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Abstract – Based on a physical model of a trumpet’s functioning, the numerical continuation approach is used
to construct the model’s bifurcation diagram, which depends on the instrument’s acoustic characteristics and
the musician’s parameters. In this article, we first identify 10 descriptors that account for the main character-
istics of each bifurcation diagram. It is first shown that these descriptors can be used to classify four professional
trumpets with a recognition rate close to 100%. The XGBoost algorithm is used for this purpose. Secondly, we
evaluate the ability of different classical machine learning algorithms to predict the values of the 10 descriptors
given the acoustic characteristics of a trumpet and the value of the musician’s parameters. The best surrogate
model is obtained using the LassoLars method, trained on a dataset of 12,000 bifurcation diagrams calculated
by numerical continuation. Training takes just 2 min, and real-time predictions are accurate, with an error of
approximately 1%. A software interface has been developed to enable trumpet designers to predict the values of
the descriptors for a trumpet being designed, without any knowledge of physics or nonlinear dynamics.

Keywords: Brass instruments, Bifurcation diagram, Machine learning, Performance descriptors, Trumpet
design

1 Introduction

Across various engineering domains, physical modeling
has become a widely used strategy to simulate and predict
the behavior of physical systems. In musical acoustics, phys-
ical models of musical instruments have been developed
over the last few decades for sound synthesis and to better
understand the underlying mechanisms behind the func-
tioning of musical instruments. These models also elucidate
the relationships between design and acoustic responses
such as intonation, ease of blowing, and timbre. Being able
to numerically compute quantitative descriptors associated
with the functioning of musical instruments can be crucial
for instrument makers, as it enables virtual prototyping
as a tool in the development process of new instruments.
Another important benefit of virtual prototyping is the
potential savings in time and resources typically associated
with producing hardware prototypes through traditional
trial-and-error procedures. Altogether, providing musical
instrument designers with numerical tools based on physical
modeling is highly appealing for assisting the development
of new instruments.

In musical acoustics, physical models of brass instru-
ments have been proposed using a modal description of
the exciter (the lips) and the resonator (the air column),
along with a nonlinear flow equation that couples the two
linear systems [1]. These models have shown great capability
in reproducing the behavior of brass instruments [2–4] and
offer a system description with a relatively limited number
of equations. They also provide enough precision to compare
instruments with slight design changes if modal parameters
of the instrument are computed or extracted from measure-
ments with enough accuracy [5–7]. Different outputs can be
extracted from these models, depending on the numerical
method applied. The bifurcation diagram is an object that
represents the evolution of a system’s solution with respect
to one or several parameters. The solution branches and
their stability provide a global image of the model’s behavior
from which performance descriptors of the instrument can
be extracted [5]. Numerical continuation is one method to
compute the solution branches and the bifurcation diagram
of a trumpet. The Asymptotic Numerical Method, associ-
ated with the Harmonic Balanced Method and imple-
mented in the software MANLAB, is one method that has
been applied to brass instrument models [8, 9]. Another
method, based on a prediction-correction algorithm and*Corresponding author: vincent.freour@music.yamaha.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acta Acustica 2024, 8, 65

Available online at:

�The Author(s), Published by EDP Sciences, 2024

https://acta-acustica.edpsciences.org

https://doi.org/10.1051/aacus/2024042

Topical Issue – Musical Acoustics: Latest Advances in Analytical, Numerical
and Experimental Methods Tackling Complex Phenomena in Musical Instruments

SCIENTIFIC ARTICLE

https://orcid.org/0009-0005-1214-3396
https://orcid.org/0009-0005-1214-3396
https://orcid.org/0009-0005-1214-3396
https://orcid.org/0009-0004-1464-1164
https://orcid.org/0009-0004-1464-1164
https://orcid.org/0009-0004-1464-1164
https://orcid.org/0000-0002-6480-2139
https://orcid.org/0000-0002-6480-2139
https://orcid.org/0000-0002-6480-2139
https://orcid.org/0000-0001-7102-6943
https://orcid.org/0000-0001-7102-6943
https://orcid.org/0000-0001-7102-6943
https://orcid.org/0000-0002-7922-6373
https://orcid.org/0000-0002-7922-6373
https://orcid.org/0000-0002-7922-6373
https://creativecommons.org/licenses/by/4.0/
https://www.edpsciences.org/
https://actacustica.edpsciences.org
https://actacustica.edpsciences.org
https://doi.org/10.1051/aacus/2024042


implemented in the software AUTO, has also been recently
applied to wind and brass instrument models [10–12].

Although these continuation methods have demon-
strated their efficiency in computing bifurcation diagrams
of brass instruments for comparing instruments [5], shed-
ding light on phenomena such as the influence of impedance
inharmonicity [10], and the production of ghost notes [12],
handling these methods requires theoretical and technical
knowledge, making them difficult for a novice to use.
Furthermore, selecting the parameters for the model, par-
ticularly the lip parameters in brass instruments, is critical
since the mechanical parameters of the lips are challenging
to estimate experimentally and can significantly impact the
model’s behavior. To account for the variability and uncer-
tainty in the lip parameter values, computing solutions for a
large number of lip parameter values (virtual players) can
be a valid option. Nevertheless, it usually induces a high
computational cost, which can be a significant limitation,
especially when combined with an optimization routine.
Given these constraints, transferring this technology into
an “easy-to-use” application for use in a designer’s workshop
is not straightforward, and solutions must be found to over-
come this issue.

One strategy explored in previous work involves train-
ing a machine learning model (surrogate model) to compute
solutions at a much lower computational cost than numer-
ical integration or continuation methods. This approach
was applied to trumpet bore optimization [7, 14], and in
an initial attempt to predict descriptors associated with
trumpet bifurcation diagrams [13]. This methodology,
which combines physical modeling with artificial intelli-
gence and data-driven methods, has also been applied to
other instruments, such as the violin for predicting eigenfre-
quencies of the violin body [15], and the piano for sensitivity
analysis of the dynamic behavior of the soundboard [16].

As depicted in Figure 1, our goal is to precisely compute
the outputs of numerical continuation – specifically the
bifurcation diagram and its associated descriptors – using
a “black box” model that does not require any knowledge
of continuation methods and requires very little computa-

tional time. The benefits of this approach are straightfor-
ward: 1) the model can be encapsulated into an “easy-to-
use” software application that can be used autonomously
by a designer, and 2) calculations can be performed for sev-
eral virtual players to account for uncertainties in lip
parameters, providing a richer analysis of an instrument.

In this study, we followed this approach to develop a
numerical tool for trumpet designers that allows several
descriptors associated with the bifurcation diagram to be
computed using machine learning. The article is organized
as follows: Section 2 provides an overview of the physical
model and bifurcation diagram of a trumpet. Section 3 dis-
cusses the generation of the dataset. Section 4 details the
application of machine learning models. Finally, Section 5
presents the proposed tool, followed by the conclusions.

2 Trumpet bifurcation diagrams
2.1 Physical model of a trumpet and bifurcation

diagram

We consider here a classical model based on three equa-
tions that assumes linear propagation in the resonator. It
includes a mechanical equation for the lips, represented
by a one-degree-of-freedom damped oscillator, an equation
for the resonator, represented by a series of complex modes,
and a Bernoulli-like flow equation. Note that lip models
with two degrees of freedom can also be considered [17],
but we prefer to keep the model simple enough to work with
a limited number of parameters for the lips.

Denoting y the vertical lip position, y0 is the lip position
at rest, xl, Ql, ll, and b the lip mechanical parameters
(resonance angular frequency, quality factor, mass per sur-
face area, and lip opening width respectively), sk and Ck
with k 2 [1, N] the modal parameters (poles and residues
respectively) of the N resonances of the acoustic impedance
of the instrument, Zc the characteristic impedance, u the
volume flow, p the downstream pressure at the input of
the instrument (in the mouthpiece), and p0 the upstream
(mouth) static pressure, the model is written as follows:

Figure 1. Goal: replacing the traditional physical approach with a fast and interpretable machine learning approach.
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with hðyÞ ¼ jyjþy
2 , q the air density, and the mouthpiece

pressure p obtained from pðtÞ ¼ 2
PN

k¼1RðpkðtÞÞ.
This model can be written in a dimensionless form with

quadratic nonlinearity, making it easy to analyze using the
Asymptotic Numerical Method (ANM) [5]. Bifurcation dia-
grams, such as the one for a B[4 (fundamental frequency
f0’ 470 Hz) shown in Figure 2, can then be computed using
the software MANLAB. This bifurcation diagram was
obtained with eleven acoustic modes (N = 11) enabling
an accurate fit on the measured input impedance, and with
the following lip parameter values taken from [5] and deter-
mined based on values provided in the literature, consider-
ing constraints on the blowing pressure levels to generate
sound: Ql = 3, ll = 2 kg�m�2, y0 = 0.1 mm, b = 8 mm.
The natural frequency of the lips fl = 382.18 Hz is obtained
by Linear Stability Analysis (LSA) in order to locally min-
imize the threshold mouth pressure [2].

Note that the bifurcation diagram in Figure 2 reveals an
inverse bifurcation. Indeed, measurements of crescendo-
decrescendo maneuvers on artificial player systems and
musicians usually reveal some hysteresis around the oscilla-
tion thresholds [18]. This observation aligns more closely
with an inverse bifurcation, although direct bifurcations
are likely to occur in real trumpet playing. With the phys-
ical model used in this study, direct bifurcations can be
obtained, for instance, by reducing the lip position at rest
y0, or increasing the value of Ql.

2.2 Landmarks of the bifurcation diagram –

performance descriptors

A number of specific values can be extracted from the
bifurcation diagram, particularly from the |p| and f0 traces.
These quantities describe the main features of the solution
branches constituting the bifurcation diagram and are clo-
sely related to the performance of the instrument with a
given set of lip parameters. Therefore, we choose to refer
to these values as “performance descriptors”, and we extract
10 of them from the bifurcation diagram, as illustrated in
Figure 2. The definitions of these descriptors are provided
in Table 1.

It can be considered that for each {player – instrument}
pair, these 10 descriptors constitute a quantitative perfor-
mance evaluation that facilitates comparisons between
instruments. Furthermore, using these descriptors, it is pos-
sible to reconstruct the skeleton or the outlines of the asso-
ciated bifurcation diagram.

The final goal of this study is to predict these descriptors
using a machine learning model, thereby replacing numeri-
cal continuation. Note first that from Figure 2, it appears
that Pmin1 and Pf0min are almost identical (Pf0min is slightly
larger than Pmin1), although we are not aware of any theo-

retical reason justifying the observation of the minimum
value of f0 on the stable branch nearly at the Hopf bifurca-
tion mouth pressure. Additionally, other descriptors that
potentially carry significance for players in terms of instru-
ment performance can be deduced from the 10 descriptors
in Table 1: the “hysteresis amplitude” H = Pmin1 � Pmin2,
the “dynamic range” D = pmax�pmin, or the “pitch stability”
Df0 = f0max � f0min.

2.3 Relevance of the descriptors

Initially, we propose to assess the ability of the descrip-
tors to classify high-end trumpets. It is indeed valuable to
confirm the relevance of the descriptors extracted from
the bifurcation diagram in distinguishing between existing
instruments within the same product range (specifically
professional instruments).

We consider four real trumpets labeled as B, S, V, and
W, along with 800 virtual players to construct a dataset
consisting of 3200 bifurcation diagrams. The set of 800 vir-
tual players is generated using uniform sampling of Ql, ll,
and y0, within boundaries corresponding to ±10% of the
parameter values given in Section 2.1. Initially, we classify
the trumpets using the 10 performance descriptors

Figure 2. Descriptors associated with the bifurcation diagram
of a B[ trumpet for a B[4. The thin lines represent the unstable
branches, while the bold lines represent the stable branches.
Detailed definitions of these descriptors are provided in Table 1.

M. Mohamed et al.: Acta Acustica 2024, 8, 65 3



extracted from these bifurcation diagrams. Subsequently,
we interpret the classification results by analyzing the fea-
ture importance of the machine learning model.

2.3.1 Trumpet classification

Now, we aim to demonstrate that the descriptors
extracted from the bifurcation diagrams can effectively clas-
sify different trumpets. We utilize the XGBoost algorithm
[19], a popular machine learning algorithm for classification
tasks based on decision trees. We follow a standard proce-
dure to train the XGBoost classifier. The dataset is split
into a training set (75% of the dataset) and a test set
(25% of the dataset) while maintaining the same proportion

of each trumpet in each set. To optimize the performance of
the XGBoost classifier, we employ a stratified 5-fold cross-
validation [20] on the training set to fine-tune its hyperpa-
rameters, as illustrated in Figure 3. Adjusting these hyper-
parameters alters how decision trees are constructed from
the training data.

We use the mean accuracy, denoted as ACCmean, to
evaluate the classification performance. ACCmean is com-
puted as the number of correct classifications divided by
the total number of classifications. Additionally, we repli-
cate the experiment using descriptors represented in the
principal components space. This is achieved by applying
Principal Component Analysis (PCA) [21] to the normal-
ized descriptors of the training set before training the

Table 1. Definition of the performance descriptors extracted from the bifurcation diagrams.

Performance
descriptor

Definition

Pmin1 p0 value at the Hopf bifurcation
Pmin2 p0 value at the fold bifurcation
pmin Peak-to-peak amplitude of p at the fold bifurcation
pmax Peak-to-peak amplitude of p at p0 = Pmin2 + 3 kPa
Slope Slope coefficient of a linear fit on the stable branch of the |p| diagram, between abscissa Pmin2 and Pmin2 + 3 kPa
f0min Minimum value of f0 over the stable branch between abscissa Pmin2 and Pmin2 + 3 kPa
f0max Maximum value of f0 over the stable branch between abscissa Pmin2 and Pmin2 + 3 kPa
Pf0min p0 value at f0min

f0 fold f0 at the fold bifurcation
f0H f0 at the Hopf bifurcation

Figure 3. Complete 5-fold stratified cross-validation procedure for hyperparameter search. (1) The dataset is randomly split into a
training set and a testing set while maintaining equal proportions of each trumpet in both sets. (2) The training set is randomly split
into 5 subsets (or folds) ensuring each trumpet’s proportion is preserved across folds. (3) The model is trained on 4 folds and
performances are evaluated (validated) on the remaining fold. This process repeats 5 times, resulting in 5 trained models with
associated validation performances. (4) The accuracy is computed and averaged over the 5 validation set. (5) Steps (3) and (4) are
repeated with different hyperparameter sets, iterating this process 100 times. (6) The hyperparameter set yielding the highest average
accuracy is selected. The final model is trained on the entire training set (from step 1) using these hyperparameters. The performance
of the final model is evaluated on the testing set to assess its generalization ability.

M. Mohamed et al.: Acta Acustica 2024, 8, 654



XGBoost classifier. PCA is a statistical method that trans-
forms descriptors into a new coordinate system, emphasiz-
ing the variance in the data.

Figure 4 displays the confusion matrices of the classifica-
tion outcomes using raw descriptors and descriptors repre-
sented in the principal components space. Reviewing the
confusion matrices reveals that classifying trumpets based
on raw descriptors achieve a mean accuracy of 81.12%.
However, preprocessing the descriptors using PCA signifi-
cantly enhances the classification performance, yielding a
mean accuracy of 99.50%. In summary, these results under-
score the relevance of the performance descriptors in effec-
tively distinguishing between the four instruments.

2.3.2 Interpretability of the classification results

To interpret the classification results, we analyze the
feature importance using XGBoost. As the XGBoost classi-
fier is based on decision trees, we measure the importance of
each feature in the classification by calculating the gain of
each feature. Gain quantifies how much each feature con-
tributes to improving the model’s accuracy when it makes
decisions. Figure 5 illustrates the gain of each feature in
both cases: using descriptors represented in the original
descriptor space and in the principal components space.
Higher gain values indicate that a feature contributes more
significantly to the classification process. In essence, fea-
tures with higher gain values are more important because
they lead to greater improvements in the model’s accuracy
when utilized for decision-making.

In the descriptor space, no descriptor appears to be
useless for classification. The most important descriptors
are f0fold, slope and f0max. This highlights that the bounds
of the f0 trace are crucial performance descriptors for
distinguishing trumpets in this space. However, relying
solely on these descriptors is insufficient, as two trumpets
with different virtual players can yield the same f0 bounds.

Looking at the descriptors in the principal components
space, it is notable that the most important axes for the
classification do not necessarily correspond to those with
the highest explained variance ratio. Instead, the second,
and then the ninth axes demonstrate larger importance.

Examining the biplot of these axes in Figure 6, we observe
that they primarily differentiate between trumpets. Even
though the variance ratio on the ninth axis is almost negli-
gible, these results are stable across all the validation splits
of the cross-validation scheme. The robust classification
performance of the XGBoost classifier using descriptors rep-
resented in the principal components space arises from its
effective ability to distinguish between trumpets through
decision trees in this transformed space. This study demon-
strates that the selected set of performance descriptors can
identify trumpets with minimal error. Therefore, we can try
to generate these descriptors without solving the classical
physical model. This approach would enable the creation
of a fast and easy-to-use tool for trumpet designers.

3 Prediction of performance descriptors

In this section, we outline the machine learning models
utilized to predict the performance descriptors extracted
from trumpet bifurcation diagrams. Firstly, we define the
problem statement and discuss the virtual instruments
and players employed to generate the training set. Follow-
ing this, we present the results of a benchmark that com-
pares the effectiveness of different machine learning
algorithms in predicting the descriptors of bifurcation dia-
grams, providing insights into the most effective algorithm.
Finally, we elaborate on the machine learning model chosen
to predict the performance descriptors of the bifurcation
diagrams.

3.1 Virtual instruments and virtual players

As explained in Section 2.1, the primary objective of this
work is to replace numerical continuation calculations with
a machine learning model capable of predicting the 10
descriptors outlined in Table 1 for a specific trumpet iden-
tified by its input impedance. Our goal is to replace each of
the np virtual players, characterized by their lip parameters,
with a machine learning model that can predict the 10
descriptors of the bifurcation diagram based on a given
input impedance. To achieve this, it is crucial to generate

Figure 4. Confusion matrix for instrument prediction based on descriptors using the XGBoost. Left: features are raw descriptors,
ACCmean = 81.12%. Right: features are descriptors represented in principal components space, ACCmean = 99.50%.
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a dataset that includes performance descriptors for a suffi-
ciently large number of virtual instruments defined by their
input impedance, specifically by their modal parameters.
Moreover, we stress the importance of the model’s accuracy
and reliability, especially within the design space – the
range of modal parameters that encompasses various
instruments. Therefore, the training set must be representa-
tive of the modal parameter space of real instruments,
ensuring that the model performs accurately across this
space.

To ensure coverage of the virtual trumpets’ conditions,
modal parameters from impedance measurements of nine
commercial trumpets from different makers are extracted
using the high-resolution ESPRIT method [22]. These
modal parameters set boundary values for each of the 11
modes defining the input impedance of the instruments.

The input impedance, decomposed into complex modes
characterized by their complex poles sk and residues Ck,
defines a design space of dimension nd = 44. Subsequently,
a total of nt = 200 virtual trumpets are generated by ran-
domly sampling these 44 parameters from a uniform distri-
bution within the bounds provided by the measurements of
the nine professional trumpets.

Figure 7 depicts the corresponding impedances of the
200 virtual trumpets. For this study, focus is placed on

the note B[4 (with f0 ’ 470 Hz), whose fundamental fre-
quency lies between the fourth and fifth impedance peaks.
To provide a detailed examination of the impedances of
the virtual instruments around this fundamental frequency,
a zoom around the fourth and fifth peaks is presented in
Figure 8.

As previously mentioned, a significant advantage of
machine learning is its low computational cost, allowing
consideration of various virtual players for each instrument.
Each virtual player is defined by four parameters (Ql, ll, y0,
and b), with the lip natural frequency fl calculated by LSA
for each {player – instrument} pair. A set of np = 60 virtual
players is generated using Latin hypercube sampling of
Ql, ll, and y0, constrained within boundaries corresponding
to ±10% of the parameter values outlined in Section 2.1
(Fig. 9). It’s worth noting that these boundaries in the vir-
tual player space are somewhat arbitrary; we assume ±10%
variations represent reasonable expectations for differences
among human players or variations within a group of play-
ers of similar playing level.

Overall, the training set comprises a total of 12,000
bifurcation diagrams for the note B[4, each yielding a set
of 10 descriptors. These diagrams are computed using an
automated Matlab routine and the MANLAB source
code. Given that it takes approximately 3 min to compute

Figure 5. Gain – improvement in accuracy – of each feature in the XGBoost classifier. Left: features are raw descriptors. Right:
features are descriptors represented in principal components space.

Figure 6. Biplots of the principal component analysis axes with the highest gain in XGBoost classifier. The explained variance ratio
of the axes is in parentheses. Arrows in the biplot represent descriptors. The direction of each arrow indicates increasing values for
that descriptor, while the arrow’s length represents the descriptor’s contribution to overall variation in the dataset.
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one bifurcation diagram on the computer used for
calculations, generating the entire training set required
approximately 600 h (equivalent to 25 days) of computa-
tional time.

3.2 Comparative study of machine learning algorithms

We conducted a comparative analysis of various
machine learning algorithms to predict the descriptors of
bifurcation diagrams using the dataset generated in
Section 3.1. Due to the relatively small size of the dataset,
we focused on machine learning algorithms known for their
performance on small datasets. The problem at hand is a
regression task, where the objective is to predict each
descriptor from the trumpet’s impedance for each {musician
– descriptor} pair. We considered several machine learning
algorithms for regression, including linear approaches such
as Linear Regression, LassoLars [24], and Ridge Regression
[25], as well as Support Vector Machine for Regression
(SVR) [26] with various kernels, and Nearest Neighbors
[27] approaches. Additionally, we included a baseline algo-
rithm that predicts a constant value for each descriptor,
set to the mean of the descriptor in the training set.

We follow a common approach to train the machine
learning models (one for each musician-descriptor pair).
First, we normalize the dataset by subtracting the mean
and dividing it by the standard deviation of each modal
parameter. Then, we split the dataset into a training set
(75% of the dataset) and a test set (25% of the dataset).

For each algorithm, we employ a 5-fold cross-validation
procedure to fine-tune its hyperparameters and evaluate
its performance, as illustrated in Figure 3. The chosen per-
formance metric is the Mean Absolute Percentage Error
(MAPE), calculated as the mean of the absolute differences
between the predicted and true descriptor values, divided
by the true descriptor value. Table 2 summarizes these
results. Despite its relative simplicity, the LassoLars
approach exhibits superior performance compared to other
methods in predicting the descriptors values of the bifurca-
tion diagrams, displaying the lowest MAPE for each
descriptor. Notably, for frequency descriptors (f0min, f0max,
f 0fold and f 0H), the prediction errors range between 0.5
and 0.7 cents.

3.3 Focus on the LassoLars algorithm

In this section, we describe the LassoLars algorithm,
which outperforms other algorithms in predicting the
descriptors of the bifurcation diagrams.

Consider one of the descriptors obtained from the bifur-
cation diagram. The question we are exploring is whether,
for a given musician, it is possible to predict the value of this
descriptor using a linear combination of the nd = 44 modal
coefficients and a bias (or intercept). If we consider a single
trumpet, the answer is positive, and there are even an
infinite number of possible combinations since the problem
is linear and underdetermined (nd + 1 = 45 unknowns for a
single equation). As we include more trumpets in the train-
ing set, the number of equations increases while the number
of unknowns remains constant. However, when all nt = 200
trumpets are considered, it is highly unlikely that an exact
solution to this overdetermined system exists (200 linear
equations for 45 unknowns). Therefore, we seek the best
solution that minimizes in the least squares sense, the differ-
ence between the 200 predicted descriptor values for the
nt = 200 trumpets and the exact descriptor values obtained
from their respective bifurcation diagrams. Thus, we aim to
solve the following optimization problem for each descriptor
d and each musician m:

min
wm;d2Rnd ;w0

m;d2R
ym;d � Xwm;d � w0

m;d

���
���
2

2

with ym;d 2 Rnt ;X 2 Rnt�nd : ð2Þ

Here, the ith coordinate of ym,d represents the descriptor d
of the bifurcation diagram of the mth musician and the
ith trumpet. The ith row of the matrix X contains the
nd = 44 modal coefficients of the ith trumpet with I 2 [1,
nt]. Meanwhile, wm,d is the vector of coefficients of the linear
model for the mth musician and the descriptor d.

However, to make the solution more interpretable, we
complete this minimization problem by adding a constraint
promoting the sparsest possible solution, i.e., with a maxi-
mum number of zero terms among the nd = 44 components
of the solution vector X. This way, the modal coefficients
that contribute most to predicting the value of the descrip-
tor are easily identified. The LASSO method addresses

Figure 7. Normalized amplitude and phase angle of the
impedances of the 200 virtual instruments generated to train
the machine learning models.
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this problem by incorporating l1 norm regularization into
equation (2):

~wm;d ; ~w0
m;d

n o
¼ argmin

wm;d2Rnd ;w0
m;d2R

jjym;d � Xwm;d � w0
m;d jj22

þ kjjwm;d jj1 with k 2 Rþ: ð3Þ
Here, k serves as a regularization parameter that controls
the sparsity of the solution. This optimization problem is
known as the Lasso problem [23]. To solve this Lasso
problem efficiently, we employ the Lars algorithm [24],
a least-angle regression algorithm solving (3) efficiently for
a set of well-chosen k values.

Figure 10 represents the bifurcation diagram skeletons
generated using the machine learning (LassoLars) approach
in solid lines, and using the physical model (continuation
method) in dashed lines, for 3 players and 2 trumpets that
the model has not encountered during its training. For the
|p| diagram, it can be seen that the LassoLars algorithm
accurately predicts the bifurcation diagrams of the trum-
pets it has not encountered during its training, with an
error significantly lower than the inter-instrument and
inter-player variability. For the f0 diagram, although the
overlap between the prediction and continuation results is
not as striking as in |p| diagram, the relative difference
between the different curves is relatively well respected,
and the slightly higher pitch for one trumpet (blue lines)

is well predicted by the machine learning model. Note that
the maximum difference in f0 value (along the stable
branches) between the two instruments is quite low (about
7 cents), which contributes to explaining why the machine
learning prediction may look less accurate in this figure
despite the very good performances of the prediction
reported in Table 2.

Figure 9. Lip parameters associated to the 60 virtual players.
The red dot represents the baseline virtual player (Ql = 3,
ll = 2 kg/m2, y0 = 0.1 mm).

Figure 8. Zoom around the fourth (left) and fifth (right) peaks of the impedances of the 200 virtual instruments.
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We can conclude that the LassoLars algorithm is a reli-
able and robust model for predicting the descriptor values
of bifurcation diagrams. Moreover, as detailed in the next
section, the embedded sparsity constraint allows an insight-

ful interpretation of the influence of modal coefficients on
the descriptors of the bifurcation diagrams.

3.4 Interpretability of the LassoLars algorithm

We proceed to interpret the influence of modal coeffi-
cients on the descriptors of the bifurcation diagrams using
the LassoLars algorithm by looking at the amplitude of
~wm;d coefficients. Each coefficient of ~wm;d represents the
impact of the corresponding modal coefficient on the target
descriptor/musician pair. Due to its inclination towards
sparse solutions, we can discern the impact of modal coeffi-
cients on descriptors by examining the non-zero coefficients
of the linear model.

Figure 11 illustrates the normalized importance of
modal coefficients in predicting Pmin1, averaged over all
virtual players. We compute this importance by obtaining

the mean ~wmean;Pmin1 where ~wi
mean;Pmin1

¼ 1
np

Pnp
m¼1

j~wi
m;Pmin1

j
jj~wm;Pmin 1 jj1

;

i 2 ½1; nd � and examining the modal coefficient associated
with its highest coefficients. Notably, the 4th and 5th acous-
tic modes contribute to over 60% of the importance in pre-
dicting Pmin1. This is quite coherent with the underlying
physics of sound production. Indeed, due to the nonlinear
coupling between the lips and the instrument, the funda-
mental frequency of the B[4 lies between the 4th and 5th
impedance peaks. In other words, the impedance “seen” by
the instrument at the fundamental frequency strongly
depends on these two resonances. Therefore, this is consis-
tent with the expectation that the modal parameters of
the 4th and 5th modes will have a significant effect on
the dynamics of the system, especially concerning threshold
blowing pressures.

4 Tool for trumpet designers

To make this technology easily used by trumpet design-
ers, a software tool was developed, enabling the 10 descrip-
tors to be computed for the 60 virtual musicians from given

Table 2. Mean Absolute Percentage Error (MAPE) and Standard deviation of the Absolute Percentage Error (StdAPE) in
predicting descriptor values using various machine learning algorithms on the test set. The best performance for each descriptor is
highlighted in bold.

Pmin1 (%) Pmin2 (%) pmin (%) pmax (%) Slope (%)

Baseline 5.75 ± 0.01 4.75 ± 0.01 4.24 ± 0.01 1.56 ± 0.01 1.38 ± 0.01
LassoLars 0.57 ± 0.02 0.41 ± 0.03 0.76 ± 0.03 0.48 ± 0.02 0.8 ± 0.05
Linear regression 0.72 ± 0.06 0.67 ± 0.07 1.09 ± 0.07 0.66 ± 0.05 1.04 ± 0.07
SVR (linear) 0.71 ± 0.07 0.65 ± 0.05 1.1 ± 0.08 0.67 ± 0.05 1.06 ± 0.07
Ridge regression 0.72 ± 0.06 0.67 ± 0.07 1.08 ± 0.07 0.66 ± 0.05 1.04 ± 0.07
SVR (nonlinear) 1.21 ± 0.08 1.17 ± 0.06 1.43 ± 0.07 0.7 ± 0.04 0.98 ± 0.04
Nearest neighbours 4.62 ± 0.15 3.71 ± 0.12 3.49 ± 0.12 1.29 ± 0.04 1.13 ± 0.04

f0min (%) f0max (%) Pf0min f0 fold (%) f0H (%)

Baseline 0.26 ± 0.001 0.27 ± 0.001 3.81 ± 0.01 0.26 ± 0.001 0.25 ± 0.001
LassoLars 0.04 ± 0.002 0.04 ± 0.003 0.59 ± 0.03 0.03 ± 0.002 0.04 ± 0.002
Linear regression 0.05 ± 0.003 0.05 ± 0.004 0.85 ± 0.06 0.05 ± 0.003 0.06 ± 0.01
SVR (linear) 0.05 ± 0.005 0.06 ± 0.005 0.86 ± 0.06 0.05 ± 0.004 0.06 ± 0.01
Ridge regression 0.05 ± 0.003 0.05 ± 0.004 0.84 ± 0.06 0.05 ± 0.003 0.06 ± 0.01
SVR (nonlinear) 0.05 ± 0.003 0.06 ± 0.004 1.1 ± 0.06 0.05 ± 0.003 0.07 ± 0.01
Nearest neighbours 0.2 ± 0.01 0.2 ± 0.01 3.12 ± 0.1 0.2 ± 0.01 0.19 ± 0.01

Figure 10. Bifurcation diagram skeletons generated using the
machine learning (LassoLars) model (solid line) and the contin-
uation method (dashed line) for 2 trumpets (blue and purple)
the model has not encountered during its training, considering 3
players.
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modal parameters as an input and automatically displayed
in a convenient and readable way.

In practice, users can input modal parameters for one or
multiple trumpets, and the tool returns predicted descriptor
values for all virtual players in the form of Figure 12. In this
example, the descriptors are calculated for three trumpets
that fall within the training space (they respect the bound-
aries of the modal parameters) but were not used to train
the machine learning model. Figure 12 then provides an
overview of the characteristics of the three instruments con-
cerning the descriptors. The boxplot representation allows
us to observe differences in the medians. For instance, there
are differences in intonation (playing frequencies). We also
observe a smaller value of the descriptor slope (that could
also be associated with the dynamic range of the instru-
ment) for trumpet 3 compared to the others. Moreover, it
also sheds light on the dispersion around the median, which

we may interpret as the sensitivity of the instrument to the
virtual musicians. For instance, trumpet 1 appears less sen-
sitive to the player parameters in terms of the threshold
pressure Pmin1 than trumpets 2 and 3. This last aspect is
particularly interesting for the comparison of instruments
and for predicting the perceived quality, and a benefit of
the machine learning model that allows very fast computa-
tion of the descriptors for several virtual musicians.

Finally, users can also train a new model by providing
a new dataset of modal parameters and descriptors.
Regarding computation time, the tool is built with Python
programming language, Scikit-learn [28] and Streamlit
(https://docs.streamlit.io/get-started), and provides
almost real-time computation, with training taking only
2 min and prediction less than 1 s on a regular laptop.
A video demonstration of the tool is available under the
reference [29].

Figure 12. Box plot of descriptors prediction for the 60 virtual players on 3 test instruments (unseen during the model training).

Figure 11. Mean and standard deviation of the normalized importance of the top 25 modal coefficients in predicting the Pmin1

descriptor. RðskÞ and IðskÞ are the real and imaginary parts of the kth resonance pole of the acoustic impedance of the instrument.
RðCkÞ and IðCkÞ are the real and imaginary parts of the kth resonance residue of the acoustic impedance of the instrument.
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5 Conclusions

In this article, we have proposed an approach to enable
trumpet designers to access the results of non-linear dynam-
ics calculations. More precisely, using a machine-learning
approach, we have shown that the use of a surrogate model
enables the value of 10 descriptors characteristic of the
detailed bifurcation diagram to be predicted in less than a
second. This result is obtained directly without the need
for the user to have any expertise in non-linear dynamics.

Following a benchmark between several classic solutions
in the machine learning literature, the article shows that the
most accurate model for carrying out this task is obtained
by the LassoLars method. To achieve a large enough train-
ing set, we showed in the article how to take advantage of
the experience acquired in recent years in analyzing the
non-linear dynamics of physical trumpet models using
numerical continuation. This approach allows constructing
detailed bifurcation diagrams that take account of the
acoustic characteristics of the instrument (via its input
impedance) and the way it is played (via the values of
the musician’s parameters). The training set was made up
of around 12,000 bifurcation diagrams from which the
values of 10 descriptors were extracted for each one. Build-
ing the training set is the longest stage in our approach
since it involves both the physical model and complex
analyses of how it works. It corresponds to around 600 h
of computation.

From a practical point of view, the solution proposed in
the article of a software interface for querying the surrogate
model in an instrument-making context responds to two
difficulties: firstly, calculation codes in non-linear dynamics
require know-how and scientific knowledge that not all
musical instrument designers have. Secondly, a database
of bifurcation diagrams, even a large one, is by its very nat-
ure incomplete, since instrument designers are conceiving
instruments that do not yet exist. The solution presented
in the article therefore allows musical instrument designers
to be autonomous in their exploration of the performance of
different trumpets. Even for a model they are currently
designing, they can instantly compare it with other trum-
pets, for different types of musicians.

We defer the analysis of multiple musical notes for fur-
ther study. That investigation could provide a more com-
prehensive understanding of trumpet dynamics across its
entire range. This would entail examining how different
notes influence the instrument’s behavior and its interac-
tion with players. Moreover, delving deeper into the model-
ing of the virtual player could yield valuable insights into
the nuanced requirements for trumpet design. This could
involve learning to predict the descriptors of the bifurcation
diagram from both the virtual player’s parameters and the
modal parameters of the trumpet using models such as Phy-
sics-Informed Neural Networks (PINNs). However, this step
towards a more comprehensive surrogate model was beyond
the scope of this paper. Regarding the trumpets themselves,
the approach proposed in this article could be extended to
instruments with modal parameters outside the bounds of
the commercial instruments used in this study. Such an

extension would enable trumpet designers to explore instru-
ment behavior beyond the traditional range of modal
parameters and compare them with existing instruments.
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