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Abstract
Recently, metamaterials have driven advancements in wave propagation and polarization control.
Chiral elastic metamaterials, in particular, have attracted considerable attention due to their
distinctive properties, such as acoustical activity and auxeticity. Such characteristics arise from the
additional degrees of freedom for tuning the embedded micro- and macro-rotations. In this study,
we demonstrate an unusual energy exchange between longitudinal and in-plane shear waves in a
3D chiral mechanical metamaterial. The structural design is capable of inducing up to a 90◦

rotation in the plane of polarization. Additionally, this capacity for conversion is achieved by
employing both an arrangement of chiral cells and a single meta-atom. This peculiar behavior
enables a seamless switch between the three polarization states existing within a solid material,
namely, the longitudinal state, the shear horizontal state, and the shear vertical state. Furthermore,
a 2D discrete mono-atomic mass-spring model featuring inclined connectors is used to
characterize the distinctive energy exchange between modes. This characterization is based on the
retrieval of the pertinent elastic coefficients. The engineered chiral metamaterial polarization
converter stands as a promising device for momentum conservation conversions and applications
in elasto-dynamic polarimetry.

1. Introduction

Recently, the subject of artificially engineered materials has undoubtedly gained prominence and elicited
widespread interest [1]. Symmetry breaking in chiral structures is an important mechanism for numerous
physical phenomena [2–5]. Notably, the circular dichroism [6, 7] is also obtained by chirality. Additionally,
circular birefringence based on chiral structures enables the rotation of the plane of light oscillation, and the
emergence of quasi-dark states in the continuum [8–10]. In this context, Yonghao et al demonstrate a strong
optical activity in dual-layered twisted arcs metamaterial with a polarization rotatory of about 305◦ [11].

Significant advancements have been made in the field of chiral mechanical metamaterials, demonstrating
progress at both the micro and macro scales [12]. Starting with the macroscopic twist effect, which is
achieved through the ingenious integration of chirality within a unit cell, the effect becomes apparent when
an externally applied axial deformation is imposed on the structure [13, 14]. An additional intriguing
implication of the chiral effect is the auxetic effect, which is characterized by a negative Poisson’s ratio. This
implies that the metastructure showcases a negative ratio between the lateral strain and axial strain [15, 16].
By incorporating chirality into the unit cell, the studied structure gains extra degrees of freedom beyond
those inherent in the Cauchy elasticity [17, 18]. These supplementary degrees of freedom, (e.g. local rotation
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and couple stress) can enable metastructures to exhibit acoustic activity similar to optical activity, where the
polarization axis rotates during wave propagation [19, 20]. As waves propagate through such acoustically
active mediums, a linearly polarized elastic wave undergoes polarization state rotation, leading to a circular
polarization profile emerging during spreading [21]. This transition from linearly polarized to orthogonally
polarized states is influenced by the chirality of the medium, leading to a transformation in the polarization
state. In 1968, Portigal and Burstein showed this phenomenon where chirality is under consideration,
proposing that a crystal exhibiting optical activity also manifests acoustic activity, resulting in a rotation of
the polarization plane [22]. The rotation of polarization states introduces an extra wave characteristic that
can be controlled, specifically the polarization state, similarly to the circular birefringence in optics.
Moreover, it has been evidenced that chiral substances exhibit a selective affinity towards sound waves with a
particular chirality, which is predicated upon the sound’s ability to convey Orbital Angular Momentum
(OAM) in the form of vortices [23, 24]. However, OAM can also be attained in centrosymmetric structures,
such as in planar layer resonators and planar arrays of electroacoustic transducers [25, 26].

In this study, we demonstrate for the first time that a 3D chiral mechanical meta-structure is capable of
transforming a longitudinally polarized wave into a transversely polarized wave. This conversion is attributed
to the incorporation of additional degrees of freedom stemming from the chiral effect, specifically in the
manifestation of rotational inertia. The latter mechanism is commonly identified in chiral mechanical
metamaterials, rendering our metastructure comparable to its analogs with the distinctive characteristic of
exhibiting energy transfer between modes. We use Finite Element Analysis (FEA) to assess the dispersion
diagrams, the total displacement distribution, and the polarization state of the transmitted and reflected
waves upon encountering both a periodic arrangement and single homogeneous block, achiral, and chiral
unit cells. Additionally, we utilize a classical mass-spring model to theoretically describe the dispersion mode
associated with the conversion effect that arises from the coupling of longitudinal and rotational behavior
within the chiral unit cell.

2. Geometry definition and dispersion diagrams

Initially, we describe the features of the two main 3D mechanical metastructure designs under investigation.
The schematic designs of the non-centrosymmetric and centrosymmetric structures are depicted in
figures 1(a) and (b), respectively. Both have a lattice constant a and wings angled at α= 45◦. All other
parameters are depicted in the figure caption.

In the achiral case illustrated in figure 1(d), the top-down and left-right connections are precisely
orthogonal to the long arms of the connections, with a lateral length of h1, and a width of w1. Meanwhile, in
the chiral configuration, all connections undergo a rotation of θ = 70◦, with the long and short arms
denoted as d2 and d1, respectively, form an angle of φ = 70◦, as depicted in figure 1(c). This inclination angle
θ, defined as the angle between the triangular bases and the inclined connectors, is specifically set at 70◦. This
angle serves the dual purpose of introducing chirality within the unit cell, coupled with the manifestation of
a rotational inertia-amplifying mechanism. It is noteworthy that the use of this angle value is intended to
confirm the proof of concept for our structural conversion capability. Furthermore, the preference for
triangular bases within the unit cell over simple square bases stems from the fact that the triangular case
promotes more energy exchange between modes. All other geometrical parameters can be found in figure 1.
Here, we consider the elastic wave propagating along the [001] crystallographic direction with wavenumber
kz, where k⃗= (0,0,kz). The material has a density of ρ= 1140 kgm−3, a Poisson ratio of ν= 0.4 and a Young
modulus of E= 4.2 GPa. Figures 2(a) and (b) delineate the band structure of achiral and chiral
metamaterials, respectively, showing all viable modes that may propagate along the ΓZ direction. It is worth
noting that, the total displacement portrayed in figures 2(c) and (d) depicts the normal longitudinal and
rotation coupled-longitudinal motions exhibited by the achiral and chiral metastructures, respectively. The
red arrows in the field maps denote the direction of displacement at points A and B, corresponding to a
specific value of kz = π/2a.

3. Mathematical mass-spring formulation

To explore the fundamental process for polarization conversion, we employ the standard two-dimensional
chiral mass-in-mass unit cell, characterized by a classical monoatomic lattice system [27, 28]. This basic
discrete model has been extensively used for various analytical endeavors, especially in investigating the
dispersion relation of elastic waves [29–32]. Figure 3 shows the mass-spring model used that includes a
central mass denoted byM, which is connected through linear springs that are inclined and exhibit a stiffness
constant designated as Dkl

1 , where k, l ∈ {z,y,φ}. This introduced an additional bending moment.

2
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Figure 1. Geometrical description of the 3D arrays encompassing chiral (a) and achiral (b) metamaterial composed of 3× 3× 3
unit cells, respectively. (c) and (d) The 3D schematic design of chiral and achiral unit cells with a uniform spatial period of a in all
directions, respectively. The set of geometrical parameters are defined as follows: a= 1.3 cm, h1 = 0.25 cm, h2 = 0.8 cm, d1 = 0.1
cm, d2 = 0.4 cm, w1 = 0.1 cm, w2 = 0.4 cm, w3 = 0.55 cm, g1 = 0.63 cm, g2 = 0.45 cm, α= 45◦, φ = 70◦ and θ = 70◦.

Figure 2. The dispersion diagrams for the achiral and the chiral metamaterials are presented in (a) and (b), respectively. The red
dotted curve in (b), depicts the rotational coupled compressional mode. Both metamaterials have the same spatial period of
ax = ay = az = a along all directions, with a wavenumber kz within the range of [0,π/a]. In (c) and (d), the entire field
distribution (normalized displacement in the false color and an exaggerated deformation for better clarification) is illustrated
when the wavenumber kz = π/2a for the achiral and chiral metamaterials, respectively. The red arrows in (c) and (d) present the
direction of the displacement field distributions at points A and B, respectively.
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Figure 3. The monoatomic mass-spring model consists of a mass-in-mass unit cell, where the central massM is represented by a
red dot. The masses are interconnected to their nearest neighbors via inclined springs featuring a stiffness coefficient of Dkl

1 . The
indices (i), (j) correspond to the row and column coordinates of the massesM within the system. The fundamental unit cell
exhibits a periodicity of a= 1.3 cm. The incorporation of the aforementioned inclined connections within this configuration
engenders heightened bending inertia, thereby leading to an amplified micro-rotational motion.

Newton’s second law of dynamics expounded the total forces acting on the (i, j) massM, which can be
expressed as follows [33]:

M
∂2uzi,j
∂t2

= Dzz
1 (u

z
i,j+1 + uzi,j−1 − 2uzi,j)+Dzy

1 (v
y
i+1,j − vyi−1,j)+Dzφ

1 (φi,j+1 −φi,j−1) (1)

M
∂2vyi,j
∂t2

= Dyy
1 (v

y
i+1,j + v yi−1,j − 2v yi,j)+Dyz

1 (u
z
i,j+1 − uzi,j−1)+Dyφ

1 (φi+1,j −φi−1,j) (2)

By incorporating chirality through the inclined connection in the unit cell, a bending moment is generated,
which can be explicitly delineated in the following manner (using the rotation inertia J) [34, 35]:

J
∂2φi,j

∂t2
= Dφ z

1 (uzi,j+1 − uzi,j−1)+Dφy
1 (vyi+1,j − vyi−1,j)+Dφφ

1 (φi,j+1 +φi,j−1 − 2φi,j) (3)

By considering harmonic solutions to equations (1)–(3), the periodic conditions can be formulated as
follows [36, 37]: uzi,j±m = ei(±mka−ωt)un, v

y
i±m,j = ei(±mka−ωt)vn, and φi,j±m = φi±m,j = ei(±mka−ωt)φn, where

k and a are the wavenumber throughout the ΓZ direction and the unit cell period, respectively. The
substitution of the Bloch solutions into the governing, equations (1)–(3), leads to the following matrix:2Dzz

1 (cos(ka)− 1)+Mω2 2iDzy
1 sin(ka) 2iDzφ

1 sin(ka)
2iDyz

1 sin(ka) 2Dyy
1 (cos(ka)− 1)+Mω2 2iDyφ

1 sin(ka)
−2iDφ z

1 sin(ka) −2iDφy
1 sin(ka) 2Dφφ

1 (cos(ka)− 1)+ Jω2

unvn
φn

= 0 (4)

In order to obtain the solutions for this system of equations indicated in equation (4), we need to solve the
roots of a polynomial equation with a degree of six, as outlined in equation (5).

Aω6 +Bω4 +Cω2 +D= 0 (5)

The expressions of the coefficients denoted as A, B, C, and D in equation (5) are given as:



A= JM2

B= 2[cos(ka)− 1](JM(Dzz
1 +Dyy

1 )+M2Dφφ
1 )

C= 4[cos(ka)− 1]2(JDzz
1 D

yy
1 +MDzz

1 D
φφ
1 +MDyy

1 D
φφ
1 )− 4sin2(ka)[JDzy

1 D
yz
1 +MDzφ

1 Dφ z
1 ]

D= 8Dzz
1 D

yy
1 D

φφ
1 [cos(ka)− 1]3 + 8[cos(ka)− 1]sin2(ka)[Dzy

1 D
yz
1 D

φφ
1 −Dzφ

1 Dφ z
1 Dyy

1 ]

+ i8sin3(ka)[Dzy
1 D

φ z
1 Dφy

1 +Dzφ
1 Dyz

1 D
φy
1 ]

(6)
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By implementing a variable substitution of ω =
√
Ω− B

3A , the sixth-degree equation represented by

equation (5) was transformed into the depressed cubic equation form, as indicated by equation (7).

Ω3 +
(3AC−B2)

3A2︸ ︷︷ ︸
p

Ω+
(2B3 − 9ABC+ 27DA2)

27A3︸ ︷︷ ︸
q

= 0 (7)

Furthermore, it is noteworthy that the solution to a depressed cubic formula is well known within diverse
mathematical frameworks [38–40]:

Ω1 = r− B

3A
, Ω2 = r

(
−1

2
+ i

√
3

2

)
− B

3A
, Ω3 = r

(
−1

2
− i

√
3

2

)
− B

3A
(8)

The coefficients upon which the solutions depend are formulated in the following manner:

r= e+ f, e=

(
−q

2
+

√
q2

4
+

p3

27

)
, f =

(
−q

2
−
√

q2

4
+

p3

27

)
(9)

Consequently, the roots of the system of equation (4) are written as follows:

ω1 =
√
Ω1, ω2 =

√
Ω2, ω3 =

√
Ω3, ω4 =−

√
Ω1, ω5 =−

√
Ω2, ω6 =−

√
Ω3 (10)

The plus and minus signs in the eigenfrequencies in equation (10) relate to the propagation of forward
and backward waves. Henceforth, we focus on determining the corresponding eigenvectors for these
eigenfrequencies in order to identify the parameters that govern the conversion of compressional modes to
shear modes. To facilitate this analysis, we simplify the set of equations represented by equation (4) and make
the simplifying assumption that the coefficients Czy = Cyz and Czφ = Cyφ are approximately equal.Czz +Mω2

i Czy Czφ

Czy Cyy +Mω2
i Czφ

−Czφ −Czφ Cφφ + Jω2
i

unvn
φn

= 0 (11)

 Czz +Mω2
i −Czy Czy Czφ

2Czy − 2Mω2
i −Czz −Cyy Cyy +Mω2

i −Czy 0
0 −Czφ Cφφ + Jω2

i

unvn
φn

= 0 (12)

The manipulation of equation (11) results in three pondering coefficients that relate the compressional
displacement û, the shear displacement v̂, and the in-plane rotation φ̂, as indicated by equation (14).

(2Czy −Czz −Cyy − 2Mω2
i )û+(Cyy −Czy +Mω2

i )v̂= 0−Czφv̂+(Cφφ + Jω2
i )φ̂= 0 (13)

v̂=
(−2Czy +Czz +Cyy + 2Mω2

i )

(Cyy −Czy +Mω2
i )︸ ︷︷ ︸

β(ω2
i )

û, φ̂=
Czφ

(Cφφ + Jω2
i )︸ ︷︷ ︸

γ(ω2
i )

v̂, α(ω2
i ) =−(Czyβ+Czφγ) (14)

Subsequently, the set of eigenvectorsΨω2
i
can be expressed in terms of the pondering coefficients α(ω2

i ),

β(ω2
i ) and γ(ω2

i ).

Ψω2
i
=

α(ω2
i )

β(ω2
i )

γ(ω2
i )

 û,with û=
u⃗

∥u⃗∥
(15)

Most importantly, the resultant eigenvectors are linearly dependent on the longitudinal component û, as
opposed to usual circumstances where the eigenvectors are totally independent, i.e. the coefficients β(ω2

i )
and γ(ω2

i ) were equal to zero. The eigenvectorsΨω2
i
are used to derive the polarization states of the

eigenfrequencies ωi using equation (16) in its general 3D format [41].

Pζ =

˝
Vi

√
|Ψω2

ζ
|2 dr

˝
Vi

√
|Ψω2

α
|2 + |Ψω2

β
|2 + |Ψω2

γ
|2 dr

, ζ ∈ {α,β,γ} (16)
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Figure 4. (a), (b) The diagrams illustrate the energy-momentum characteristics of compressional and shear motions in the chiral
metastructure obtained using the FEA method and the theoretical model, respectively. The dotted point plot corresponds to the
results of the FEA simulation conducted on the chiral metamaterial, for both compressional and in-plane shear modes. The stars
correspond to the longitudinal and in-plane shear acoustic branches, as obtained through employment of the monoatomic spring
mass model with inclined connection. The scale bar pertains to the longitudinal polarization state along the ΓZ direction, for
both cases.

It is important to notice that the subscript notation ζ represents three distinct characters: α, β, and γ. The
latter characters correspond, respectively, to the displacement components along the Cartesian coordinates y,
x, and z. As the out-of-plane mode is decoupled from the in-plane and longitudinal modes, we restrict the
mathematical investigation to the two-dimensional case, where only longitudinal and shear horizontal waves
can exist. The parameters Vi typically present the volume of the unit cell, but in 2D, they are reduced to the
unit cell’s in-plane surface. The present analysis intends to compare the conversion results obtained through
the FEA. However, this approach is incompatible with eigenmode computation and is confined to evaluating
energy exchange via the linear dependence of the eigenvectors. By employing the information derived from
equations (10) and (16), figures 4(a) and (b) show a notable consistency between the analytical model and
the numerical results, except for the longitudinal case when the wavelength is in the order of magnitude of
the structural periodicity. The latter divergence results from the coupling of longitudinal mode and optical
branches, which is not taken into consideration in the mathematical model. Furthermore, using this
theoretical combination to delineate the eigenfrequencies (mode shapes) and eigenvectors (polarization
states), three main domains can be discerned. In the low wavenumber domain (kz < 0.4π/a), the
polarization of the modes shows negligible alterations. In figures 4(a) and (b), only longitudinal polarization
is evident, indicated by the red star and dotted curves, while the absence of in-plane shear polarization is
denoted by the blue colour in this range. In the mid-range domain (0.4π/a< kz < 0.8π/a), the onset of
polarization conversion is denoted by the alteration in colour of the dotted and star curves from red to yellow
for longitudinal polarization and from blue to cyan for the in-plane shear modes (see figures 4(a) and (b).
Additionally, in the large wavenumber domain (0.8π/a< kz < π/a), the longitudinal dotted and star curves
assume a blue, indicating a shift from longitudinal to shear modes, as shown in figures 4(a) and (b). In our
analysis, we confined the theoretical model to the initial two acoustic branches, focusing on the longitudinal
and in-plane shear waves, as they represent the predominant modes exhibiting energy exchange. It is worth
noting that the coupling coefficients Dzy

1 and Dzφ
1 have two distinct values. The first represents the strong

coupling regime, characterized by a high degree of energy interplay between rotation and compression. In
contrast, the second reflects the weak coupling regime, characterized by limited energy communication to
the in-plane shear mode (shear horizontal), since the compressional mode exhibits stronger coupling than
the in-plane shear mode. Subsequently, we present the set of the mass-spring parameters employed for the
evaluation of the longitudinally-coupled mode with rotation:M= 4× 10−3 kg, J= 0.8× 10−4 kgm2,
a= 1.3× 10−2m, Dzz

1 = 3.5× 103Nm−1, Dyy
1 = 7× 103 Nm−1, Dzy

1 = 4× 102Nm−1,
Dzφ

1 = 3.2× 103Nm−1, Dφφ
1 = 7× 103Nm−1. In the context of the in-plane shear mode, only the coupling

coefficients Dzy
1 = 1.5× 10−1Nm−1 and Dzφ

1 = 1× 10−1Nm−1 are modified and tuned.
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4. Results and discussion

In this section, we consider numerical modeling using FEA to evaluate the chiral meta-structure’s ability to
convert longitudinal waves into both horizontal and vertical shear waves. Our approach employs an
eigenvalue problem to scrutinize the polarization states of each mode within the dispersion diagram for the
chiral structure, as illustrated in figures 5(d)–(f). It is crucial to emphasize that we calculate the polarization
states of the chiral metastructure modes using FEA according to equation (16), where Vi represents the unit
cell volume this time. These illustrations provide evidence that the longitudinal mode is capable to transform
Pγ to Pα and Pβ polarization states, which results from the interaction of the longitudinal wave with
rotational inertia. The total displacement field associated with the longitudinal mode distinctly displays the
ability to merge compressional motion with an additional degree of freedom, namely rotational motion, as
evidenced in figure 5(c). Moreover, harmonic analysis is conducted to evaluate the responses of a periodic
arrangement featuring 1× 1× 6 dimensions. Periodic conditions are applied on the x- and y-axes for
homogeneous block, achiral, and chiral unit cells, respectively, to an external longitudinal vibration
propagating along the z-axis, as illustrated in figure 6(a). A parallel assessment is conducted for a singular
1× 1× 1 homogeneous block, achiral, and chiral unit cells without periodic conditions, as depicted in
figure 6(b). These unit cells are enclosed by two large building blocks on both sides, composed of the same
material as the unit cell, while two perfectly matched layers (PML) are implemented at the left and right
boundaries to prevent any spurious reflection. Additionally, we use equation (16) to assess the polarization
states of transmitted and reflected waves when they interact with a homogeneous block, achiral, and chiral
metamaterials. Notably, in this case, we consider the volume integration denoted by V i as the spatial volumes
encompassing the right and left sectors of the array or unit cell, respectively. Where the index i ∈ {1,2}, as
indicated in figures 6(a) and (b). By generating a wave on our structure from the left side, as depicted in
figure 6(a), with a normalized longitudinal vibration and a maximum frequency of 1.8× 104 Hz,
propagating along the z-axis, we obtain the polarization states of the transmitted waves at the monitor
located on the right side. This investigation encompasses homogeneous blocks, achiral, and chiral
metamaterials, as exemplified in figures 7(a)–(c), respectively. The homogeneous block and the achiral arrays
preserve the identical polarization state as the incident wave Pγ , as indicated by the cyan and blue colors,
respectively. In other words, the value of Pγ remains constant at approximately one, signifying the absence of
conversion. Conversely, the chiral meta-array can convert a purely longitudinal polarized wave to both
horizontal Pα and vertical shear Pβ waves, as represented by the red color. Similarly, the polarization states of
reflected waves from the homogeneous block, achiral, and chiral meta-arrays are illustrated in
figures 8(a)–(c), respectively. Furthermore, we evidence that the reflected waves undergo a transformation
from a purely longitudinal polarization, Pγ , to alternative polarization states, Pα and Pβ , upon their
interaction with the interface of the chiral meta-array. Conversely, in the case of the homogeneous block and
achiral arrays, the polarization states of the reflected waves remain unaltered. The 3D distribution of the total
field displacement for the homogeneous, achiral, and chiral arrays is presented in figures 9(a)–(c). At the
identical frequency of 5.5 kHz, the field maps distinctly illustrate that the polarization state of both
transmitted and reflected waves remains consistent with the external longitudinal stimulus for both
homogeneous and achiral arrays, as depicted in figures 9(a) and (b). Conversely, in the scenario involving the
chiral array, the polarization of both transmitted and reflected waves at the same frequency switches from
longitudinal to orthogonal polarization (shear), as shown in figure 9(c). This outcome confirms the chiral
meta-array’s capability to effectuate a 90◦ rotation in the polarization state.

Henceforth, we confine our investigation to the case of a single unit cell, considering the geometric
design illustrated in figure 6(b). It is noteworthy that all parameters and physical properties remain the same
as before, with the array being replaced by a single unit cell this time. Figures 10(a)–(c) and 11(a)–(c)
illustrate that a single chiral meta-atom can induce an elastic polarization conversion similar to its bulk
counterpart, represented by the periodic arrangement of unit cells. This relies on the presence of shear
components in both the transmitted and reflected waves (Pα ̸= 0 and Pβ ̸= 0), as denoted by the red curves.
However, in scenarios involving homogeneous and achiral unit cells, the polarization state remains invariant
(Pα = 0 and Pβ = 0), aligning with the incident vibration (longitudinal). In the homogeneous case, the
polarization state of both transmitted and reflected waves remains unaltered from the incident wave, denoted
as Pγ , as depicted in figure 12(a) around 12 kHz. The achiral structure’s total displacement field also
preserves the same polarization state as the incident excitation throughout the entire spectral range, as
exemplified at the frequency of 2.404 kHz in figure 12(b). In contrast, in figures 12(c) and (d), the chiral case
manifests the ability to convert both transmitted and reflected waves from longitudinal polarization to shear
polarization at the frequencies of 2.404 kHz and 10.598 kHz, respectively.

Additionally, a time-harmonic vibration with a sinusoidal waveform was employed to explore the
polarization states of transmitted waves through a homogeneous block, achiral and chiral metamaterials. The
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Figure 5. Panels (a)–(c) depict the total displacement behaviors of shear horizontal, shear vertical, and rotational-coupled
longitudinal motion at the points A, B, and C indicated by the circle in each respective polarization. Panels (d)–(f) portray the
polarization state of the primary triad of modes; namely, shear horizontal Pα, shear vertical Pβ , and longitudinal Pγ
polarizations, respectively.

Figure 6. (a), (b) The three-dimensional schematic representation used for evaluating the polarization state of both transmitted
and reflected waves upon interacting with an array of unit cells and a single unit cell, respectively.

vibration, directed along the z-axis, possesses a normalized magnitude and a frequency of 2.404 kHz, with its
duration varying from 0 to 5 ms, as indicated by the black curve in figure 13(a). The findings indicated that
the polarization states of transmitted waves remained unchanged when the homogeneous block and achiral
unit cells were stimulated by the incident vibration. This outcome is demonstrated by the pink curves in
figures 13(b) and (c), where the output showed only the Pγ component, while the Pα and Pβ components
remained at zero, as depicted by the red and dark-blue curves, respectively. In contrast, the chiral structure
caused the incident compressional vibration to be transformed into a shear vibration, as indicated by the
results presented in figure 13(d). As a result, the output signal clearly displays the presence of the Pα

component, which corresponds to the shear component. Finally, figures 14(a)–(c) display the overall
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Figure 7. (a)–(c) Polarization states of transmitted waves subsequent to encountering a periodic arrangement of 1× 1× 6 unit
cells for homogeneous blocks, achiral configurations, and chiral structure, respectively.

Figure 8. The illustrations labeled (a), (b), and (c) portray the polarization state of the elastic wave upon reflection at the interface
of a meta-array composed of 1× 1× 6 unit cells for a homogeneous cube, an achiral meta-atom, and a chiral meta-atom,
respectively.

Figure 9. Panels (a)–(c) present the total displacement field of a homogeneous block, achiral, and chiral arrays at a frequency of
5.5 kHz, respectively.
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Figure 10. The diagrams (a), (b), and (c) depict the polarization state of the transmitted elastic wave following interaction with a
single unit cell of a homogeneous block, an achiral, and a chiral configurations, respectively.

Figure 11. Diagrams (a), (b), and (c) elucidate the polarization state of the elastic wave upon reflection at the interface of a single
unit cell of a homogeneous block, an achiral meta-atom, and a chiral meta-atom, respectively.

Figure 12. Panels (a) and (b) present the total displacement field of a homogeneous block and an achiral unit cell, respectively, at
the frequencies of 12 kHz and 2.404 kHz. In contrast, panels (c) and (d) display the total displacement field of the chiral
metamaterial unit cell at the frequencies of 2.404 kHz and 10.598 kHz, respectively.
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Figure 13. In panel (a), a longitudinal sinusoidal excitation source with a normalized magnitude of 1 and a frequency of 2.404
kHz, directed along the z-direction, as indicated by the black curve. Panels (b)–(d) portray the polarization states of a
time-harmonic stimulus after encountering a homogeneous block, as well as achiral and chiral metastructures, respectively. The
fundamental polarizations of the transmitted wave, specifically shear horizontal Pα, shear vertical Pβ , and longitudinal Pγ for all
cases, are delineated in red, dark-blue, and pink, respectively.

Figure 14. Panels (a)–(c) depict the total displacement field at a time step of t= 3.6 ms, as denoted by the points A, B and C in
figure 13, for the homogeneous, achiral, and chiral meta-atoms, respectively.

displacement field at a specific time of 3.6 ms for all cases, revealing a remarkable degree of consistency
between the frequency and time-harmonic investigations carried out in this study.

5. Conclusion

Within the scope of this study, we present a compelling analysis of 3D structure facilitating polarization state
conversion in solid materials. Our investigation focuses on the mechanical properties of achiral and chiral
metastructures. Initially, a rotational inertia-amplifying mechanism is introduced into the chiral
metastructure through its inherent chirality, thereby inducing a rotation in the polarization plane. The
absence of rotational inertia prevents achiral structures and homogeneous media from yielding comparable
outcomes. Subsequently, we have demonstrated that the incorporation of chiral effects endows the normal
meta-atom with an additional degree of freedom, which enables rotational motion and conversion of the
polarization state in both time and frequency domain simulations. These findings demonstrate that
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including chirality enables the structure’s conversion ability by establishing a hybrid mode via compressional
and rotational movements. Notably, this conversion leads to the transformation of longitudinal waves into
corresponding orthogonal polarizations, i.e. shear waves. Additionally, the examined chiral structure
manifests its capacity to transform the polarizations of both transmitted and reflected waves. Moreover, this
conversion capacity is confirmed in both periodic chiral array and individual chiral metastructure scenarios.
It is essential to emphasize that the inverse process of converting incoming shear waves into longitudinal ones
is also feasible, and vice versa. A comparable polarization conversion can be attained in beam-based
metastructures, given our belief that the latter maintain analogous features to their meta-atoms.
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