding equations of motion, we
present the necessary linear and non-linear wave proper-
ties of the system. Then, we proceed to the presentation
of the method we use in order to study numerically our
system. In Sec. III we apply our method to a specific
lattice whose parameters provide the desired dynamical
response, and are selected in light of theoretical criteria
defining the properties of moving discrete breathers as
discussed in Sec. II. Because we use dimensionless pa-
rameters, they can easily be adjusted in order to capture
the dynamics of already existing structures. Finally, we
point out the conditions under which a transition wave
triggering can occur, providing a systematic procedure
for its spatio-temporal control. The last section is a
summary of our findings and some remarks on the ex-
perimental investigation of our numerical results.

II. THEORY

A. Description of the system and its linear
properties

In the present work we are interested in a chain of cou-
pled mechanical elements as shown in Fig. 1. This con-
figuration is inspired by experimental settings in [49, 50]
that support transition waves. In particular, we consider
that each element consists of a mass that is located at the
middle of a buckled elastic beam indicated by thick solid
curves in the Fig. 1. Analysis of the potential energy

produced by such buckled beams shows that the on-site
bi-stable potential can be approximated by a polynomial
function of displacement [50]. The bistable mechanical
elements are coupled to their neighbors through linear
longitudinal springs. Masses are able to move along the
horizontal direction only, i.e. longitudinal displacements
are considered.

(a)

(b)

FIG. 1. (a) Schematic representation of the considered chain
of linearly coupled bistable elements. The filled circles repre-
sent the masses and the curved black lines the buckled beams
that are bistable. (b) The potential produced by the buckled
beams and described by Eq. (2) for V2 > 0. The blue and the
red filled circles correspond to masses placed in the local and
the global equilibrium point of the potential, respectively.

The Hamiltonian of such system, neglecting the losses,
can be written as,

H =

N−1∑
n=0

[
m

2
u̇2
n +

G

2
(un+1 − un)

2 + V (un)

]
, (1)

where un is the relative displacement of each mass n from
its equilibrium position, m is the mass, G is the stiff-
ness of coupling springs between neighboring masses and
V (un) is an on-site asymmetric bistable potential given
by the following expression [49],

V (un) =

(
V1u

2
n

2
− V2u

3
n

3
+

V3u
4
n

4

)
, (2)

where V1,2,3 are constants defining the potential’s
strength and shape (Fig.1). If V1, V3 > 0 and V 2

2 >
4V3V1, the potential has two stable equilibrium points at

ueq =

{
0,

V2

2V3
+

√
V 2
2

4V 2
3

− V1

V3

}
, (3)

which are separated by an energy barrier

Vbar =
1

12
(3V1 + V2ubar)u

2
bar, (4)
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located at

ubar =
V2

2V3
−

√
V 2
2

4V 2
3

− V1

V3
. (5)

The Hamiltonian of Eq. (1) leads to the following equa-
tion of motion for each mass n,

m
d2un

dt2
= G(un+1+un−1−2un)− (V1un−V2u

2
n+V3u

3
n).

(6)
Introducing the following dimensionless quantities,

T =

√
G

m
t = ω0t, Un =

V2un

V1
,

λ2 =
V1

G
and β =

V1V3

V 2
2

,

(7)

we can simplify Eq. (6) into,

d2Un

dT 2
= (Un+1+Un−1−2Un)−λ2(Un−U2

n+βU3
n). (8)

In the linear limit the equations of motion are written
as,

d2Un

dT 2
= (Un+1 + Un−1 − 2Un)− λ2Un, (9)

which is the well-known discrete Klein-Gordon equation
possessing the following linear dispersion relation,

ω(ka) =

√
λ2 + 4 sin2

ka

2
, ka ∈ [0, π], (10)

where a is the lattice period and ka is considered as the
normalized wavenumber. From Eq. (10) we see that the
linear spectrum is confined within a single band with
frequencies ω ∈ [λ,

√
λ2 + 4].

B. Non-linear solutions of the system - Discrete
breathers

Among the various solutions of Eq. (8), we focus here
on the discrete breathers [56, 57], namely time-periodic
and spatially localized nonlinear solutions, for which the
central ωbr and all the higher-harmonic frequencies nωbr

lie outside of the linear spectrum. This determines a
minimum value for the on-site potential’s strength of λ >√

4/3 for which 2ωbr >
√
λ2 + 4.

In contrast to breathers of continuous wave equations,
we note that in discrete lattices, because of the broken
continuous translational symmetry, discrete breathers
can propagate only under specific conditions [58, 59]. The
latter can usually be interpreted using a Peierls-Nabarro
potential [60], but can also be interpreted through the
strength of discrete effects. The properties of moving
breathers have been studied in various contexts including
Fermi-Pasta-Ulam-Tsingou lattices [61], Peyrard-Bishop

model for DNA [62], mass dimers [63], Klein-Gordon lat-
tices [64, 65] and discrete non-linear Schrödinger mod-
els [66–68]. In addition, their collisions have been
studied for several systems including Klein-Gordon lat-
tices [64, 65] and discrete non-linear Schrödinger mod-
els [66–69]. However, in context of bistable FlexMMs
for which the lump-element approach corresponds to a
Klein-Gordon lattice with asymmetric on-site potential,
see Eq. (9), there is no previous study on the existence,
mobility or collision of discrete breathers to the best of
our knowledge.

C. Numerical approach

Here we describe the methodology to obtain discrete
breathers of Eq. (9) numerically. For a discrete breather
of a given period Tbr = 2π/ωbr, we find solutions of the
following set of equations

X[Tbr;X(0)]−X(0) = 0, (11)

where X(T ) = [U1(T ) · · ·UN (T ) U̇1(T ) · · · U̇N (T )]T and

Un, U̇n satisfy
dUn

dT
= U̇n

dU̇n

dT
= (Un+1 + Un−1 − 2Un)− λ2(Un − U2

n + βU3
n)

.

(12)
This set of equations can be solved iteratively using a
Newton-Raphson method using a sufficiently good initial
guess. In order to have such an initial guess, we follow
Ref [55], focusing on slowly varying standing envelope so-
lutions at k = 0 and correspondingly with ω = λ, having
the form

Un(T ) = εFe−iλT + 2ε2|F |2 − ε2

3
F 2e−2iλT + c.c., (13)

where ε is an arbitrary small parameter and F is a slow
varying envelope.
In particular we consider that F = F (τ, ξ) where

τ = ε2T, ξ = εna are the slow time and the continu-
ous space variable respectively. Using this approach and
the multiple scales method, F satisfies the following non-
linear Schrödinger equation (NLS) [55]

i
∂F

∂τ
+ P

∂2F

∂ξ2
+Q|F |2F = 0, (14)

where the parameters P,Q are given by

P =
a2

2λ
, Q =

λ

6
(10− 9β). (15)

For our systems parameters a, β, λ, we have PQ > 0,
which corresponds to the so-called focusing NLS equation
admitting the following bright soliton solution [55],

F (τ, ξ) = sech

(√
Q

2P
ξ

)
ei

Q
2 τ . (16)
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The solutions obtained using Eq. (13) and Eq. (16)
provide a good initial guess for the Newton-Raphson it-
erative method and are expected to converge to localized
breathers with frequencies ωbr below (but close to) the
low-frequency limit of the linear mode band, due to the
softening non-linearity. Higher amplitude solutions and
their stability can be obtained by performing a continu-
ation on the breathers frequency ωbr and Floquet linear
stability analysis (see Appendix for the stability diagram
and the details).
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FIG. 2. (a) Frequency regimes where breathers, linear modes
and breather’s second harmonic are predicted. The breather’s
amplitude Abr as function of frequency is also depicted. In the
inset, the spatial profile of a breather with frequency ωbr =
1.32 (black marker) is shown. (b) Time evolution of the dis-
placement imposed to a driven unit to excite the breather. (c)
Propagation along a lattice ofN = 101 elements of the moving
breather produced by the driving profile depicted in (b). The
breather’s characteristics are (Abr, ωbr, qa) = (1.00, 1.32, 0.3).

The amplitude dependence on the possible breather’s
frequency is depicted in Fig. 2(a). For this figure and all
the figures presented afterwards the lattice parameters
are set equal to β = 0.2 and λ = 1.5. This choice is
reasonable since β = 0.2 is an experimentally measured
value [49] and λ = 1.5 ensures that discrete effects are not
strong and non-radiative breathers exist. In Fig. 2(a) it is
shown that for the chosen parameters, breathers with the
second harmonic above the linear frequency band exist
for ω∗ < ωbr < λ.

The obtained discrete breathers are stationary and
thus not suitable for our purpose. In order to obtain
a moving discrete breather we make use of the following
ansatz (see [65]),

Un(T = 0) = US cos[qa(n− n0)],

U̇n(T = 0) = US sin[qa(n− n0)],
(17)

where qa is a free parameter and US is the spatial profile
of the standing breather we obtained. For different values
of qa, a breather can propagate with different velocities
vbr.
Having in mind usual experimental constraints, we

want to mimic the experimental excitation of moving dis-
crete breathers using external drivers located at the two
extremities of the finite structure. In order to obtain
a driving profile Udr, we let a moving breather propa-
gate and we keep record of an element’s displacement
as function of time. This driving profile can be used in
order to excite a moving breather with amplitude Abr.
In Fig. 2(b) we depict a driving profile obtained in order
to generate the moving breather of Fig. 2(c) which prop-
agates along the lattice. In the above simulations of the
flexMM, the equations of motion Eq. (8) are integrated
with a 4th order Runge-Kutta method.

III. MOVING BREATHERS AND TRANSITION
WAVES

Our first objective is to trigger transition waves by the
collision of moving breathers generated by drivers at the
extremities of the flexMM, as it is depicted in the left
panel of Fig.3. For simplicity, in the rest of the arti-
cle we focus on collisions of identical moving breathers,
i.e. they have the same amplitude and velocity. In the
right panel of Fig. 3, we illustrate the different stages of
this collision and triggering process; starting with a con-
figuration for which all the bistable elements are in the
first stable equilibrium (see blue points and Un = 0), the
system ends up with all the bistable elements oscillating
around the second stable equilibrium (see orange points
and Un ≃ 3.6).
In particular, the system is first driven at its two

boundaries using the signal obtained by the method
described in Sec. II C which generates two counter-
propagating breathers moving along the lattice. When
the breathers collide, a structural reconfiguration may
be triggered and two transition fronts start to propagate
apart, as visible in Fig.3. The propagation of these fronts
then gradually switch the bistable elements towards the
second stable configuration.
In the following, we present in details the conditions

under which this reconfiguration takes place. In general,
our study reveals that the generation of transition waves
can be controlled by three parameters: (i) the breather
amplitude Abr, (ii) the relative phase difference of mov-
ing breathers at the moment of the collision ∆Φ0 and
(iii) the phase of moving breathers at the moment of col-
lision, which we denote as collision phase. Regarding the
breather’s amplitude dependence, we numerically found
the threshold (Abr > 0.92) beyond which the triggering is
possible, highlighted by the red shaded area in Fig. 2(a),
and similar to what has been recently reported for long-
wavelength soliton collision [53]. In the next subsections,
we focus on the other two parameters.
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FIG. 3. Schematic illustration of the proposed mechanism to trigger transition waves. Two drivers located at the boundaries
generate counter-propagating high amplitude breathers. Their collision leads to a high amplitude local excitation which can
trigger a transition wave.

A. Effect of relative phase difference

In the context of discrete non-linear Schrödinger sys-
tems, it is known that the outcome of the collision of dis-
crete breathers crucially depends on their relative phase.
Yet, among the different interactions possible, we focus
here on the attractive and the repulsive ones, because the
first can lead to the formation of transition fronts and
the second gives us the ability to change the direction of
breathers motion upon reflection with negligible radia-
tion. In particular, the interaction can be attractive and
highly inelastic for in-phase breathers, or repulsive and
almost elastic for out-of-phase breathers [70]. We note
that the collision of non-linear waves in discrete systems
is in general inelastic. Only discrete systems with spe-
cial discretisations (e.g. Ablowitz-Ladik model) can host
elastic collisions.

In our case, a relative phase between the two discrete
breathers can be induced by an arbitrary time delay be-
tween the two drivers. When two identical breathers are
generated with a time difference ∆T0, their relative phase
is equal to

∆Φ0 = ωbr∆T0. (18)

Figs. 4(a),(c) show that in-phase moving breathers
(∆Φ0 mod 2π = 0) create a high amplitude excitation
during collision due to their mutual attractive interac-
tion. We notice that this high amplitude excitation does
not always lead to the triggering of transition waves [see
Fig. 4(c)]. On the contrary, Fig. 4(b) shows that out-
of-phase moving breathers (∆Φ0 mod 2π = π) interact
repulsively. These observations are in agreement with the
literature on discrete NLS systems [70] and Klein-Gordon

lattices [64, 65].
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FIG. 4. Identical breathers with amplitude (Abr, ωbr, qa) =
(0.95, 1.339, 0.32) and relative phase difference (a) ∆Φ0 = 0,
(b) ∆Φ0 = π and (c) ∆Φ = 2π, respectively, counter-
propagating in a lattice of N = 69 elements. In (b) a nearly
elastic collision is observed in contrary to (a) and (c) in which
radiation and high-amplitude excitations are generated. The
vertical lines correspond to the spatial profile of system as
depicted in the panels.

B. Effect of collision phase

We have shown up to now that the triggering of tran-
sition waves using identical moving breathers requires:
(i) a certain breathers amplitude threshold and (ii) the
breathers to be in-phase. However, Fig. 4 indicates that
there is one more parameter to be considered, the colli-
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sion phase.
Let us first assume that we simultaneously excite two

counter-propagating identical breathers with a relative
distance

d

a
= (N − 1). (19)

By construction, their collision occurs at the center
of the lattice, which is either at one site or in between
two sites depending on the odd or even number of units,
and the only parameter that may influence the collision
outcome is the phase of the breathers at the collision
point. To investigate the effect of this collision phase, we
perform simulations using various lattice lengths, thus
changing the collision time and in turn the collision
phase. An estimation of the collision phase can be sought
as follows: the time needed for a single breather to move
by one site is ∆T1 = 1/vbr. Thus the phase shift of
the breather arriving at the center of the lattice, due to
the propagation over N/2 lattice points, is Nωbr/2vbr.
However, an extra phase shift is expected due to the in-
teraction which can not be described analytically. Thus
we study the role of the collision phase on the outcome
of the collision numerically.

(a) (b)
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FIG. 5. Two in-phase breathers with (Abr, ωbr, qa) =
(0.95, 1.339, 0.32) counter-propagate and collide within lat-
tices with different lengths. The breathers’ parameters are
chosen such as vbr ≈ ωbr/2π. In (a) and (c) the formation of
new counter-propagating localized wave-packets is observed.
In (b) and (d) energy trapping and formation of transition
fronts, respectively, are observed indicating that depending
on the phase, the outcome can significantly change.

Such a numerical qualitative analysis is illustrated in
Fig. 5 where different collision outcomes are reported for
different lattice lengths. In general, and for all explored
moving breathers, we observe three main outcomes. On
the one hand, panel (a) (with N = 66) and (c) (with
N = 68) of Fig. 5, show the case where the collision

outcome consists of two counter-propagating localized
wavepackets. On the other hand, for N = 67 in panel
(b), a different outcome is a non-traveling localized os-
cillation formed at the collision point. In both the afore-
mentioned scenarios, we observe the generation of addi-
tional low-amplitude waves due to the inelastic collision.
The most relevant outcome, for our purposes, is shown
in Fig. 5 (d) where after the collision of the breathers, a
transition wave is formed and at finite times all the ele-
ments migrate and oscillate around the global minimum
of the potential.

-0.2
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68350

ΔT0 = 0
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ΔT0 = 4π/ωbr

N = 68 N = 69

0

4
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0.2
0

4

-0.2
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67340

FIG. 6. Snapshots of displacements Un in a lattice consisting
of N = 68 elements (left panel) and N = 69 (right panel),
respectively, after the collision of identical breathers with
amplitude (Abr, ωbr, qa) = (1.00, 1.32, 0.32). The breathers
have been generated with time difference ∆T0 and counter-
propagate. From down to top the time difference equals to
∆T0 = {0, Tbr, 2Tbr}, respectively. We show that a transition
wave is always triggered if we appropriately tune the time dif-
ference ∆T0. As observed, the tuning depends on the lattice
length.

In Fig. 6 we present the outcome of in-phase moving
breathers collision for three values of the time difference
∆T0 (or relative phase) and two values of lattice length
(or collision time). We observe that a shift of time differ-
ence equal to 2Tbr leads to the same collision outcome.
This periodic behavior in ∆T0 can be explained by con-
sidering the time of collision for two counter-propagating
breathers in a lattice of N elements (neglecting again ef-
fects of the interaction of breathers),

T∗ =
N − 1

2vbr
+

∆T0

2
, (20)

taken from the generation time of the first breather.
Given that the phase of a breather at the collision time
is Φbr = ωbrT∗, for a given lattice and a given breather,
this phase only varies because of ∆T0. In order to recover
the same collision outcome, the collision phase should be
the same modulo 2π, corresponding in turn to a period
of 4π/ωbr(= 2Tbr) for ∆T0. This period for the breather
phase at the collision is reflected in the outcome of the
transition wave triggering as observed in Fig. 6.
The main conclusion of Fig. 6 is that if a transition

wave does not occur for a breather collision with a given
∆T0, then a 2π/ωbr shift in time difference should lead
to the triggering of a transition wave. In other words, a
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transition wave can always be triggered with the collision
of in-phase high-enough amplitude moving breathers, if
the time difference ∆T0 is appropriately tuned.

C. Controllability of phase transitions

Until now, we have considered only small time dif-
ferences ∆T0 ∈ [0, 2Tbr] between the breathers, which
leads to collisions close to the center of the lattice. How-
ever, taking into consideration the findings presented in
Sec. III B, we can expect that a transition can be trig-
gered if we increase this small time difference by mul-
tiple integers of 2Tbr. In fact a time delay equal to
∆T0 + 4mπ/ωbr, m ∈ Z, is ensured to give a transition
wave, where ∆T0 ∈ [0, Tbr] is a small time difference lead-
ing to transition. To roughly estimate the point of the
collision, we consider identical breathers as point masses
counterpropagating with constant velocity vbr. Under
this description and the chosen time difference, we get

nc =
N − 1

2
±
(
2mπvbr
ωbr

+
vbr∆T0

2

)
. (21)

where +/− corresponds to the activation of left/right
driver first.

Therefore, we can tune the time difference in order to
trigger a transition wave at different locations, a mecha-
nism depicted in Figs. 7(a) and (b).
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FIG. 7. (a),(b) Transition waves triggered by identical
breathers on a lattice of N = 54 elements. By fine-tuning the
time delay between their generation, different the transition
fronts are generated in different lattice points. (c) Transition
wave generated after the reflection of a moving breather on
the boundary. (d) Multiple transition waves generated on a
lattice of N = 54 elements. All the breathers used are char-
acterised by (Abr, ωbr, qa) = (1.00, 1.32, 0.3)

Going a step further we demonstrate that using
breathers generated by drivers allows a plethora of
controllable colliding events. By generating multiple

breathers, we can produce multiple transition waves in
different positions and/or at different moments. This is
possible if we take advantage the collision of out-of-phase
breathers or of the reflections at boundaries.
In Figs. 7(c) and (d) we give such examples. In

Fig. 7(c) we use a single driver placed on the left bound-
ary exciting two delayed breathers. After the reflection of
the first generated moving breather on the right bound-
ary, a collision occurs with the second generated breather
leading to a transition. In Fig. 7(d) two drivers are placed
on opposite boundaries and generated both two delayed
breathers. By producing a first pair of breathers which
collide nearly elastically, we make them move in oppo-
site directions after the collision and by carefully choos-
ing when the second pair of breathers is generated, two
transition waves in different spatiotemporal points are
triggered in the lattice.

D. Effect of losses

In FlexMMs dissipative effects usually cannot be ne-
glected. Nevertheless, the dissipative properties of
FlexMMs can be modified to some extent by the geom-
etry of the flexible elements, the choice of materials and
the type of interaction between neighboring elements. In
order to qualitatively evaluate the effect of dissipation
on the propagation of breathers in bistable structures,
we consider the following linear viscous force, −Γdun

dt .
By introducing this dissipative term in Eq. (8) we get

d2Un

dT 2
+γ

dUn

dT
= (Un+1+Un−1−2Un)−λ2(Un−U2

n+βU3
n),

(22)
where γ is the normalized damping coefficient γ =
ω0Γ/G.
Losses change the wave propagation in several ways.

Except from the well-known energy loss and the corre-
sponding decrease in amplitude, the dissipation also adds
a phase shift to the breather oscillations. In view of these
considerations, the damping coefficient γ is chosen to be
very low. To understand these effects in our system, in
Fig. 8 we show how the dissipation affects the breathers
propagation and the triggering of transition waves upon
collision, for different damping coefficients.
In Fig. 8(a) the logarithm of energy as function of time

is depicted. Notably, the logarithm decays linearly in-
dicating an exponential decay of energy as function of
time with a decay rate equal to the damping coefficient.
In Fig. 8(b) we show the spatial profile of the lattice
displacements at two different moments (vertical dashed
lines of Fig. 8(a)) after the initial breather has propa-
gated for some distance. In both cases the breather is
the same and was generated at n = 0 by a driver. In this
figure the two major effects of dissipation, the amplitude
decay and the phase shift, are demonstrated since at the
given moments with identical initial breather, waves with
different profiles are observed for different damping coef-
ficients.
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As a consequence, in Fig. 8(c), we show that for dif-
ferent damping coefficients we have different collisions
characteristics. Specifically, three regimes are reported.
In the first one, the phase shift and the amplitude de-
cay are small enough and do not change the outcome
of the collision. In the second regime, the phase shift is
able to change the outcome of collisions depending on the
value of damping coefficient. As it has been already high-
lighted in this work, the phase can affect the collision.
Specifically, consider two lattices with the same length
and different damping coefficients γ1 > γ2 along which
identical breathers propagate. If the damping coefficients
belong to this regime, even though the energy at the mo-
ment of the collision is lower, it is possible to observe
the generation of a transition wave in the first case, but
not in the second. In the third regime of higher damp-
ing coefficients, the breathers do not carry enough energy
at the collision point to induce a transition. Finally, in
Fig. 8(d,e) we illustrate with spatio-temporal plots the
collision of two counter-propagating breathers produced
by drivers under the effect of dissipation (damping coeffi-
cients in the first and third regimes) and we demonstrate
that even in the presence of dissipation it is possible to
trigger transition waves if the lattice is relatively short
and the damping dissipation below a certain threshold.

IV. SUMMARY AND CONCLUSIONS

In summary we have studied the dynamics of high-
amplitude discrete breathers in a Klein-Gordon nonlin-
ear lattice describing bistable mechanical metamaterials.
Our studies focus on elements with asymmetric bista-
bility where one of the stable configurations is energeti-
cally favorable. We show that the collision of counter-
propagating breathers result in a rich variety of out-
comes, including the triggering of a transition wave,
where the elements of the lattice progressively switch
to the other stable configuration. Using a systematic
analysis of the collision dynamics we reveal the neces-
sary conditions that lead to the generation of transition
waves. More importantly we illustrate that a very fine
control of the time and position of the transition wave
can be achieved using the breather collisions. For a com-
plete understanding of the phenomenon we also studied
the effect of weak dissipation and found that although
the collision outcome varies, the triggering of transition
wave is still valid. Our study takes a step to the direc-
tion of remotely controllable reconfiguration of bistable
systems using vibrations.
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FIG. 8. The breather generated by drivers has
(Abr, ωbr, qa) = (1.1, 1.29, 0.3) for all the figures. (a) Log-
arithm of energy as function of time for γ = 10−3 and
γ = 5 · 10−3. (b) The spatial profiles of a breather at differ-
ent moments given by the vertical dashed line in (a) for the
two damping coefficients. (c) Possibility of transition waves
generation in a lattice with N = 25 elements as function of
γ. The blue and red dashed lines correspond to γ = 10−3

and γ = 2.5 · 10−3, respectively. (d),(e) Time evolution of a
system with N = 25 elements with two counter-propagating
identical breathers generated by drivers at n = 0 and n = 24
for γ = 10−3 and γ = 2.5 · 10−3, respectively.

Appendix A: Linear stability analysis of Discrete
Breathers

In order to perform the linear stability analysis of the
obtained solutions we use Floquet analysis. We first as-
sume that we have a solution Ūn of Eq. (8) which we
slightly perturb as follows Un = Ūn+ εWn, ε ≪ 1. Then,
substituting it into Eq. (8) and keeping only linear terms
of ε, we get

d2Wn

dT 2
= (Wn+1+Wn−1−2Wn)−λ2

(
1− 2Ūn + 3βŪ2

n

)
Wn.

(A1)
As in Sec. II C, we can create a vector Y(T ) =

[W1(T ) · · ·WN (T ) Ẇ1(T ) · · · ẆN (T )]T and combining
this vector and Eq. (A1), we can compute the so-called
monodromy matrix F which satisfy the equation

Y(T ) = FY(0). (A2)

The eigenvalues µ ∈ C of monodromy matrix are the
so-called Floquet multipliers. Because of the Hamilto-
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nian nature of our system, the Floquet multipliers are
coming either in real pairs or complex quartets. A Flo-
quet multiplier for which |µ| > 1 indicates the presence
of an instability.

1

0.97

1.03

1.25 1.3 1.35 1.4 1.45

1.2
0.8
0.4

0

1 35 69

0.02
0

(b)(a)

FIG. 9. (a) The Floquet multipliers µ of one-site breather
with frequency ω ∈ [1.24, 1.45] in a lattice of N = 69 el-
ements. Three regimes can be identified. The first is for
ω ∈ (1.28, 1.45] where only finite size instabilities appear and
disappear. The second is for ω ∈ (1.25, 1.28] where finite
size instabilities coexist with a real instability (blue dots) re-
lated with the mobility of discrete breathers. The last one
is for ω ∈ [1.24, 1.25] where the second harmonic of discrete
breather resonates with the linear band and at some point the
real instability disappears. (b) A discrete breather with fre-
quency ωbr = 1.245. The resonance with the linear frequency
band gives rise to the oscillatory tails.

The absolute value of the Floquet multipliers is shown
in Fig. 9(a). For frequencies ω > 1.28 the unstable Flo-
quet multipliers appear and disappear. This is a known
phenomenon which is attributed to finite size effects [71].
Such instabilities disappear in the limit of an infinte chain
and do not affect the stability of the obtained solutions.
For frequencies 1.25 < ω < 1.28 a real instability, which
increases as frequency decreases, exists. This instability
is related to the mobility of discrete breathers [28]. Fi-
nally, for ω ≤ 1.25 the resonance of the second harmonic
with the linear frequency band (see Sec. II B) gives rise
to low amplitude oscillatory tails. A breather inside this
resonant regime is plotted in Fig. 9(b).

In Fig. 10(a) and (b) a discrete breather with frequency
ωbr = 1.26 and the corresponding Floquet spectrum are
plotted, respectively. The inset of Fig. 10(b) indicates
the presence of a low amplitude real instability. This is
the so-called pinning mode to which the mobility of a dis-
crete breather is attributed and has odd parity as shown
in Fig. 10(c), in compliance with the prediction for soft ϕ4

potentials [28]. Fig. 10(d) shows that indeed this instabil-
ity can lead to a moving breather by setting the following
initial condition Un = Ūn + 0.5Wn, U̇n = 0.5Ẇn. The
perturbation has high amplitude because the unstable
Floquet multiplier is relatively weak and as a consequence
the time needed in order the instability to be observed
is long. Lastly, we should comment on the fact that in
our work we did not take advantage of the pinned mode,
but we used another perturbation given by Eq. (17). This
choice was taken because the moving breather moves very
slowly, as Fig. 10 indicates, if obtained by perturbing a
discrete breather using the pinned mode.
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FIG. 10. (a) A discrete breather with frequency ωbr = 1.26
and (b) the corresponding Floquet multipliers on the com-
plex plain. The inset indicates the presence of a Floquet
multiplier outside the unit circle leading to a real instability.
(c) The displacement and velocity profile of the eigenvector
which corresponds to the unstable Floquet multiplier of the
solution with frequency ωbr = 1.26. By perturbing the dis-
crete breather using the eigenvector a moving one is obtained
as can be reported in (d).
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