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Abstract. The generalisation and robustness properties of policies learnt
through Maximum-Entropy Reinforcement Learning are investigated on
chaotic dynamical systems with Gaussian noise on the observable. First,
the robustness under noise contamination of the agent’s observation of
entropy regularised policies is observed. Second, notions of statistical
learning theory, such as complexity measures on the learnt model, are
borrowed to explain and predict the phenomenon. Results show the ex-
istence of a relationship between entropy-regularised policy optimisation
and robustness to noise, which can be described by the chosen complexity
measures.
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1 Introduction

Maximum-Entropy Reinforcement Learning [44] aims to solve the problem of
learning a policy which optimises a chosen utility criterion while promoting the
entropy of the policy. The standard way to account for the constraint is to add
a Lagrangian term to the objective function. This entropy-augmented objective
is commonly referred to as the soft objective.

There are multiple advantages in solving the soft objective over the standard
objective. For instance, favouring stochastic policies over deterministic ones al-
lows learning multi-modal distributions [17]. In addition, agent stochasticity is
a suitable way to deal with uncertainty induced by Partially Observable Markov
Decision Processes (PO-MDP). Indeed, there are PO-MDP such that the best
stochastic adapted policy can be arbitrarily better than the best deterministic
adapted policy [42]3.
Furthermore, several important works highlight both theoretical and experimen-
tal robustness of those policies under noisy dynamics and rewards [14].

3 In this context, the term “stochastic adapted policy” is a conditional distribution
on the control space U given the observation space Y since this type of policy is
“adapted” from Markovian policies in fully observable MDPs.
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Related to the latter notion of robustness, the maximum-entropy principle
exhibits non-trivial generalisation capabilities, which are desired in real-world
applications [18].

However, the reasons for such robustness properties are not yet well under-
stood. Thus, further investigations are needed to grasp the potential of the ap-
proach and to design endowed algorithms. A clear connection between Maximum-
Entropy RL and their robustness properties is important and intriguing.

Meanwhile, recent work in the deep learning community discusses how some
complexity measures on the neural network model are related to generalisation,
and explain typically observed phenomena [33]. In fact, these complexity mea-
sures are derived from the learnt model, bound the PAC-Bayes generalisation
error, and are meant to identify which of the local minima generalise well.

As a matter of fact, a relatively recent trend in statistical learning suggests
generalisation is not only favored by the regularisation techniques (e.g., dropout)
but mainly because of the flatness of the local minima [22, 12, 27]. The reasons
for such regularity properties remain an open problem. This work aims to ad-
dress these points in the context of Reinforcement Learning, and addresses the
following questions:

What is the bias introduced by entropy regularisation? Are the aforementioned
complexity measures also related to the robustness of the learnt solutions in the
context of Reinforcement Learning?

In that respect, by defining a notion of robustness against noisy contamina-
tion of the observable, a study on the impact of the entropy regularisation on the
robustness of the learnt policies is first conducted. After explaining the rationale
behind the choice of the complexity measures, a numerical study is performed to
validate the hypothesis that some measures of complexity are good robustness
predictors. Finally, a link between the entropy regularisation and the flatness of
the local minima is treated through the information geometry notion of Fisher
Information.

The paper is organised as follows. Section 2 introduces the background and
related work, Section 3 presents the problem setting. Section 4 is the core con-
tribution of this paper. This section introduces the rationale behind the studied
complexity measures from a learning theory perspective, as well as their ex-
pected relation to robustness. Lastly, Section 5 presents the experiments related
to the policy robustness as well as their complexity, while Section 6 examines
the results obtained. Finally, Section 7 concludes the paper.

2 Related work

Maximum Entropy Policy Optimisation In [18], the generalisation capabilities
of entropy-based policies are observed where multimodal policies lead to op-
timal solutions. It is suggested that maximum entropy solutions aim to learn
all the possible ways to solve a task. Hence, transfer learning to more chal-
lenging objectives is made easier, as demonstrated in their experiment. This
study investigates the impact of adopting policies with greater randomness on
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their robustness. The impact of the entropy regularisation on the loss landscape
has been recently studied in [3]. They provide experimental evidence about the
smoothing effect of entropy on the optimisation landscape. The present study
aims specifically to answer the question in Section 3.2.4 of their paper: Why
do high entropy policies learn better final solutions? This paper extends their
results from a complexity measure point of view. Recently, [32, 11] studied the
equivalence between robustness and entropy regularisation on regularised MDP.

Flat minima and Regularity The notion of local minima flatness was first intro-
duced in the context of supervised learning by [22] through the Gibbs formal-
ism [19]. Progressively, different authors stated the concept with geometric tools
such as first order (gradient) or second order (Hessian) regularity measures [47,
27, 37, 46, 12]. In a similar fashion, [7] uses the concept of local entropy to smooth
the objective function.
In the scope of Reinforcement Learning, [3] observed that flat minima charac-
terise maximum entropy solutions, and entropy regularisation has a smoothing
effect on the loss landscape, reducing the number of local optima. A central
objective of this present study is to investigate this latter property further and
relate it to the field of research on robust optimisation. Lastly, among the few
recent studies on the learning and optimisation aspects of RL, [15] shows how
a well-chosen regularisation can be very effective for deep RL. Indeed, they ex-
plain that constraining the Lipschitz constant of only one neural network layer is
enough to compete with state-of-the-art performances on a standard benchmark.

Robust Reinforcement Learning A branch of research related to this work is the
study of robustness with respect to the uncertainty of the dynamics, namely Ro-
bust Reinforcement Learning (Robust RL), which dates back to the 1970s [38].
Correspondingly, in the field of control theory, echoes the notion of robust con-
trol and especially H∞ control [48], which also appeared in the mid-1970s after
observing Linear Quadratic Regulator (LQR) solutions are very sensitive to per-
turbations while not giving consistent enough guarantees [13].
More specifically, the Robust RL paradigm aims to control the dynamics in the
worst-case scenario, i.e., to optimise the minimal performance for a given objec-
tive function over a set of possible dynamics through a min-max problem formu-
lation. This set is often called ambiguity set in the literature. It is defined as a
region in the space of dynamics close enough w.r.t. to some divergence measure,
such as the relative entropy [35]. Closer to this work, the recent paper from [14]
shows theoretically how Maximum-Entropy RL policies are inherently robust to
a certain class of dynamics of fully-observed MDP. The finding of their article
might still hold in the partially observable setting as any PO-MDP can be cast
as fully-observed MDP with a larger state-space of probability measures [21],
providing the ambiguity set is adapted to a more complicated space.
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3 Problem Setup and Background

3.1 Partially Observable Markov Decision Process with Gaussian
noise

First, the control problem when noisy observations are available to the agent
is formulated. The study focuses on Partially Observable Markov Decision Pro-
cesses (PO-MDP) with Gaussian noise of the form [10]:

Xh+1 = F (Xh, Uh)

Yh = G (Xh) + ϵ, ϵ ∼ N (0, σ2
Y Id)

(1)

with Xh ∈ X , Uh ∈ U and Yh ∈ Y for any h ∈ N, where X , U and Y are
respectively the corresponding state, action and observation spaces. The initial
state starts from a reference state x∗

e on which centred Gaussian noise with
diagonal covariance σ2

eId is additively applied, X0 ∼ N (x∗
e, σ

2
eId). Associated

with the dynamics, an instantaneous cost function c : X ×U → R+ is also given
to define the control model.

In this context, a policy π is a transition kernel on A given Y, i.e., a distribu-
tion on actions conditioned on observations. This kind of policies are commonly
used in the literature but can be very poor in the partially observable setting
where information is missing. Together, a control model, a policy π and an initial
distribution PX0 on X define a stochastic process with distribution Pπ,ϵ where
the superscript ϵ highlights the dependency on the observation noise ϵ. Similarly,
one denotes by Pπ the distribution of the process when the noise is zero almost-
surely, i.e., Pπ = Pπ,0. More details about the PO-MDP control problem can
be found in [21, 6].

Here, the maximum-entropy control problem is to find a policy π∗ which
minimises the following performance criterion

Jπ,ϵ
m = Eπ,ϵ

[
H∑

h=0

γhc (Xh, Uh)

]
+ αmEπ,ϵ

[
H∑

h=0

γhH(π( · | Xh))

]
, (2)

where H ∈ N is a given time horizon, Eπ,ϵ denotes the expectation under the
probability measure Pπ,ϵ,H denotes the differential entropy [9] and αm is a time-
dependent weighting parameter that evolves over training time m ≤ mD = |D|
with |D| being the total number of times the agent interacts with the system
such that all observations used by the learning algorithm form the dataset D at
the end of the training procedure (when mD environment interactions are done).
In the αm = 0 case, Jπ,ϵ

m is denoted Jπ,ϵ. The quantity Jπ,ϵ is called the value
function or, more generally, loss.
Moreover, the performance gap for dynamics with noisy and noiseless observables
will be considered in the sequel. In this context, the (rate of) excess risk under
noise is defined as the difference between the loss under noisy dynamics and the
loss under noiseless dynamics:
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Definition 1 (Excess Risk Under Noise). The excess risk under noise of a
policy π for a PO-MDP with dynamics (1) is defined as:

Rπ = Eπ,ϵ

[
H∑

h=0

γhc (Xh, Uh)

]
− Eπ

[
H∑

h=0

γhc (Xh, Uh)

]
= Jπ,ϵ − Jπ (3)

Similarly, the rate of excess risk under noise is defined as:

R̊π =
Jπ,ϵ − Jπ

Jπ
=

Rπ

Jπ
(4)

Note that in the above definition, expectations are taken with respect to the
probability measure Pπ,ϵ and Pπ respectively. The rate of excess risk under
noise represents the performance degradation after noise introduction in value
function units. In the rest of the paper, arguments to derive complexity measures
will be developed, allowing to predict the excess risk under noise and provide nu-
merical evidence showing maximum-entropy policies are more robust regarding
this metric. Hence, maximum-entropy policies implicitly learn a robust control
policy in the sense of Definition 1.

In the next section, some concepts of statistical learning theory are intro-
duced. Then, complexity measures will be defined to quantify the regularisation
power of the maximum-entropy objective of (2).

4 Complexity Measures and Robustness

4.1 Complexity Measures

The principal objective of statistical learning is to provide bounds on the gen-
eralisation error, so-called generalisation bounds. In the following, it is assumed
that an algorithm A returns a hypothesis π ∈ F from a dataset D. Note that
the dataset D is random and the algorithm A is a randomised algorithm.

As the hypothesis set F typically used in machine learning is infinite, a
practical way to quantify the generalisation ability of such a set must be found.
This quantification is done by introducing complexity measures, enabling the
derivation of generalisation bounds.

Definition 2 (Complexity measure). A complexity measure is a mapping
M : F → R+ that maps a hypothesis to a positive real number.

According to [33] from which this formalism is inspired, an appropriate com-
plexity measure satisfies several properties. In the case of parametric models
πθ ∈ F(Θ) with θ ∈ Θ ⊂ Rb, it should increase with the dimension b of the
parameter space Θ as well as being able to identify when the dataset D contains
totally random, spurious or adversarial data. As a result, finding good com-
plexity measures M allows the quantification of the generalisation ability of a
hypothesis set F or a model π and an algorithm A.
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4.2 Complexity measures for PO-MDP with Gaussian Noise

This paper studies heuristics about generalisation bounds on the optimal excess
risk under noise from Definition 1 when the optimal policy πθ∗ is learnt with an
algorithm A on the non-noisy objective Jπ, where αm = 0 for any m.

Definition 3 ((Rate of) Excess Risk Under Noise Bound). Given an
optimal policy π∗ learnt with an algorithm A on the non-noisy objective Jπ, the
optimal excess risk under noise bound is a real-valued mapping φ such that

Rπ∗
≤ φ(M(π∗,D), mD, η, δ) (5)

and φ is increasing with the complexity measure M and the sample complexity
mD. The definition is similar for the rate of excess risk under noise bound where
R̊π∗

is used instead of Rπ∗
.

Hence, considering a learning algorithmA with a parameterised family F(Θ) =
(πθ)θ∈Θ, Θ ⊂ Rb, such that θ = (θµ, θσπ

) with πθ(· | x) ∼ N (µθµ(x), diag(θσπ
)),

x ∈ X , - where µθµ is a shallow multi-layer feed-forward neural network (with
depth-size l = 2, width w = 64 neurons, weights matrix (θiµ)1≤i≤l) and diag(θσπ )
is a diagonal matrix of dimension q = dim(U) parameterising the variance4 - to
learn the optimal policy πθ∗ , multiple complexity measures M are defined and
details on their underlying rationale are given below.

Norm based complexity measures First, the so-called norm-based complex-
ity measures are functions of the norm of some subset of the parameters of the
model. For instance, a common norm-based measure calculates the product of
the operator norms of the neural network linear layers. The measures are com-
monly used in the statistical learning theory literature to derive bounds on the
generalisation gap, especially in the context of neural networks [34, 16, 30].
In fact, the product of the norm of the linear layers of a standard class of multi-
layer neural networks (including Convolutional Neural Networks) serves as an
upper bound on the often intractable Lipschitz constant of the network [30].
Thus, controlling the magnitude of the weights of the linear layers increases the
regularity of the model.
Consequently, the following complexity measures are defined:

– M(πθ,D) = ∥θµ∥p

– M(πθ,D) = Π l
i=1∥θiµ∥p where θiµ is the ith layer of the network µθµ .

In this context ∥ · ∥p with p = 1, 2, ∞ denotes the p-operator norm while p = F
denotes the Frobenius norm, which is discarded for the first case of the full
parameters vector θµ (since Frobenius norm is defined for matrix).

4 Note this choice of state-independent policy variance is inspired by [3] and simplifies
the problem.
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Flatness based complexity measures On the other hand, another measure
of complexity is given by the flatness of the optimisation local minimum (see
Section 2 for a brief overview). As [29, 33] have pointed out, the generalisation
ability of a parametric solution is controlled by two key components in the
context of supervised learning: the norm of the parameter vector and its flatness
w.r.t. to the objective function.

One might wonder if a similar robustness property still holds in the setting of
Reinforcement Learning. In this manner, complexity measures quantifying the
flatness of the solution are needed. Concretely, the interest lies in the flatness
of the local minima of the objective function Jπ. As stated earlier, there are
several ways to quantify the flatness of a solution with metrics derived from
the gradient or curvature of the loss function at the local optimum, such as
the Hessian’s largest eigenvalue - otherwise spectral norm [27] or the trace of
Hessian [12].

Moreover, as discussed in Section 2, [3] observed that maximum entropy
solutions are characterised by flat minima while entropy regularisation has a
smoothing effect on the loss landscape. Hence, a central objective of this present
study is to investigate this latter property further and relate it to the robustness
aspect of the resulting policies.

However, instead of dealing directly with the Hessian of the objective Jπ this
work proposes a measure based on the conditional Fisher Information I of the
policy due to its link with a notion of model regularity in the parameter space.

Definition 4 (Conditional Fisher Information Matrix). Let x ∈ X and
πθ a policy identified by its conditional density for a parameter θ ∈ Θ ⊂ Rb and
suppose ρ is a distribution over X . The conditional Fisher Information Matrix
of the vector θ is defined under some regularity conditions as

I(θ) = − EX∼ρ,U∼πθ(·|X)
[
∇2

θ log πθ(U | X)
]
, (6)

where ∇2
θ denotes the Hessian matrix evaluated at θ.

Note that the distribution over states ρ is arbitrary and can be chosen as
the discounted state visitation measure ρπ induced by the policy π [1] or the
stationary distribution of the induced Markov process if the policy is Markovian
and the MDP ergodic5 as it is done in [25].

As a matter of fact, it has already been mentioned in the early works of
policy optimisation [25] that this quantity I might be related to the Hessian
of the objective function. Indeed, the Hessian matrix of the standard objective
function reads (see [41] for a proof):

∇2
θJ

πθ = Eπθ

 H∑
h,i,j=0

c (Xh, Uh)
(
∇θ log πθ (Ui | Xi)∇θ log πθ (Uj | Xj)

T
+∇2

θ [log πθ (Ui | Xi)]
) .

(7)

5 With these choices, the following holds: Eρπ(ds)π(da|s) = Eπ up to taking the expec-
tation w.r.t. the state-action space (no subscript under X and U) or the trajectory
space (with subscripts such as Xh and Uh as trajectory coordinate) [1].
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As suggested by the author mentioned above (S. Kakade), (7) might be related
to I although being weighted by the cost c. Indeed, the Hessian of the state-
conditional log-likelihoods (∇2

θ log πθ on the rightmost part of the expectation
of (7)) belongs to the objective-function Hessian ∇2

θJ
πθ while the Fisher Infor-

mation I(θ) is an average of the Hessian of the policy log-likelihood.
In any case, the conditional FIM measures the regularity of a critical com-

ponent of the objective to be minimised. Thus, the trace of the conditional FIM
of the mean actor network parameter θµ is suggested as a complexity measure

– M(πθ,D) = Tr(I (θµ)) = Tr(− EX∼ρπ,U∼πθ(·|X)
[
∇2

θµ
log πθ(U | X)

]
).

Moreover, in the context of classification, a link between the degree of stochas-
ticity of optimisation gradients (leading to flatter minima [31, 45]) and the FIM
trace during training has recently been revealed in [23]. Magnitudes of the FIM
eigenvalues may be related to loss flatness and norm-based capacity measures to
generalisation ability [26] in deep learning.

5 Experiments

5.1 Robustness under noise of Maximum Entropy Policies

The first hypothesis is that maximum entropy policies are more robust to noise
than those trained without entropy regularisation (which play the role of con-
trol experiments). Consequently, the robustness of the controlled policy πθ∗ is
compared with the robustness of the maximum entropy policy πα

θ∗ for differ-
ent temperature evolutions α = (αm)0≤m≤mD . In this view, and since inter-
algorithm comparisons are characterised by high uncertainty [20, 8, 2], only one
algorithm A (Proximal Policy Optimisation (PPO) [40]) is retained while results
on multiple entropy constraint levels α = (αm)0≤m≤mD are examined.

In this regard, ten independent PPO models are trained for each of the five
arbitrarily chosen entropy temperatures αi = (αi

m)0≤m≤mD where i ∈ {1, . . . , 5},
on dynamics without observation noise, i.e., where σ2

Y = 0. The entropy coeffi-
cients linearly decay during training, and all vanish (αm = 0) when m reaches
one-fourth of the training time m1/4 = ⌊mD

4 ⌋ in order to replicate a sort of
exploration-exploitation procedure, ensuring that all objectives Jπ

m are the same
whenever m ≥ m1/4, i.e., J

π
m = Jπ. This choice is different but inspired by [3]

as they optimise using only the policy gradient and manipulate the standard
deviation of Gaussian policies directly, whereas, in the present approach, it is
done implicitly with an adaptive entropy coefficient. An algorithm that learns a
model with a given entropy coefficient α = (αm)0≤m≤mD is denoted as Aα.

The chosen chaotic systems are the Lorenz [43] (withmD = 106) andKuramoto-
Sivashinsky (KS) [5] (with mD = 2 · 106) controlled differential equations. The
defaults training hyper-parameters from Stable-Baselines3 [36] are used.
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5.2 Robustness against Complexity Measures

So far, three separate analyses on the 5 × 10 models obtained have been per-
formed on the Lorenz and Kuramoto-Sivashinsky (KS) controlled differential
equations.
First, as mentioned before, the robustness of the models for each of the chosen en-
tropy temperatures αi is tested against the same dynamics but now with a noisy
observable, i.e., σY > 0. Second, norm-based complexity measures introduced
in Section 4.2 are evaluated and compared to the generalisation performances
of the distinct algorithms Aα. Third, numerical computation of the conditional
distribution of the trace of the Fisher Information Matrix given by (6) is per-
formed to test the hypothesis that this regularity measure is an indicator of
robust solutions. The state distribution ρπθ is naturally chosen as the state visi-
tation distribution induced by the policy πθ. The following section discusses the
results of those experiments.

6 Results

This section provides numerical evidence of maximum entropy’s effect on the
robustness, as defined by the Excess Risk Under Noise defined by (3). Then, after
quantifying robustness, the relation between the complexity measures defined in
Section 4.2 and robustness is studied.

6.1 Entropy Regularisation induces noise robustness

In the first place, a distributional representation6 of the rate of excess risk under
noise defined in (3) is computed for each of the 5 × 10 models obtained with
the PPO algorithm Aαi , i ∈ {1, . . . , 5} and different levels of observation noise
σY > 0.

First and foremost, the results shown in Figure 1 indicate that the noise
introduction to the system observable Y of KS and Lorenz leads to a global
decrease in performance, as expected.

The robustness to noise contamination of the two systems is improved by ini-
tialising the policy optimisation procedure up to a certain intermediate thresh-
old of the entropy coefficient αi > 0. Once this value is reached, two respective
behaviours are observed depending on the system. In the case of the Lorenz dy-
namics, the robustness continues to improve after this entropy threshold, whereas
the opposite trend is observed for KS (particularly with the maximal entropy
coefficient chosen).

6 By replacing the expectation operator E with the conditional expectation E[ · | X0]
in the definition of Rπ in (3), the quantity becomes a random variable for which
the distribution can be estimated by sampling the initial state distribution X0 ∼
N (x∗

e , σ
2
eId). In fact, taking the conditional expectation gives the difference of the

standard value functions under Pπ and Pπ,ϵ.
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Fig. 1: Distributional representation of the rate of excess risk under noise R̊π

conditioned on the αi used during optimisation for different initial state distri-
bution X0 ∼ N (x∗

e, σ
2
eId). Each of the rows corresponds to one of the dynamical

systems of interest. Each of the columns corresponds to one of the initial state
distributions of interest. There are two non-zero fixed points (equilibria) x∗

e for
Lorenz and three for KS. From top to bottom: KS; Lorenz.
For each box plot, three intensities σY for the observation noise ϵ are evalu-
ated. As expected, when the uncertainty regarding the observable Y increases
through the variance σY of the observation signal noise ϵ, the policy performance
decreases globally (R̊π increases). Moreover, the rate of excess risk under noise
tends to decrease when αi increases in the Lorenz case, whereas it decreases up
to a certain entropy threshold for KS before increasing again.

Hence, the sole introduction of entropy-regularisation in the objective func-
tion impacts the robustness. This behaviour difference between Lorenz and KS
might be explained by the variability of the optimisation landscapes that can be
observed with respect to the chosen underlying dynamics as underlined in [3].

6.2 Maximum entropy as a norm-based regularisation on the policy

Norm-based complexity measures introduced in Section 4.2 are now evaluated.
For a complexity measure M to be considered significant, it should be correlated
with the robustness of the model.

Accordingly, the different norm-based measures presented in Section 4.2 are
estimated. Figure 2 shows the layer-wise product norm of the policy actor net-
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Fig. 2: Measures of complexity M(πθ,D) = Π l
i=1∥θiµ∥p with p = 1, 2, ∞, F

conditioned on the αi used during optimisation. Each row corresponds to one
of the dynamical systems of interest while column represents a different norm
order p. From top to bottom: Lorenz and KS.
For the Lorenz case, the barycenters of the measures tend to decrease when
αi increases. Regarding KS, passing a threshold, the complexity increases again
with the entropy. In addition, the measures are much more concentrated when
αi > 0. For p = 2, F , the separation of the measures w.r.t. the different αi is
more pronounced.

work parameters (M(πθ,D) = Π l
i=1∥θiµ∥p) w.r.t. to their associated entropy

coefficient αi for all the 50 independently trained models.
Again, policies obtained with initial αi > 0 exhibit a trend toward decreasing

complexity measure values as α increases up to a certain threshold of the entropy
coefficient. Similarly to Section 6.1, the complexity measure continues to decrease
after surpassing this threshold for the Lorenz system. On the other hand, in the
KS case, M(πθ,D) increases again once its entropy threshold is reached, notably
for the larger entropy coefficient.

Moreover, the measures tend to be much more concentrated when αi > 0,
especially in the case of KS (except for the higher αi).

This may indicate that the entropy regularisation acts on the uncertainty of
the policy parameters. Likewise, similar observations can be made for the total
norm of the parameters but are not introduced here for the sake of brevity.

Consequently, this experiment highlights an existing correlation between
maximum entropy regularisation and norm-based complexity measures. As this
complexity measure is linked to the Lipschitz continuity of the policy, one might
wonder if the regularity of the policy is more directly impacted. This is the
purpose of the next subsection.
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6.3 Maximum entropy reduces the average Fisher-Information

Another regularity measure is considered: the average trace of the Fisher infor-

mation (M(πθ,D) = Tr(I (θµ)) = Tr(− EX∼ρ,U∼πθ(·|X)
[
∇2

θµ
log πθ(U | X)

]
)).

As discussed in 4.2, this quantity reflects the regularity of the policy and might
be related to the flatness of the local minima of the objective function.

Figure 3 shows the distribution under πθ of the trace of the state conditional
Fisher Information of the numerical optimal solution θ∗µ,αi for the policy w.r.t.

the αi used during optimisation. In other words, a kernel density estimator of the
distribution of Tr(I(πθ∗

µ,αi
( · | X))) when X ∼ ρπθ∗ is represented. The results

of this experiment suggest first, this distribution is skewed negatively and has a
fat right tail. This means some regions of the support of ρπθ∗ provide FIM trace
with extreme positive values, meaning the regularity of the policy may be poor
in these regions of the state space.
A comparison of the distribution w.r.t. the different αi sheds further light on
the relation between robustness and regularity. In fact, there appears to be a
correspondence between the robustness, as indicated by the rate of excess risk
under noise R̊π shown in Figure 1 and the concentration of the trace distribution
toward larger values (i.e. more irregular policies) when the model is less robust.

Meanwhile, under the considerations of 4.2 and since it is known that entropy
regularisation favours flat minima in RL [3], these experimental results support
the hypothesis of an existing relationship between robustness, objective function
flatness around the solution θ∗ and conditional Fisher information of θ∗.

For a complementary point of view, a supplementary experiment regarding
the sensitivity of the policy updates during training w.r.t. to different level of
entropy is also presented in Appendix A.

7 Discussion

In this paper, the question of the robustness of maximum entropy policies under
noise is studied. After introducing the notion of complexity measures from the
statistical learning theory literature, numerical evidence supports the hypothesis
that maximum entropy regularisation induces robustness under noise. Moreover,
norm-based complexity measures are shown to be correlated with the robustness
of the model. Then, the average trace of the Fisher Information is shown to be
a relevant indicator of the regularity of the policy. This suggests the existence
of a link between robustness, regularity and entropy regularisation. Finally, this
work contributes to bringing statistical learning concepts such as flatness into
the field of Reinforcement Learning. New algorithms or metrics, such as in the
work of [28], may be built upon notions of regularity, e.g., Lipschitz continuity,
flatness or Fisher Information of the parameter in order to achieve robustness.
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Fig. 3: Distribution of the trace of the (conditional) Fisher information of the
numerical optimal solution θ∗µ,αi for the policy w.r.t. the αi used during op-
timisation. From left to right: Lorenz and KS environments. Colours: control
experiment αi = 0 (black); intermediate entropy level αi (blue); largest αi (red).
A skewed distribution towards (relatively) larger values is observed for all con-
trolled dynamical systems. Moreover, those right tails exhibit high kurtosis, es-
pecially for the control experiment (black) and the model with the larger entropy
coefficient (red) for the KS system. Finally, solutions with intermediate entropy
levels (blue) are much more concentrated - have lower variance than the others.
About Lorenz, the barycenter of the more robust model (red) is shifted towards
lower values than the others.
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A Weights sensitivity during training

This section is intended to provide complementary insights on the optimisation
landscape induced by the entropy coefficient α during training from the conser-
vative or trust region policy iteration point of view [24, 39].

Let (θαm)
mD
m=1 be the sequence of weights of the policy during the training

of the model for some initial entropy coefficient α. The conditional Kullback-
Leibler divergence between the policy identified by the parameters θαm and the
subsequent policy defined by the parameters θαm+1 is given by

DKL

(
θαm, θαm+1

)
= EX∼ρ

[∫
U log

(
πθαm

(du|X)

πθα
m+1

(du|X)

)
πθα

m+1
(du | X)

]
.

The above quantity is a measure of the divergence from the policy at time m to
the policy at time m+ 1. Thus it may provide information on the local stiffness
of the optimisation landscape during training.

Figure 4 shows the evolution of the Kullback-Leibler divergence between two
subsequent policies during training for the Lorenz and KS controlled differential
equations. Regarding the Lorenz system, the maximal divergence is reached for
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the optimisation performed with the two lowest αi while increasing entropy seems
to slightly reduce the divergence. On the other hand, the highest divergence
values observed for the KS system are reached for αi = 0 and the maximal
entropy coefficient. This observation is coherent with the results of the previous
sections and suggests that the entropy coefficient α impacts the optimisation
landscape during training.

Interesting questions regarding the optimisation landscape and its link with
the Fisher Information (through the point of view of Information Geometry [4])
are raised by the results of this section but are left for future work.

(a) Lorenz

(b) Kuramoto-Sivashinsky

Fig. 4: Evolution of DKL

(
θαm, θαm+1

)
during training for the Lorenz and KS

controlled differential equations. For Lorenz, the maximal divergence is reached
for the optimisation performed with αi = 0 and the second lowest αi. Regarding
KS, the highest divergence values are observed for αi = 0 and the maximal
entropy coefficient.
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