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One-dimensional topological acoustic systems offer robust signal transmission and localization in
compact spaces. Here, we demonstrate the ability to control

both longitudinal and transverse topological waves in a quasi one-dimensional elastic lattice, com-
posed of an array of repelling magnets connected to elastic cantilevers. The two different topological
modes can be separately or simultaneously excited at selected frequencies. Our system enables con-
trolled multimodal propagation and edge localization, owing to its finite size and to the design of
longitudinal and transverse topological bandgaps within similar frequency ranges. In addition to the
robustness of the topological modes to unintentional disorder, we show that disorder can couple de-
grees of freedom and tailor the energy distribution between longitudinal and transverse waves. This
system may enable new studies on topological modes interactions useful in sensing and information
processing applications.

I. INTRODUCTION

The use of topological acoustic systems offers oppor-
tunities for new functionalities, like time-varying, cross-
frequency operation, mode- and frequency-conversion,
and signal-to-noise ratio enhancement, in devices with
smaller footprint for sensing and radio frequency (RF)
applications. In particular, one-dimensional (1D) topo-
logical systems, with broadband operation and small
footprint, are desirable in information processing, due to
their robust propagation and localization of waves [1, 2]
and their simpler integration with other components,
such as transducers, resonators, and waveguides [3]. Ex-
traordinary topological features have been demonstrated
in various systems, including photonic devices [4], and
acoustic and elastic devices [5, 6]. However, 1D topo-
logical insulators face the challenge of limited propaga-
tion modes, which reduce the channels for information
processing, when compared to their higher-dimensional
counterparts.

A promising solution proposed to increase the func-
tionalities of low-dimensional systems involves introduc-
ing synthetic dimensions [7–10], which permit access
to higher-dimensional physics in lower-dimensional sys-
tems [9]. For instance, by adding a time modulation
to a 1D topological insulator, can allow the observation
of topological wave transport otherwise accessible start-
ing from 2D topological systems [11]. However, this ap-
proach requires precise control over the system’s internal
or external degrees of freedom (DoF) [7, 8] to achieve
new topological states, band structures, and transport
properties, often requiring the use of active compo-
nents [12–14]. Harnessing tunability in acoustic devices
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also broadens their potential for applications. This has
been demonstrated in various tunable systems [15–18].
Although tunability allows for a synergistic combination
with topological physics [19–26], it increases the system’s
complexity.

Elastic lattices with magnetic coupling have emerged
as attractive platforms to study theoretically and ex-
perimentally nonlinearity [27–29], long-range interac-
tions [30], tunability [31, 32], energy harvesting [33], and
time-modulated nonreciprocity [34], in discrete, finite
systems. Such discrete systems and their models provide
elegant platforms for the exploration of complex wave
phenomena [35–38], including the control of topological
phases. Despite their versatility, however, magnetically
coupled elastic lattices have not yet been employed to
create 1D topological insulators, with the exception of
magnetically coupled spinners [39, 40], a system that ex-
hibits only rotational modes, thereby excluding the pres-
ence of multimodal topological edge modes. In this con-
text, multimodal topolgocal edge modes were studied for
a 1D continuous elastic system [41]. The authors found
longitudinal and bending topological edge modes, oper-
ating at vastly different frequencies, limiting their pos-
sibility of interaction. For the sake of completeness, we
mention the presence of several other works on quasi-1D
discrete elastic lattices with several DoFs per oscillators
(see, e.g., [42, 43]).

In this work, we use a quasi-1D lattice of repelling mag-
nets, to demonstrate multimodal topological edge modes
and to study the interplay between low-dimensional topo-
logical phases. We design the propagation properties of
the lattice controlling the magnets’ initial configuration
and disorder. Our tunable system allows the control of
energy distribution between longitudinal and transverse
topological waves within a similar frequency range by
varying the excitation frequency, actuator’s angle of in-
cidence, and the degree of lattice disorder.
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FIG. 1. Multimodal topological elastic lattices. (a)
Elastic lattices composed of repulsive magnets supported by
elastic rods for both longitudinal (U) and transverse (V )
modes (excitation frequency fd and angle α). The correspond-
ing discrete model consists of a series of masses connected by
ground springs (kg) and coupling springs (k0 and k1). The
two-magnets unit cell is indicated by a dashed rectangle. (b)
Topological modes enabled by the magnetic lattice for simul-
taneous (U and V ) or selective (U or V ) topological modes.
(c) Photo of the fabricated magnetic lattice and magnet-on-
rod (diameter dc and length l). The distances between the
magnets (d0,1,2) are highlighted by different color codes.

II. MODEL, RESULTS AND DISCUSSION

A. Magneto-elastic lattice

The magneto-elastic lattice is composed of a 1D array
of permanent magnets, each supported by circular elastic
rods, as illustrated in Fig. 1(a). The array of magnets-on-
rods is confined by fixed permanent magnets arranged at
predefined distances along the array’s boundaries. Such
quasi-1D geometry, allows the lattice to support both lon-
gitudinal (U) and transverse (V ) wave propagation [31].
In the periodic limit of the linear regime, the system can
be represented by a discrete model, incorporating a series
of masses connected by intercoupling, k0,j , and intracou-
pling, k1,j , springs, with j = {U, V }. The circular rods
function as ground springs (stiffness kg,j), while their po-
sitions ensure force equilibrium. We design the magneto-
elastic lattice to uniquely exhibits equal ratios of alter-
nating coupling strengths for longitudinal (U) and trans-
verse (V ) waves, i.e., k0,U/k1,U = k0,V /k1,V . As we show
below, this choice leads to a mapping to the Su-Schrieffer-
Heeger (SSH) lattice [44–46] for both the transverse and
longitudinal directions. Thus, both U and V topologi-
cal phases can be realized by introducing stronger inter-
coupling springs, relative to the (weaker) intracoupling
springs (k0,j > k1,j), for a winding number of w = 1
as shown in the Supplemental Material (SM) [47]. De-

pending on the excitation frequency (fUV,U,V ) and an-
gle (α), our magneto-elastic lattice enables either the si-
multaneous excitation of topological modes or the selec-
tive excitation of either one of them, as illustrated in
Fig. 1(b). As shown in Fig. 1(c), the proposed topologi-
cal magneto-elastic lattice is experimentally constructed
using ten magnets-on-rods, and the repulsive force is
characterized as a function of the distance d by a non-
linear relation, F = Adp, with experimentally obtained
A = 2× 10−9 N/m

p
and p = −4.1 (see SM Fig. S1 [47]).

B. Equation of motion and dispersion relation

To determine the equations of motion for the movable
magnets, we focus on the magnet with index n ∈ Z whose
dynamics is dictated by Newton’s second law [47]

mẌn = F n
c + F n

γ + F n
ϵ +

6∑
s=1

F n
s , (1)

where m and Xn = (un, vn) represent the constant mass
and the displacement of the magnet with index n from
its equilibrium position. Further, F n

s (s = 1 to 6) de-
notes the force describing the magnetic interaction be-
tween the magnet at site n and its s−th nearest neigh-
bor (see Fig. 1(c)). In addition, F n

c and F n
γ denote

the onsite and damping forces, which respectively are
described by the rod elastic stiffness (kc) and damping
coefficient (γ). Moreover, F n

ϵ represents the (random)
resultant forces at site n, emerging from all imperfec-
tions present in the base-rod-magnet apparatus. We as-
sume that F n

ϵ = −KcEn, with En =
(
ϵu,n, ϵv,n

)
being

a two-dimensional (2D) disorder parameter drawn from
the interval [−W/2,W/2]× [−W/2,W/2] with a uniform
probability distribution.

In the linear regime (∥Xn − Xn+1∥/a ≪ 1), the pe-
riodic (W = 0) and lossless (γ = 0) lattice simplifies
Eq. (1) to a linear form, allowing for the eigenvalue anal-
ysis of the system [47]. Assuming a diatomic unit cell
with index s, we denote the displacements of its left (L)
and right (R) magnets us

L(R) = UL(R)e
−i(ωt−ksa) and

vsL(R) = VL(R)e
−i(ωt−ksa) with ω being the radian fre-

quency, k the wavenumber, and a = d0 + d1 the cell’s
dimension. It follows that,

mω2Ψ = HΨ, with H =

(
HU 0
0 HV

)
, (2)

and Ψ, a column matrix with entries (UL, UR, VL, VR).
Clearly the longitudinal and transverse waves are uncou-
pled, encoded within H from its block diagonal construc-
tion in which

Hj =

(
kt,j −k1,j − k0,je

−ika

−k1,j − k0,je
ika kt,j

)
, (3)

with kt,j = k0,j + k1,j + kg,j . Note that each sub-matrix
Hj , after the removal of the constant diagonal, possesses
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FIG. 2. Dispersion relation of the topological magneto-elastic lattices. (a) Experimental and (b) numerical dispersion
relations for the (left) longitudinal and (right) transverse waves. The solid blue and red curves indicate the analytical results
obtained for a bulk chain [Eq. (4)] with band gaps highlighted using light blue strips. (c) Frequency against mode index for
a chain of 10 and (inset) 64 magnets obtained using numerical diagonalization [48]. The frequencies of topological modes
are highlighted by the gray shaded areas. (d) Displacement profiles corresponding to the topological symmetric (S) and
antisymmetric (AS) modes. (e) Effect of unintended imperfections on experimental measurements. (left) Experimentally
obtained transverse dispersion relation (α ≈ 0◦) and corresponding simulation results using (middle) a small misalignment of
the driver (α = 0.01◦ and W = 0), and (right) weak disorder (α = 0◦, W = 0.1 mm).

chiral symmetry, i.e., [Hj − kt,jI]σz+σz [Hj − kt,jI] =
0 with I being again the identity matrix and σz =(
1 0
0 −1

)
the chiral operator. Consequently, Hj can be

mapped to the SSH lattice [44, 49].
The longitudinal coupling in a linear regime is given by

k0(1),U = −Ap
∣∣d0(1)∣∣p−1

, which has a greater magnitude

than the transverse coupling k0(1),V = −A
∣∣d0(1)∣∣p−1

. It
is worth noting that, the fixed surrounding magnets also
contribute to an added stiffness to the ground spring,
i.e., kg,j = kc + kFix,j [47]. Interestingly, the transverse
ground stiffness exceeds the longitudinal one due to kFix,j
varying in both U and V directions. The large ground
stiffness along the transverse direction can compensate
the smaller coupling stiffness k0(1),V = k0(1),U/|p| for sim-
ilar total stiffness (i.e., kt,U ≈ kt,V ), permitting U and
V waves to coexist in a similar frequency range. The
dispersion relation of the U and V waves is expressed by

ω2
j =

kt,j ±
√
k20,j + k21,j + 2k0,jk1,jcos(ka)

m
. (4)

The linear dispersion relation of the elastic lattice is
calculated by performing a 2D fast Fourier transform
(2D-FFT) on the displacement fields at moderate exci-
tation, obtained for an excitation angle of α = 15◦, as
shown in Fig. 2(a,b) for experiment and simulation, re-
spectively. In experiments, the magnet with index n = 1

is excited by applying monochromatic sine waves at fre-
quency fd (see further experimental details [47]). The
experimental results show excellent agreement with nu-
merical simulations performed using direct numerical in-
tegration [50–52] of Eq. (1) (with W = 0 mm and γ =
2.15× 10−3 Ns/m) as well as with the analytical disper-
sion relation of the linearized model [Eq. (4)] (Fig. 2(a,b),
solid lines). Remarkably, topological bandgaps are ob-
served for both longitudinal and transverse waves, oc-
curring in a similar frequency range (light blue shade).

The numerical diagonalization of the eigenvalue prob-
lem [Eq. (2)] associated to a finite chain of N = 10 mag-
nets clearly shows two topological modes [Fig. 2(c), high-
lighted by a gray shaded region] within the bandgap for
the U (resp. V ) direction, corresponding to symmetric
(S) and antisymmetric (AS) modes, as shown in Fig. 2(d).
Intriguingly, the finite size enables the upper U and lower
V topological modes to closely align and be simultane-
ously excited at the same driving frequency, whereas, in
the inset of Fig. 2(c), a longer chain (N = 64) shows
decreased frequency proximity due to weaker modal hy-
bridization (stemming from smaller evanescent coupling
of localized modes at chain ends). By tuning the zigzag
arrangement of the fixed magnets (k0,j ≫ k1,j), we can
control the frequency overlap of both U and V topological
edge modes, realizing the ‘complete’ overlap for a chain
of N = 10 (N = 64) magnets [47].

Our experimental magneto-elastic lattice unavoidably
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FIG. 3. Observation of topological edge modes for longitudinal excitation (α = 0◦). (a) The rescaled absolute
displacements (|un(t)|) in space (n) and time (t) from experimental (resp. numerical) data with fd = 34 Hz (resp. fd =
33.48 Hz). The un(t) in the time window t ∈ [3.6, 3.7] from experimental (resp. numerical) data, are plotted for three fd: fS
(top), fH (middle), and fAS (bottom). (b) The displacements un(t) against t for the magnets with indices n = 1 (red) and
n = 10 (blue) obtained at fS , fH and fAS . (c) Instant displacement profiles at times tp and tp+∆ (∆ = {T/2, T/4}, T = 1/fd)
indicated by the vertical dashed lines in (b), and times tp ± ϵ with ϵ = T/5: symmetry (top) for fd = fS ; antisymmetry
(bottom) for fd = fAS ; for fd = fH , hybrid (middle left) at tp, tp +∆ and antisymmetry (middle right) at tp + ϵ and symmetry
(middle right) at tp − ϵ.

exhibits unintended disorder. This is evidenced by both
backward and forward traveling transverse waves ap-
pearing during excitation by purely longitudinal signals
(α ≈ 0◦), as shown in the left panel of Fig. 2(e). If the ex-
citation aligns directly with the perfectly straight lattice,
it induces purely longitudinal motion without transverse
one. This behavior is observed for the lattice maintaining
a straight-line configuration, ensuring lateral symmetry.
This suggests that the disorder causes the conversion of
longitudinal waves into transverse ones due to symmetry
breaking. Numerical simulations show that transverse
waves can be caused by small misalignment (middle),
which doesn’t fully explain the observed back-scattered
waves in experiments. However, introducing weak disor-
der (W = 0.1 mm [53]) into simulations allows for better
agreement between numerical findings and experimental
observations (right).

C. Topological edge modes and pseudospin
observation

We also study the topological modes by looking at
the dynamical properties of our chain of magnets. In
Fig. 3(a), we show space-time diagrams of the longi-
tudinal displacements (|un(t)|), for fd = 34 Hz (resp.
33.48 Hz) generated through experiments (resp. simula-
tions). In simulations, we set W = 0 mm (no disorder).
The colormaps highlight reduced displacements for mag-
nets n = 2, 5, 7, 9, featured in the shapes of the topo-
logical S and AS modes. The relative driving frequency
mismatch ∝ 1%, between the experiments and numerical

simulations is negligible and can be attributed to the fact
that, in simulations, we can model smaller frequency step
size. Nonetheless, the presence of imperfections can also
contribute into shifting the frequency spectrum (e.g., [47,
Fig. S13]).
The magnified space-time diagrams of un(t) from ex-

perimental (resp. numerical) data are plotted for three
different driving frequencies fd = 33, 34, and 35 Hz (resp.
fd = 32.5, 33.48, and 34.5 Hz) in the gap of the longitudi-
nal frequency band. We clearly observe distinct patterns.
More specifically, in Fig. 3(b), we examine un(t) for the
magnets with indices n = 1 and 10, whose experimental
data are (ten-fold) up-sampled using advanced interpo-
lating algorithm for clarity. An in-phase motion of the
two magnets (n = 1 and 10) is observed for fS = 33 Hz
(resp. 32.5 Hz), corresponding to symmetric displace-
ment profiles at instants tp and tp + T/2 [dashed lines in
the top panels of Fig. 3(b)], see S± in Fig. 3(c). Mean-
while, the end magnets exhibit an out-of-phase motion
at the similar instants as above for the case fAS = 35 Hz
(resp. 34.5 Hz) as antisymmetric displacement profiles,
as shown by the AS± in Fig. 3(c). Note that there is a
minor disruption of the mirror (point) symmetric profiles
for S± ( AS±) due to the presence of the driver at the
position of the first magnet.
Notably, for the intermediate driving frequency, fH =

34 Hz (resp. 33.48 Hz), we find from the middle panel
of Fig. 3(b), the displacements of the magnets with in-
dices n = 1 and n = 10 are neither in-phase nor out-
of-phase. We instead find oscillations between left- and
right-localized states originating from the presence and
excitation of both S and AS topological modes. These os-
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FIG. 4. Pseudospin observation by topological modes.
The pseudospin direction is controlled by the excitation: (a)
pseudospin down for the left-end excitation (n = 1) and (b)
pseudospin up for the right-end excitation (n = 10).

cillations have also been studied recently in the context
of photonic SSH lattices [54]. Their dynamics become ev-
ident when capturing the snapshots of un(t) at times tp
and tp+T/4, whenever the amplitudes of the end magnets
vanishes [middle-left panel of Fig. 3(c)]. Further they are
dynamically connected via the S± and AS± topological
modes captured at instants tp ± ϵ (ϵ = T/5), see middle-
right panel of Fig. 3(c).

It is worth commenting a bit more the middle panel
of Fig. 3(b), which also depict larger displacements for
the magnet with index n = 10 compared to the one with
n = 1, where the driver is located. In fact, our swip-
ing frequency step of 1 Hz, is not sufficient to perfectly
balance the energy distribution between the S and AS
modes. This energy imbalance leads to the magnitude
of the displacements of the right localized states to be
larger when compared to its left counterpart as shown in
the middle-left panel of Fig. 3(c), assuming both states
are superimpose. Consequently, the displacements of the
driver at position n = 1 is, in general, smaller than the
one of the last magnet of the chain with index n = 10.

Furthermore, we also observe the circulation of dis-

placement profiles: S+
T/4−−→ AS−

T/4−−→ S−
T/4−−→ AS+,

through which the combination S±AS giving rise to the
hybrid states emerges at an intermediate time step. It
follows that the displacement profile of the system can
be represented by u(t) = cos(2πt/T )S − sin(2πt/T )AS
with basis S/AS (spin−: S − iAS), emulating a pseudo
(Fermi-like) spin through modal hybridization [55], as
shown in Fig. 4(a). In addition, its circulation (spin di-
rection) can be inverted in our mechanical lattice, e.g.,
by exciting the other end of the chain (spin+: S + iAS)
[Fig. 4(b)], see [47, Fig. S18]. A striking proposition of
our work is that such pseudo-spin states can indepen-
dently coexist along both U and V directions. Unlike
typical 2D structures, in our compact quasi-1D setup,
these are non-propagating pinned states.

D. Multimodal topological edge modes

We experimentally demonstrate the control of multi-
modal topological modes using fd as a tuning knob, for

FIG. 5. Control of multimodal topological edge modes.
(a) Simultaneous excitation of both longitudinal (U) and
transverse (V ) topological modes for an excitation frequency
of fd = 35 Hz with α = 15◦. (b) Selective excitation of the U
mode for fd = 34 Hz and α = 15◦. In upper panels of (a-b),
the real space trajectories (rescaled by a factor of 40) of the
magnets are also displayed.

α = 15◦. In Fig. 5(a), the simultaneous excitation of the
longitudinal AS and transverse hybrid topological edge
modes is observed for fd = 35 Hz. This fd falls within
the bandgaps of both longitudinal and transverse disper-
sion relations. Interestingly, these two simultaneously-
excited topological modes exhibit complete spatial over-
lap, in contrast to other similar topological mechanical
systems for which certain DoFs per unit oscillator remain
dependent in their linearized limit [43].

In addition, at driving frequency fd = 34 Hz, within
the longitudinal bandgap but outside the transverse
bandgap, we demonstrate the selective excitation of the
longitudinal topological (hybrid) edge modes along with
a transverse bulk mode, as seen in Fig. 5(b). The up-
per panels of Fig. 5(a-b) show the real space trajectories
(re-scaled by a factor of 40) of the magnets, which high-
light an elliptical motion oriented along θr ≈ 30◦ (for
the magnets with odd indices) with respect to the lon-
gitudinal direction. Video 1 shows the corresponding
magnet motions for 34 Hz. The orientation is related to
the phase delay (δ) between the U and V waves when
parameterized like Lissajous curve, leading to δ ≈ −π/4.

Video 1. High speed imaging of the magnet motions for 34
Hz.
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FIG. 6. Normal mode analysis. The system is made up
of N = 10 movable magnets on the geometric configuration
obtained using d0 = 15 mm, θ = 56◦ (see Fig. 1) and W =
1 mm. (a) The Longitudinal and (b) transverse displacements
of the mode with wave number q = 5. This mode corresponds
to the longitudinal topological S mode in the periodic limit
of W = 0 mm [see upper panel of Fig. 2(d)].

E. Effect of disorder

Lets us now study the effects of disorder in our quasi-
1D model of Fig. 1. In this context, the eigenvalue prob-
lem becomes

mω2Ψ = HΨ, with H =

(
HU HUV

HV U HV

)
, (5)

where Ψ is now a 2N displacement vector with com-
ponents UL,s, UR,s, VL,s, VR,s for the cell with index s.
Consequently, the Hamiltonian matrix, H is made up
of 4 random block tri-diagonal matrices HU , HV , HUV

and HV U of rank N (see SM [47] for details). Further,
the HUV and HV U induces the coupling between the U
and V DoFs. As such, each wave in the system possesses
both U and V DoFs, in a way that a random realization of
disorder leads to a random tailoring of the energy distri-
bution between the U and V waves. It is worth pointing
out that the resulting random matrix H does not respect
the chiral symmetry as usually found in the case of the
SSH model.

For W = 1 mm, we perform a normal mode analysis
on the system of Fig. 1(c) with d0 = 15 mm, and θ = 56◦.

Figure 6 shows the spatial profile of the longitudinal
topological S [Figs. 6(a)-(b)]. Clearly, the S mode ad-
mits U and V displacements. Further, the symmetric
shape of the U displacements, seeing for W = 0 mm is
altered in Fig. 6(a). The latter originates from the fact
that a portion of the modes’ spectral energy in the clean
limit (W = 0 mm) has shifted toward the V direction,
Fig. 6(b). Similar observations can also be drawn for the
longitudinal AS mode [47]. Furthermore, in the SM [47],
we show that this phenomenon is robust whilst grow-
ing lattice size and explore additional dependence of the
spectrum of the system toward disorder.

Despite the non-chiral nature of the disorder and its
induced coupling between the DoFs, we proceed demon-
strating that the topological modes in our lattice are ro-
bust, whilst the addition of weak strength of such dis-
order. The computation results of the winding number

FIG. 7. Topological marker. (a) [(b)] Winding number of
the system wU [resp. wV ] along the longitudinal [reps. trans-
verse] direction against W . They are computing averaging a
local topological marker across 10 central cells over 5 disorder
realizations of a lattice with N = 64 movable magnets. In ad-
dition, the geometrical parameters are fixed to d0 = 15 mm
and θ = 56◦. Note that the shaded areas represent one’s stan-
dard deviation.

wj , presented as a function of disorder strength W along
the longitudinal (j = U) and transverse (j = V ) direc-
tions, are depicted in Fig. 7(a) and Fig. 7(b) respectively.
Note that this analysis is performed for the system con-
figuration (i.e., d0 = 15 mm, and θ = 56◦), but choos-
ing a longer chain of N = 64 moving magnets in order
to mimic the thermodynamic limit. In addition, these
winding numbers wj are obtained by averaging the the
local topological marker (LTM) across 10 cells at the cen-
ter of the chain and over 5 realizations of disorder (see
Refs. [46, 56–59] for further details).

Clearly, for W → 0 mm, the wj → 1, indicating topo-
logically non-trivial phases along both U and V directions
as expected. On the other hand, when W → 1 mm, we
see that the wj are decreasing. Nevertheless, for interme-
diate values of W ∈ [0, 1] mm, the wj remains close to 1
which suggests the persistence of the topological phases
along both U and V directions. Further in the SM [47],
we also show the band gaps remain open along both di-
rections in this interval of W values.

III. CONCLUSION

We demonstrated control of longitudinal and trans-
verse topological modes in a compact, magneto-elastic
quasi-1D lattice. In the small amplitude regime, our sys-
tem reduced to two superposed mechanical SSH models
arranged perpendicularly, with tunable effective elastic
coefficients. We showed that adjusting the excitation an-
gle and frequency allows us to control longitudinal and
transverse topological waves, with lattice disorder aiding
energy conversion and highlighting system robustness.
Our magneto-elastic lattice offers a platform to further
explore interactions between topology, nonlinearity, and
disorder, and serves as inspiration for wave control ap-
plications, like in sensing and information processing.
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