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Abstract 

Additive manufacturing by wire deposition is a complex process as it generates overlapping and 
transient thermal fields, resulting in multiple cycles of solidification and remelting. Consequently, 
simulating the microstructure becomes challenging, making it difficult to optimize the process 
and predict the mechanical properties of an additive-manufactured part. In this work, a 
framework is developed, including several sequentially applied methods to obtain increasingly 
accurate information about the microstructure resulting from a wire deposition process. This 
framework is based on understanding experimental data and utilizing them as inputs to simplify 
the problem or accelerate numerical simulations. The experimental inputs consist of light optical 
images, SEM, and EBSD images. The methods developed here are initially geometric-based and 
then progress to shape recognition, unsupervised learning, and phase field modeling. 
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1 Introduction 

 Additive Manufacturing (AM) is a modern technology that builds components layer by 
layer from a 3D CAD model. This process is fully automated and enables the production of 
complex components difficult to manufacture with traditional subtractive methods. An overview 
of the most common AM techniques available is given in [1]. AM systems may be categorized in 
terms of the feed stock material or the energy source. Wire feed systems use different energy 
sources (electron beam, laser, arc) [2]. Garcia-Colomo et al. [3] published a comparison 
framework to select specific AM techniques in aerospace applications. Wire deposition is favored 
if high deposition rates and large build volumes are the main criteria. 

In wire additive manufacture, single beads of material are deposited side by side and in 
successive layers to generate the desired 3-dimensional structure. [1,2]. In wire arc additive 
manufacturing (WAAM), liquid droplets transfer heat to the melt pool from the wire electrode. 
Wire-feed additive manufacturing can use laser, arc welding, or electron beam as energy sources 
for metal deposition. Among these, arc welding-based AM is preferred due to its higher 
deposition rate, energy efficiency, safe operation, and lower cost. Arc welding processes, such as 
GMAW or GTAW, have high energy efficiency and are promising for manufacturing aerospace 
components with medium to large sizes. The metal transfer mode is a critical factor in 
determining the component properties during WAAM [4]. Research shows that the CMT pulse 
advanced process can control the porosity rate by adjusting heat input. Several review papers 
dedicated to wire arc additive manufacturing have been published over the last years [4,5,6]. Li 
et al. [6] highlight the close relation between process parameters and final microstructure. Zeng 
et al. [7] analyzed thoroughly the relation between process parameters and microstructure for 
NiTi deposited by wire arc Tungsten Inert Gas (TIG) technology. Several other microstructural 
analyzes may be found. In the following we limit the literature on 316L stainless steel.  

 Long et al. [8] deposited 316L stainless steel using a Cold Metal Transfer (CMT) system 
with two different linear energy inputs (LEIs). The microstructure, mechanical properties, and 
fracture mechanisms of the steel were examined using various techniques. The steel was found 
to consist of α-ferrite and austenite dendrites, with primary dendrite spacing decreasing with lower 
LEI or higher cooling rates. Wen et al. confirmed the influence of the LEI on the primary 
dendrite spacing [9]. They showed that the δ-ferrite contents remain similar under both high and 
low LEI. Wang et al. [10] deposited 316L stainless steel with CMT technique in two different arc 
modes (SpeedArc and SpeedPulse). They concluded that SpeedArc leads to higher tensile 
strengths than SpeedPluse due to a finer solidification microstructure. Cunningham et al. [11] 
analyzed the influence of inter-layer cooling time on the microstructure of CMT deposited 316L 
steel. Palmeira et al. [12] characterized the microstructure of 316L deposited by CMT. They 
determined the separation lines between successive layers and a mean bead shape with indication 
of the growth directions. All the preceding publications clearly indicate a strong relation between 
the process parameters (Linear Heat Input, interlayer cooling time), the bead shape, the 
microstructure and the mechanical properties. These are valuable indications for microstructural 
models. 

 The microstructure of a material is determined by the solidification velocity and thermal 
gradient at the solidification front, which are controlled by various process parameters. Additive 
manufacturing creates complex patterns due to multiple remelting, which can only be accurately 
simulated using appropriate tools [6-12]. Different models, such as phase-field, cellular 



automaton, and Monte Carlo, are used to describe microstructure evolution during solidification 
[27-28].  

The most popular models for solidification are cellular automaton and phase field models 
[28]. CA models combined with finite element approaches allow to model large-scale problems 
involved in casting [13,14,15]. Recently these models were applied to selective laser beam melting 
[16]. Liu et al. modeled microstructure evolution during additive manufacturing of Ti6Al4V by 
coupling a 1D phase field approach with a CA model [17]. This approach combines faster 
calculations of the CA models with kinetics issued from a 1D phase-field model and requires 
high symmetry of the fusion bed. The CMT process does not lead to these highly symmetric 
fusion beds [8-12]. Zinovieva et al. [18] published a 3D CA model of microstructure obtained by 
selective laser melting.  

Phase Field (PF) models use a continuous field variable (order parameter) to describe a 
diffuse interface between two phases instead of a sharp interface [25,26]. Considering the order 
parameter as an independent state variable, allows for the consideration of non-equilibrium states. 
In 1993, year Kobayashi used a PF model to solve Stefan's problem of solidification in an 
undercooled melt [22].  

Additive manufacturing creates complex microstructures [6-12], which depend on the 
process parameters controlling the bead shape [30, 31]. While PF- and CA-models are 
particularly well-suited for simulations of grain nucleation and growth, they are limited to small 
scales compared to the typical bead sizes. Our framework (section 3) includes a phase field (PF) 
model to describe crystal orientation, therefore, a faster approach for detecting microstructural 
discontinuities (the interfaces) prior to using PF models is adopted. 

Additive manufacturing holds great potential for producing workpieces with controlled 
microstructures. Wire arc additive manufacturing creates mm-sized beads with micron-sized 
microstructural defects at the bead boundaries, necessitating a model that covers a range of length 
scales from micrometers (for the accurate description of solidification microstructures) to several 
mm for the bead interfaces.  

Since Kobayashi's pioneering work in 1993 [22], Phase Field (PF) models have proven to 
be highly efficient for simulating microstructure genesis at the micron scale. However, these 
models demand significant computational resources and are not yet suitable for modeling entire 
beads, as required for a bead with a cross-sectional area exceeding 4x4mm2, as highlighted in 
reference [28]. To address this challenge and model the microstructure across the entire bead 
cross-section, which spans from the micron to the millimeter scale, a novel model framework is 
proposed in Section 3. This framework comprises a series of successive methods, each building 
upon the predictions of the previous one. The initial methods focus on characterizing the deposit 
at the millimeter scale and require minimal experimental input. The final two methods employ a 
Phase Field approach to characterize the microstructure of the bead. 

In Section 2, we present microstructural observations of 316L stainless steel deposited by 
CMT. Section 3 details the development of a multiscale model of CMT based on minimal 
experimental input, utilizing various methods ranging from straightforward geometrical 
considerations to phase field modeling, and applying them to specific areas of the beads. The 
model's predictions are discussed in Section 4.  

  



2 Experimental 

2.1 Wire arc deposition and sample 

Wire arc additive manufacturing was used to deposit 1.2 mm diameter 316LSi stainless 
steel wire onto a 304 stainless steel base plate measuring 200x200 mm with a thickness of 40 mm. 
The wire was supplied by Lincoln company and its chemical composition is given in Table 1. 
The resulting rectangular parallelepiped measured 130 mm x130 mm x100 mm (Figure 1). A 
Fronius CMT torch mounted on a robot arm was used to deposit all the beads in the same 
direction (S) at a deposition angle of 0º. ARCALtm Chrome (Ar - 2%C02) was used as shielding 
gas. The process parameters are indicated in Table 2, with a deposition rate of 4.23 kg/h and a 
step size of 4 mm. The deposition of each layer was carried out at room temperature, resulting 
in very long dwell times. The 316LSi density is 7960 kg/m3. The total volume of the block is 
about 1755 cm3, and its final weight, excluding the substrate, is about 14 kg. 

 

Table 1 : Nominal chemical composition of 316LSi stainless steel wire 

 
Voltage 

(V) 
Current 

(A) 
(L/min) Wire feed 

(mm/s) 
Travel speed 

(mm/s) 
LEI 

(J/mm) 

13.5 228 20 8 10 308 

Table 2 : CMT process parameters. 

 

 
(a) (b) 

Element C Cr Ni Mo Mn Si P S N Cu Fe 

wt% 0.01 18.5 12.2 2.5 1.8 0.81 0.02 0.01 0.05 0.23 Bal 



Figure 1 : 316LSi stainless steel deposited by CMT (a) Sample, (b) schematic representation 
with annotations. 

2.2 Sample preparation 

In the plane H1H2 perpendicular to the scanning direction (Figure 1b), a sample was cut 
for microstructural observations. The dimensions of the sample H1-H2 are 89 mm x 57 mm x 
10 mm. The sample was prepared for macroscopic observation using automatic polishing. The 
polishing process was followed by chemical etching by hydrofluoric acid with (40 ml HNO3, 10 
ml HF and 10 ml H2O2). Etching lasted for 5min 30sec in the acid at 60°C. Samples for EBSD 
observations were extracted from the center of the block and prepared with standard surface 
finish for EBSD observations. 

2.3 Microstructural observations 

 
(a) (b) 

Figure 2 : Section orthogonal to the scanning direction, light optical microscopic 
observation. (a) View of the entire section, (b) zoom on in the red rectangle in (a) showing the 
bead shape, the interfaces and defects at the junction of three beads. N, N+1, N+2 designate layers 
of material deposited successively; (i), (i+1), (i+2) correspond to beads in the same layer. The 
yellow dashed line shows the delimitation of a single bead. 

Figure 2 depicts the entire sample H1H2 and zooms in on specific beads, with the borders 
being easily distinguishable. The vertices defining a particular bead are indicated in Figure 2b, 
with the numbers N, N+1, N+2 indicating successive layers, and the numbers (i), (i+1), (i+2) 
indicating successive beads in the same layer. A typical bead shape can be defined by six vertices 
(V1,…,V6), as illustrated in the zoomed-in view in Figure 2b. During the deposition of layer N, 
vertices (V1,…,V4) are formed, while vertices (V5,V6) are formed by the partial remelting of layer 
N during the deposition of layer N+1. This partial remelting controls the material continuity, and 
its absence leads to the typical defects displayed in Figure 2b. In Section 4, we will establish that 
the presence of defects also affects the bead shape and consequently the local microstructure.  

Defects can arise due to the presence of gas bubbles and insufficient local remelting. In this 
paper, we do not delve into the analysis of process optimization. The responsibility for addressing 
and eliminating defects by selecting the appropriate process parameters is entrusted to industrial 
companies. Our primary focus is on describing the microstructure. However, given that defects 



can impact the shape of the lower contour, we do consider the influence of such defects on the 
contour's shape. 

The light optical observations provide valuable information on the bead shape, which 
serves as the initial input for the model proposed in Section 3. Additionally, SEM observations 
were conducted to gather more data. Figure 3 displays a composite image of a typical bead, 
revealing a mixture of δ ferrite (light grey) and austenite (dark grey). For pedagogical purposes, 
the bead border and corresponding vertices are highlighted in yellow. The δ ferrite density varies 
within the bead, and the orientation of the δ ferrite dendrites relative to the bead border is 
considered as an input for the model. Furthermore, zones with epitaxial grain growth between 
successive beads can be identified. 

 
Figure 3 : SEM observation in a section perpendicular to the scanning direction. The light 

grey features correspond to δ ferrite and the dark grey matrix corresponds to austenite. N and 
N+1 designate successive layers of material deposited. The yellow dashed line shows the border 
of a bead. Vi  are vertices defining the bead. V1 to V4 are formed during deposition of layer N. V5 
and V6 are formed during deposition of layer N+1. 

  



 
(a) (b) 

 
(c) (d) (e) 

 

 
(f) 

 
(g) 

Figure 4: EBSD characterization. IPF maps of γ -austenite (a) scanning direction, (b) 
transverse direction. The dashed lines indicate bead boundaries, (c-e) pole figures in the BS plane 
showing periodicity at the scale of a bead. Poles figures of ferrite (f) and austenite (g). 



The microstructural analysis was completed with texture analysis through EBSD 
measurements. Inverse pole figures (IPF) are color-coded images where the colors are based on 
the standard stereographic triangle (for cubic symmetry), which is shown on the right. Each map 
represents the crystallographic direction aligned with one of the sample directions, scan, 
transverse or build. In Figure 4 (a,b), Inverse pole figures of γ-austenite in the S and T direction 
are shown. The <100> directions correspond to the growth of the dendrites. The scanning 
direction is close to <001>. Two growth directions (<100> and <010>) lie in the (B, T)-plane, but 
they form an angle of ±π/4 with the B and T directions. The EBSD maps provide the final input 
for the model presented below. Figures 4 (c, d, e) represent inverse pole figures of γ-austenite in 
the B and S direction. Figures 4(c-e) reveal the presence of large voids (indicated by white/red 
arrows), located at the layer base and elongated along the scan direction. These voids correspond 
to the defects used in the contour classification method. Figures 4 (c, d, e) reveal periodicity along 
the S axis. Based on this periodicity, a 2D grain growth model is used. Figures 4f, 4g depict pole 
figures of ferrite and austenite. These figures show that the crystal orientations of ferrite and 
austenite are close. 

  



3 Multiscale model of wire arc deposition  

3.1 Model layout 

The microstructural features discussed above span several orders of magnitude. Some 
defects at the mm-sized bead interface extend over several hundred µm, affecting the bead shape 
and the solidification microstructure. SEM images revealed µ-sized δ-dendrites with a non-
homogeneous distribution inside the bead. EBSD observations showed an overall crystal 
orientation with growth directions perpendicular to the bead border, with complex grain shapes 
and orientations at the center of the remelted zone. 

To model the microstructure, a combination of different methods suited for specific length 
scales is necessary. The proposed model uses five methods applied successively (Figure 5), 
starting with light optical microscopy to observe large surfaces at low cost. Method M0 extracts 
different beads, while method M1 predicts crystal orientations based on mean bead shapes. 
Method M2 constructs a complete bead by translation of a given pattern, leading to a periodic 
mesh of the 2D space. Adjacent zones in different beads correspond to different deposition times.  

Method M3 uses superpixel segmentation and a Convolutional Neural Network (CNN) 
model to analyze the SEM image shown in Figure 3 and identify the continuity of microstructure 
at the intersection of three beads. Method M4 utilizes a PF approach to analyze a complete bead, 
while method M5 considers multiple beads that have been deposited in succession and models 
them using a PF approach, thus considering the remelting that occurs at the interfaces between 
the beads. 

 
 

Figure 5 : Model layout. M0 to M5 indicate successive methods. The data transfers from 
one method to the next are indicated by dark arrows. Bold light grey arrows indicate experimental 
input. 



Method M0 (contour extractions) relies on optical observations, which are cost-effective. In 
contrast, Method M4 (Phase field simulations) predicts local grain structure and is 
computationally intensive. However, leveraging input from Method M0 significantly accelerates 
computations in Method M4. Both Methods M0 and M4 can be used independently. 

Method M3 (AI based segmentation) involves SEM observations, which are relatively more 
expensive, though their utility is limited. Lastly, Method M5's (Mapping by phase field 
simulations) predictions are compared to EBSD observations, which are costly. Nonetheless, all 
model predictions can be used without necessitating a comparison to EBSD observations. 

3.2 Method M0: determine the lower part of bead contours 

 

    
(a) (b) (c) (d) 

 

 
(e) (f) (g) 

Figure 6: Detailed information for the set-up of method M0, the extraction of the lower 
bead contour. 

Figure 6 depicts the principle of Method M0. In Step 1, an image with identifiable objects 
is taken as input and cropped to contain the desired number of beads with defects on the right, 
defects on the left, and beads without defects, using the light optical observations from Figure 2. 
Figure 6a displays a selection of 30 beads. 

In Step 2, the image is converted to grayscale, and a thresholding algorithm is employed to 
delineate the contours and beads, as depicted in Figure 6b. An algorithm for nearest neighbor 
recognition is used to automatically number the beads from left to right and top to bottom, as 
illustrated for six beads in Figure 6b. It's crucial for the white contours to be closed since the 
algorithm relies on the continuity of grayscale values; a completely black area is numbered, then 
incremented for the next area. A secondary grid is used to store the numbers of each pixel 
associated with its bead. Using the same nearest neighbor recognition algorithm, but with slight 
modifications, the triple points are determined, i.e., those with the smallest average distance 
between three numbered areas (Figure 6c). 



In Step 3, an algorithm browses through the grid of numbered beads and associates each 
one with the coordinates of the six nearest triple points to the "bead" zone, as highlighted for beads 
2 and 5 in Figure 6d. At this stage, a bead is characterized by an area of continuously numbered 
pixels and six triple points with coordinates (x, y). 

In Step 4, the bounding box of each bead is determined (Figure 6e). This box is defined 
by the lines passing through the points having the largest absolute values of x and y. It may be 
necessary to widen the box by a few pixels so as not to cut off a possible very curved contour, 
especially in the melting bath. These operations are depicted in Figures 6e and 6f. Each bead is 
successively cut out of the original image. 

In Step 5, the lower part of the contour of each bead is extracted (Figure 6g). First, the 
coordinates of the continuous contour (in white in the original image) passing through the four 
triple points with the smallest y-coordinate values are determined. The points of the lower 
contour are then saved in an array with multiple entries for each x coordinate. For each x-
coordinate, only the points equidistant between its minimum and maximum y-coordinate are 
considered: leading to a contour with zero thickness. This new lower contour is fitted with a cubic 
spline (Univariate Spline function from SciPy). The process is repeated for all beads to obtain 
the representative spline of each lower contour. For each family, the average of all splines of each 
lower contour is taken to obtain the specific mean lower contour for each family. 

Method M0 is completed automatically except for the detection of defects. This is the sole 
part left to appreciation by the human eye. The CPU time needed is negligible, so that the method 
can easily be applied to several thousands of objects, even on a classic workstation. The method 
M0 delivers the equations of 3 typical beads, i.e., with a defect to the left, with no defect and with 
a defect to the right. Vertices V1 and V4 correspond to the end points of the lower bead. The 
intermediate vertices V2 and V3 correspond to points where changes in curvature are observed. 
Method M0 has given an analytic description of the lower contour of the 3 kinds of beads (defect 
to the left, the right or no defect).  

3.3 Method M1: determine the upper part of bead contours and predict local crystal 
orientation 

Method M1 consists also of several consecutive steps. Several combinations of beads with 
and without defects can pave the entire 2D space. Currently, the aim is to reconstruct the three 
entire beads from the knowledge of the mean curve representing their lower part. Thus, mapping 
the 2D space with a single elementary motive (with or without a defect) is considered. Mapping 
the space with a combination of the red, blue, green motives would follow the same steps. At the 
beginning of method M1, the vertices V1,i (i=1,2,3,4) representing the lower boundary of a bead 
are known.   

In step 1, vertices V2,2 and V2,3 are determined (Figure 7). First vertex V2,3 is determined by 

V1,1V2,3��������������⃗ = V1,2V1,4��������������⃗ . Once, V2,3 is known, the coordinates of V2,2 are given by V1,2V2,2��������������⃗ = V1,3V2,3��������������⃗ . 

In step 2, the bead is divided in different regions defined by the curvature of the lower 
contour. Lines N1 to N4, normal to the lower contour, are drawn and divide the bead surface 
into typical zones. First the zones defined by one single normal to the lower contour are 
determined. These will be labeled by single integers 1a to 2c as depicted in Figure 15 . Interior 
zones corresponding to the crossing of different lines normal to the lower contour are labeled 
with the two or three corresponding single digit integers. 



Until here, only geometrical considerations prevailed. At this stage, the following 
assumption is made. Deposition of layer N causes remelting of the material in layer (N-1). This 
remelting stopped at the lower bead border. Hence, nucleation of the new bead (in layer N) starts 
at the lower bead border. Locally the temperature gradient is perpendicular to the lower bead 
border. The growth direction (<100>) is parallel to the temperature gradient [42]. Hence, all 
zones defined by a single normal are considered to have a known <100> direction. This 
assumption will be checked by method M4 and EBSD observations.   

 

Figure 7: Method M1: At the beginning of the method vertices V1,i (i=1,..,4) are known. Vertices 
V2,2 and V2,3 are determined by M1 based on the periodicity at the bead scale.  

3.4 Method M2 : bead construction and further definition of crystallographic zones 

At this stage, the bead shape is defined and the crystal orientation in zones adjacent to the 
lower contour is known. Considering the periodicity of the deposit, will lead to further insight. In 
step 1, method M2 maps the entire plane with the elementary bead and the corresponding zones 
determined by method M1. In step 2, zones in adjacent beads are considered. Periodicity implies 
that zones adjacent to a single numbered one in the neighbor bead also exhibit a known growth 
direction <100>.  

The distribution of defects is not “homogeneous” across the deposit. This distribution is 
influenced by minor variations in the process parameters. Figure 14 illustrates the construction 
with four contours for each type of bead: those without defects and those with defects. While it 
would be feasible to construct a complete bead solely based on contours with defects (on the left 
and right), mapping the 2D space with such a bead is not realistic. In the current work, the 2D 
space has been mapped using beads without defects. 

 

3.5 Method M3: Deep learning algorithm for continuity analysis of the microstructure at bead 
interfaces 

Deep learning is commonly used for microstructure classification. In 2008, de 
Albuquerque et al. [33,34] proposed using artificial neural networks for simple nodular 
microstructure classification from cast iron images. However, supervised learning algorithms 
require many labeled datasets. In WAAM depositions, microstructural discontinuities are 
suspected at the boundaries of mm-sized beads, and their characterization requires several 
hundred SEM images for a single bead, making it inefficient to train an algorithm with images of 



several beads. To address this issue, Kim et al. [35] developed an unsupervised segmentation 
algorithm for light optical images of low carbon steel in 2020, based on a superpixel segmentation 
technique [36-40]. The algorithm utilizes important user-defined parameters, including the 
number of superpixels and the compactness factor m, and a CNN computation to derive a feature 
for each region. The network is trained to select the most frequent feature in each region, and 
several commonly appearing features are automatically selected. A loss function is employed to 
measure the disparity between the CNN output image and the refined image during the 
algorithm's training [35]. 

At the end of method M2, all possible predictions based on the bead shape and perfect 
periodicity at the bead scale have been made. All zones where the <100> direction could be 
determined by these simple arguments have been identified. At this stage, microstructure 
continuity (in the sense of identical crystal directions) between adjacent beads has been answered 
everywhere except at the zones corresponding to the junction of 3 beads. To analyze the 
continuity of the microstructure between two adjacent beads, the deep learning algorithm 
published by Kim et al. [35] was used. In the current analysis, SEM observations are needed to 
characterize microstructural discontinuities. The Light optical micrographs in [35] exhibit large 
differences in shape and contrast (color). The SEM observations in Figure 3 exhibit essentially 
differences in the density of δ-dendrites in an austenite matrix. To ascertain the usefulness of the 
algorithm for this kind of observations, the method was tested on synthetic microstructures. As 
input the contours similar to figures 14 a, b, c (predicted by method M1) were used. However, a 
much higher density of the lines normal to the lower contour, were used as input to the algorithm. 
This input (based on M1) was intended to reproduce “crystal” growth directions. Figure 8a shows 
an example input corresponding to the bead without defects. We intentionally used an image 
difficult to analyze to test the CNN model. The compactness m and the number of superpixels 
used are given in Table 3. The parameters used in the CNN model are given in Table 4. With 
these parameters, application of the unsupervised learning algorithm to the input generated by 
method M1 leads to the output depicted in Figure 8. 

 
Superpixel 

model 
parameters 

Number of 
superpixels 

Compactness value 

values 1000 10 

Table 3 : Parameters used for superpixel definition. 

 

parameter Number of 
channels 

Maximum of 
iterations 

Minimum 
number of 

labels 

Learning rate for 
training 

Number of 
convolutional layers 

values 100 2000 10 0.1 8 

Table 4 : Parameters used in the CNN model. 

 



  
(a) (b) (c) (d) 

Figure 8 : Test results of CNN. The CNN was applied with the parameters given in tables 
3 and 4 and as input, the images with the normals to the lower contour in (figures 14 a, b, c). 
Figure (a) shows the input used for the contour without defect. Figures (b-d) show results 
corresponding respectively to contours with defect to the left, no defect and a defect to the right. 
Different colors correspond to different zones detected by the CNN algorithm. 

Application of the CNN algorithm to figure 8a leads to the different zones represented in 
figure 8c (bead without) defect. Similar analyses were made for the bead shapes with a defect. 
The aim is to test the CNN algorithm before using it on the SEM image. The different colors in 
Figure 8 correspond to different patterns detected by the CNN algorithm. During the zone 
recognition test, the neural network successfully identified all the lower zones but struggled to 
identify the upper zones. It mistakenly categorized the radial zone, corresponding to the remelted 
material, as two separate zones because it perceived a 50% growth towards the right and 50% 
towards the left. This is an artefact due to the test image (Figure 8a). On the SEM image (Figure 
9), we consider the remelted zone as a single entity. The test case represented by figure 8a is more 
difficult to analyze then the real SEM image. Hence, despite this limitation, given the accurate 
prediction of zones by drawing normals to the lower contour, the validated model instills 
confidence in its applicability to the scanning electron microscope (SEM) image. The synthetic 
image was kept intentionally more difficult to analyze than the real SEM image. 



 
Figure 9 : SEM image used as input to the CNN algorithm with the ZOIs indicated in green 

and red. 

The neural network has been applied to the SEM observation. Regions of interest of 
1500x1500 pixels centered on triple points were defined. There are 5 triple stitches per bead. 
However, the regions of interest im1 and im3 are identical by translation (periodicity of the 
process). The same is true for regions im2, im4 and im5. So only two regions were chosen: im1 
and im2. 

3.6 Method M4: Phase field approach for crystal orientation inside the entire bead 

In this section we focus mainly the PF models dedicated to solidification. Widespread 
applications of PF models are given in many overviews [25,26]. PF models use a continuous field 
variable, generally called order parameter, to describe a diffuse interface between two phases 
instead of a sharp interface with a discontinuity in material properties. Seeing the order parameter 
as an independent state variable, allows for the consideration of non-equilibrium states. Cahn and 
Hilliard [19] used the alloy concentration itself as the order parameter for spinodal 
decomposition. In 1993, Wheeler et al. [20] analyzed solute trapping during solidification with a 
PF approach. The same year Kobayashi developed a diffuse interface scheme to solve Stefan's 
problem of solidification in an undercooled melt [22]. Kobayashi’s model considers a diffusion 
equation for the temperature T(x�⃗ , t) and an evolution equation for the scalar phase field 𝜙𝜙(x�⃗ , t), 
which distinguishes the solid (𝜙𝜙 = 1) and the liquid (𝜙𝜙 = 0) phases through a smooth transition. 

          (1) 



     (2) 
 

Equation (1) describes heat diffusion with an additional term for the latent heat L of a pure 
substance with melting temperature Tm and heat capacity cp. In equation (2), ε and γ are 

proportional to the interface energy and τ is a relaxation time. The presence of ϕ̇ in equation (1) 
and (Tm − T) in equation (2) leads to strong coupling of both equations. In 1998, Kobayashi et 
al. [21] introduced a vector valued order parameter to describe crystal misorientations. They 
considered the following energy functional:  

        (3) 
The order parameter, Φ, distinguishes between solid and liquid states, while θ represents 

local crystal orientation. The double-well potential, fdw , has minima in both the solid (Φ =1) and 
liquid (Φ =0) states. The parameter m differentiates between solid disordered and crystalline 
phases, while ε accounts for anisotropic surface energy. The energy functional's second term 
assumes that the energy changes due to the misorientation of adjacent grains only depend on 
|∇θ|2. As this model leads to instabilities at low interface energies, the authors presented a 
modified model ensuring stability in 2000. Boettinger et al. [23] used a similar approach, where 
the energy functional explicitly depended on solute concentration. They applied this new model 
to various metallurgical problems associated with solidification. The present paper utilizes the 2D 
PF approach based on Warren et al. [24], which has two field parameters : an orientation θ and 
a phase Φ. This model is governed by the following functional: 

     (4) 
 

The field parameter 𝜙𝜙 describes crystalline order (0 in a disorder phase and 1 in a perfect 
crystal). Hence, 𝜙𝜙 < 1 may be observed in grain boundaries. The field θ measures the crystal 
orientation with respect to a fixed reference frame. For crystals with an N-fold symmetry θ ∈
[−π N⁄ ,π N⁄ ). The grain boundary properties may be a function of its inclination. ψ describes 
the inclination of the liquid solid interface with respect to the x-axis. Γ allows considering 
anisotropic grain boundary energies (equation (3) in Warren et al. [26]). s and ϵ control the 
coupling between 𝜙𝜙 and ∇θ. g(𝜙𝜙) and h(𝜙𝜙) must be monotonic functions. The linear term |∇θ| 
avoids grain boundaries to spread out without limitation. The nonlinear term (|∇θ|2) revealed 
essential to describe grain boundary motion. In a recent papers Xue et al. [43] consider the free 
energy as a loss function to minimize by unsupervised learning, leading to reduced computational 
time. In [44], Choi et al. [49] apply this resolution method to powder laser melting.  

Phase field approaches have been successfully applied to model solidification 
microstructures in the past. Steinbach's review paper [25] provides an overview of the use of PF 
models in material science, while Plapp’s review [26] focuses on the application of PF models to 
solidification problems. Recent reviews by Gatsos et al. [27] and Körner et al. [28] have focused 
on the simulation of microstructure evolution for additive manufacturing of metals. PF 
frameworks enable the modeling of nucleation of new grains, but they require extremely fine 
meshes or cells, making them suitable for modeling small volumes. Therefore, these approaches 
are particularly suited for modeling the microstructure at bead/layer interfaces. 



At the end of method M2, all possible predictions based on the bead shape and perfect 
periodicity at the bead scale have been made. Method M3 detects potential discontinuities in the 
microstructure. A phase field approach based on Warren et al. [26] is used to confirm the crystal 
orientation in an entire bead section. The same approach will be applied in the next section with 
a finer scale at the discontinuities detected by method M3.  

The aim of present work is the prediction of local crystal orientations. One might think that 
solute trapping needs to be modeled for predicting local textures. However, solute trapping 
primarily influences the solid-solid transformation from ferrite to austenite. Inoue et al. [42] 
demonstrate that ferrite and austenite exhibit the same orientation, a finding confirmed by our 
EBSD observations (figures 4f, 4g). Furthermore, the distribution of ferritic and austenitic phases 
is nearly uniform in the bead. Therefore, considering solute trapping does not appear to be 
necessary for predicting crystal orientation. 

Three strongly coupled equations are solved simultaneously. The first one describes heat 
diffusion in the bead section. The additional term (𝜕𝜕𝜙𝜙 𝜕𝜕⁄ 𝑡𝑡) corresponds to the latent heat of 
solidification. 

                             (5a) 
 

𝛥𝛥𝛥𝛥 stands for the non-dimensional undercooling. 

          (5b) 
In expression (5b) T, 𝑇𝑇𝑚𝑚 and 𝑇𝑇0 represent respectively the current, the melting and the 

room temperature. Similarly, 𝐷𝐷𝑇𝑇 and ϕ are given by: 

 

                      (5c) 
a , ρ and cp correspond to the thermal conductivity, density and heat capacity of the solid phase. 
L represents the latent heat per unit mass. 

                   (5d) 
Equations (6) and (7) give the non-dimensional forms for the evolution of the phase value 

ϕ and the crystal orientation θ. All the physical dimensions of the parameters used in the phase 
field approach are given in the Appendix (Table 9).  

               (6a) 

           (6b) 

                                 (7a) 

                       (7b) 



                           (7c) 
τϕ and τθ are characteristic times for the phase equation and the crystal orientation. s and ϵ 
introduce first and second order coupling between the phase equation and the crystal orientation. 
Table 5 summarizes the expressions of the characteristic constants and the corresponding non-
dimensional expressions. For the purpose of defining non-dimensional parameters, a 
characteristic length (l0) and time (t0) have been introduced as follows: 

                     (8) 
 

In table 5, L stands for the latent heat of fusion, Tm for the melting temperature and δ for 
the liquid/solid interface thickness, whereas μ represents a kinetic linear coefficient. σl/s is the 
liquid solid interface energy. 

 
Table 5 : Definition of the characteristic parameters used in equations (6) and (7) and their 

corresponding non-dimensional expressions. Values taken from [24]. 

The following physical values are thus needed to define all the parameters in equations (5), 
(6), (7). The input parameters for the heat equation are ρ, cp, DT and Tm.  In the other hand α , 
L, δ, σl/s and μ are material parameters used to calculate phase field parameters. The following 
parameters are chosen by the user of the model : the temperature T0, the characteristic time t0 
and the characteristic length l0. All the parameters mentioned are given in table 6. Additional 
parameters specific to the numerical modelling are given in table 7. The initial and boundary 
conditions might be found in table 8.  

Heat equation Phase and orientation Control parameters 

DT L Tm T0 σl/s μ δ t0 l0 

(m2s−1) (Jm−3) (K) (K) (Jm−2) (
𝑚𝑚
𝐾𝐾. 𝑠𝑠

) (μm) (s) (m) 

12.106 2.109 1811 293 1.8 2.2 0.1 10-4 22.10-6 

Table 6 : Values of the parameters used in the phase field approach. Nfold=4 symmetry was 
considered. 

Model Parameters Number of 
Elements 

Element size Time step 

Values 800 0.2 5 10-4 

Table 7 : Additional model parameters used in the phase field approach. 

 



Temperature 
Zone 1 

Temperature 
Zone 2 

Temperature 
Zone 3 

Phase Zone 1 Phase 
Zone 2 

Phase Zone 3 

400K 293K 2000K Solid Air Liquid 

Table 8 : Boundary conditions and initial values used in the PF approach. 

 

  



 
 (a) (b) 

 
Figure 10 : Initial (a) and boundary conditions (b) as input for phase field simulation of 

bead solidification, (c) temperature field after respectively 60ms (c), 66ms (d), 72ms (e ), 78ms 
(f). 

The deposition of a welding bead occurs only after waiting for the temperature of the 
workpiece to sufficiently drop. The initial temperature of the solid steel is therefore set to 400K. 
To ensure the preservation of the liquid droplet volume, solidification is strictly confined to the 
yellow region in Figure 10. In the same figure, the white area represents air and thus remains 
unaffected by the phase change. It becomes relevant solely in resolving the thermal equation for 
convective heat dissipation. The droplet's initial temperature is set at 2000K, slightly above the 
molten steel's temperature. A homogeneous and random distribution of grains was considered in 
the substrate. This distribution leads to nucleation at the liquid solid interface. No nucleation in 
the liquid was considered. But the model allows simulating this nucleation. After applying the 
necessary conditions, the simulation is initiated, and the differential equations are solved using 
the finite volume solver FiPy [41].  

The thermal simulation commences following the deposition of the droplet and the partial 
remelting of the previous layer. To account for potential heating from adjacent material in the S 



direction, we ensure that the droplet remains above the liquidus temperature for a duration of 60 
milliseconds. Initially, we assume a uniform thermal field within the droplet. 

Given the challenging nature of predicting the geometry of the remelted zone [43,44], we 
determine the shape of the remelted zone based on experimental data (see Figure 2). Figures 10c-
f illustrate the evolution of the thermal field after the deposition of the droplet. The observable 
thermal gradient is a result of heat exchange with the colder substrate. 

EBSD maps, as shown in Figure 4, confirm that <001> corresponds to S. Our specific 
interest lies in the directions <100> and <010> within the (B, T) plane, which are influenced by 
the components of the thermal gradient within this plane. These crystallographic directions can 
be obtained through 2D simulations. 

3.7 Method M5: Phase field approach for the simulation of bead interfaces 

The objective of this method is to reveal the continuity of dendritic growth at the boundaries 
of adjacent beads. Specifically, it examines the interface with the following bead and with the 
upper bead of the next layer. To achieve this, the same regions of interest as in M3 (im2 and 
im3), which are boxes centered on the two triple points of interest) are defined. 

 

(a) (b) 

Figure 11 : Effects of bead deposition chronology on Site 1 and Site 2 simulations 

First a simulation of bead A is performed using a coarse mesh (dx = 0.2, as in M4), and the 
corresponding results from method M4 for these regions of interest are retrieved (thermal field, 
phase field, and orientation values) (Figure 11: site 1 and 2). These values are then reused as 
starting points for two new simulations concerning zone 1 and zone 2. As the dimensions of the 
zones are four times smaller than the initial bead A, a finer mesh can be chosen (dx = 0.05). 
Linear interpolation is proposed by FiPy. Although the initial coarse mesh was already satisfactory 
in terms of convergence, reducing the element size allows for an increased number of grains 
initially implanted in the simulation. Indeed, the use of phase fields is effective when the liquid-
solid interface is not smaller than 5dx. Reducing the element size allows for more grains, smaller 
in size, to be placed at the beginning of the simulation, which should provide more information 
on grain selection and the effects related to seed density. 

 



A dx value of 0.2 enables the simulation of a complete bead within a reasonable 
computational time, while a smaller value of 0.05 was selected for the analysis of crystal growth 
continuity, as it allows for the consideration of smaller "grains," which is particularly important 
when examining crystal growth from an existing "substrate" or an existing first bead.  

 

 

 

 

 
(a) (b) (c) 

Figure 12 : Boundary and initial conditions applied to first and second simulation on Site 
1 and Site 2.  

The simulation applies the same conditions as those used in M4 to ensure the preservation 
of the solidifying molten steel's mass, where white, black, and yellow respectively represent air, 
solid material, and liquid. When simulating boxes 1B and 2B, it is crucial to accurately define 
boundary and initial conditions based on the chronological order of bead deposition. In box 1B, 
the right bead is deposited next in the sequence, while in box 2B, it is the bead above (Figure 
12b). Once this initial step is simulated, new conditions are then applied to complete the grain 
growth simulation in boxes 1C and 2C, considering the presence of the bead above for box 1C 
and the right bead for box 2C (Figure 12c). The simulation concludes upon reaching the final 
temperature of 450K, at which point the results can be analyzed. 

4 Results  

4.1 Contour extraction and zones 



 
(a) (b) (c) 

Figure  13 : Results of method M0. Typical bead shapes for the three types (defect to the 
left, without defect and defect to the right). Dashed lines represent different results obtained by 
segmentation. The thick colored lines represent the mean bead shape obtained as the mean value 
of the different cubic splines.  

Let's begin by focusing on the distribution of contour shapes in the transverse section. The 
contours of the beads can be categorized into three groups: those without defects, those with 
defects on the right side of the bead, and those with defects on the left side. Figures 13a-c depict 
typical lower bead contours obtained through segmentation (method M0), represented by dashed 
lines, along with the corresponding mean values shown as continuous colored lines. The contours 
exhibit distinct shapes depending on the category they belong to, with or without defects. 
Specifically, in the group with defects on the right side, there is an additional curvature present to 
the right of the contour. Conversely, in the group with defects on the left side, there is no curvature 
observed on the left portion of the contour.  

 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure  14 : Results of methods M1 and M2. Construction of a complete bead by starting 
with the lower part. The same method is applied to beads with defects to the left (a), no defect 



(b) and defects to the right (c). The vertices V1,i(i=1,2,3,4) represent the lower boundary of the current 
bead predicted by M0. V2,2  and V2,3 result from the translation of the lower bead contour. Figures 
(a, b, c) display the normals to the lower contours and figures (d, e, f) exhibit zones with a unique 
normal and zones where 2 or more normal cross.  

Figures 14a-c display the lower contours along with their corresponding normals. The 
primary normals, depicted as thick black lines (N1,...N4), are drawn at points where a change in 
local curvature occurs. As a result, the crystal growth directions, perpendicular to the lower bead 
border, undergo significant changes at each of the points N1,...N4. The specific location of the 
primary normals strongly depends on the type of lower bead. The thin black lines within each 
region were utilized as input for method M3. Moving on, Figures 14d-e showcase the three bead 
types reconstructed by method M1, with the vertices V2,2 and V2,3 determined through M1. Only 
the primary normals are illustrated. The subsequent figure illustrates how these lines were 
employed in method M2 to determine the crystal growth directions. 

 
(a) (b) (c) 

Figure 15 : Results of method M1. Predicted grain growth direction zones with defect on 
the left (a), without defect (b), with defect on the right (c) 

Figure 15 illustrates the construction of three typical beads, with zones determined by the 
primary normals N1 to N4. The grain growth initiates from the lower (colored) section of each 
contour. In the regions adjacent to the lower contour, the crystal growth direction is uniquely 
determined by the normal to the contour. At this stage, the position of point I0 is not fixed. The 
mobility of point I0 is influenced by factors such as the cooling rate and solidification speed, 
which impact the grain orientation. Faster cooling results in straighter grains, while slower cooling 
allows more time for grain misorientation. These regions, common to all bead types, are 
represented in blue. However, in all other regions, competitions between different growth 
directions occur. This competition is indicated by a prime symbol (') or multiple digits. For 
example, 1' indicates competition between directions 1a and 1c, 2' indicates competition between 
directions 2a and 2c, and 1'2 indicates competition between directions 1' and 2'. 

4.2 Mapping and Continuity (method M2) 

A single perfect bead maps the two-dimensional space, enabling the identification of 
adjacent zones when multiple beads are connected (see Figure 16). Curved interfaces between 
beads do not maintain the growth directions of the crystals. These interfaces are indicated by 
black arrows. Now, let's focus on the zones separated by a straight interface. If nucleation occurs 
in the adjacent zone, it should result in a consistent crystal orientation. Nevertheless, as the 
remelting size increases, the possibility of misalignments between two adjacent zones also 
increases. Within the same layer N, the remelted zone between successive beads is small, thus 
making it highly probable to have identical crystal orientations. This is demonstrated by the white 



arrows in Figure 16. On the other hand, significant remelting takes place between successive layers 
(N, N+1), leading to a low likelihood of preserving crystal orientations, even for straight 
boundaries. This is indicated by white arrows with a black contour.  

 

 
Figure 16 : Results of method M2. Mapping the entire plane with the flawless bead shape. 

Detection of possible continuity (white arrow and white arrow with black contour) or not (black 
arrow) crystal growth.  

4.3 Microstructure continuity by CNN (method M3) 

As a result of M1, in Figure 11, Site 2 of bead (A) (deposited earlier) should exhibit an 
orientation similar to that of Site 1 of bead B. Method M3 (CNN) enables the analysis of 
microstructure continuity based on SEM observations. Figures 17a and 17b illustrate the selected 
Zones of Interest (ZOI) (im1 and im2) in the SEM images. The neural network identifies 
continuity between the regions separated by a straight interface, while it recognizes two distinct 
zones when separated by a curved interface. This validates the hypothesis of continuity. 
Additionally, we observe that the network is capable of detecting other information beyond just 
the growth direction. It can identify the thickness and shape of ferrite dendrites. 

  
(a) (b) 

 



 
(c) (d) 

Figure 17 : Results of method M3. Check continuity of the microstructure. (a) and (b) SEM 
ZOIs used as input to the CNN algorithm: im1 (a), im2 (b), with the ZOIs result corresponding 
to Z0I im1 and (c) result corresponding to ZOI im2 (d). White arrows indicate continuity of the 
microstructure, and black ones, discontinuity, i.e., different zones. 

4.3 Phase field simulation of solidification (method M4) 

    
(a) 
 



 
(b) (c) 

Figure 18 : Crystal orientations in the real-size welding bead. (a) Phase field predictions 
showing the nucleation and the full droplet of 316L, (b) crystal orientations predicted by methods 
M1,M2 and (c) phase field predictions. 

The phase field method serves to confirm certain predictions made by previous methods 
based on the geometry of weld beads. In the early stages of solidification, beyond a certain average 
temperature within the bead, the grain growth rate becomes large and prevents crystal deviation 
(Figure 18a). The grains then grow perpendicular to the contour from which they originated 
(green arrows in Figure 18c). As the temperature decreases beyond a certain threshold, 
solidification slows down, and the grains gradually align themselves in the direction of the resulting 
thermal gradient (orange and red arrows in Figure 18c). Another phenomenon to consider is 
grain growth at the edge of the droplet, at the interface with the surrounding cold air. Although 
the thermal diffusion coefficient of air is much smaller than that of the liquid, it still plays a 
significant role in forming a protective crust (Figure 18a). Additionally, it is observed that if a grain 
is favorably oriented relative to the neighboring growing grain, it continues to grow, while 
unfavorable orientation leads to its stagnation or disappearance. 

We can confirm the presence of the zones predicted by M1 (Figure 18b). Furthermore, we 
can now obtain more precise information about the upper zones, which are subject to grain 
growth competition and changes in the direction of the thermal gradient. 

The predictions of method M4 are compared to EBSD characterizations in Figure 19. For 
the simulation results of the M4 method (Figure 19), the grain growth directions appear to 
correspond with the experiment. In the molten pool, the grains undergo radial growth and 
selection (Figures 19a and 19b). Transition into a rectilinear growth is observed on the upper part 
of the bead (Figures 19c and 19d). 



 
(a) (b) 

 
(c) (d) 

Figure 19 : Comparison between EBSD and simulation of crystal growth directions in the 
molten pool (a and b) and in the upper part of the beads (c and d). 

4.4 Phase field simulation of interfaces (method M5) 

The objective of method M5 is to verify the hypothesis of continuity at the interfaces 
between weld beads. Through the creation of growth zones, mapping, and zone recognition using 
artificial intelligence, an assumption was made regarding the continuity of crystal growth across a 
flat interface between two sequentially deposited beads, and a discontinuity at curved interfaces 
(indicative of a remelted zone). 

This hypothesis is confirmed by the PF simulations combined with the mapping shown in 
Figure 19. To limit numerical simulation time, continuity was analyzed on beads extending over 
2mm. Figure 19a shows the PF simulation of the complete bead and the location of sites 1 and 
2. Crystal orientations of grains that grew from left to right in Site 1 (Figure 19d) and Site 2 (Figure 
19b) were preserved after the deposition of the subsequent bead. This continuity is confirmed by 
the EBSD maps (Figure 19c, e). However, the fusion pool, located above in Site 1 and to the 
right in Site 2, correspond to the starting point of new nucleation, which hinders the growth of 
grains from previously deposited beads (black arrows). In figure 19c, close to the triple junction 
experimentally discontinuity of crystal growth is observed very locally. The simulation box chosen 
was too small to exhibit this discontinuity. At a distance about 100 µm from the triple junction, 
epitaxial growth is observed (white arrow). 



 
(a) (b) (c) 

 
 (d) (e) 

 Figure 20 : Results of method M5. Check continuity of the microstructure. Positions of the 
ZOIs used for simulations (a), phase field simulation of continuity in Site 2 (b), zoom on in EBDS 
map (fig. 4) corresponding to location of Site 2 (c), phase field simulation at Site 1 (d), zoom on 
in EBDS map corresponding to location of Site 1 (e). 

The continuity on the right side of site 2 Figure 20 (white arrow), at the interface with the 
molten pool of the last deposited bead, is not visible in the image recognition of the M3 method. 
However, on the SEM and EBSD images, it is evident that there exists a continuity of crystal 
orientation on the left side of the molten pool. Effectively, at this location, the thermal gradient is 
perpendicular to the interface. 

5 Discussion 

5.1 Contour extraction and Zones 

Although the number of extracted weld bead contours from the image is relatively small, 
we can still consider the sample to be largely representative. The shape of the weld beads exhibits 
strong periodicity in Wire Arc CMT. Furthermore, the position of a defect has a significant 
impact on the contour shape and requires the distinction between the three families of weld 
beads. However, there can be a discussion about the geometric criterion used to create the growth 
zones in Method M1. The primary normals for the zones were placed at points where the lower 
contour undergoes a change in curvature. This appears to be a good approximation for the lower 
zones of the bead (those that are directly adjacent to the contour). However, for the upper zones 
(simulated later using phase field methods in Method M4), the geometries of these zones may 
appear arbitrary. They rely on the position of the mobile point I0, which depends on the grain 
growth rate. In reality, the position of this point could depend on several coupled phenomena 
such as thermal effects or fluid mechanics. The choice to simplify the implementation of Methods 

 



M1 and M2 with this criterion was made, knowing that much more precise information could be 
obtained through phase field simulations. 

5.2 Mapping and continuity 

The use of a single SEM image is justified because the objective of this work is to present a 
framework based on a limited number of experimental inputs. However, it should be noted that 
an SEM image representing the microstructure of a weld bead is a 2D representation of a 
volumetric phenomenon. The crystallographic orientations determined by the EBSD 
observations show that the scanning direction corresponds to <001>. These results assume a 
steady state at a certain distance from the outer border of the block.  

  



5.3 Phase field simulations 

   
(a) (c) 

 
(b) 

Figure 20 : Example analysis of phase field predictions (M_5). profiles generated for the 
analysis (a), crystal orientation along each profile (b), histogram of crystal orientations for profiles 
(2) and (5), probability density of crystal orientation on all profiles (c). 

 
The present study focuses on the development of a framework for microstructure 

predictions, tailored specifically for the analysis of CMT (Cold Metal Transfer) processes. This 
framework relies on two fundamental components: Method M0 for contour extraction and 
Method M5 for phase field prediction. Before delving into potential further developments and 
enhancements, we provide an illustrative example by showcasing predictions generated using 
Method M5. 

In Figure 20, the initial profiles labeled (1) to (6) represent isotherms at different time 
points. These profiles serve as geometric input data, and Method M5 allows us to generate as 
many profiles as needed. Along each profile, we record the crystal orientation using pixelized 
information, as depicted in Figure 20a. The pixel-by-pixel crystal orientation data along each 



profile is presented in Figure 20b. This figure provides insights into the misorientation between 
adjacent zones. We have chosen a 15° threshold to classify a misorientation as a grain boundary. 
With this threshold, we can determine the number of grains for each contour. The variation in 
the number of grains across different contours illustrates the selection of crystal growth direction. 

Finally, Figure 20c displays a histogram of the crystal orientations observed across all the 
profiles. The lower profile (2) exhibits an almost random distribution, whereas profiles (5) and 
(6) show a distribution centered around 25°, indicating crystal growth selection. While further 
analyses of the phase field model predictions are certainly possible, in the following paragraph, 
we discuss some of the limitations and potential areas for improvement. 

Let us consider the boundaries between sites 1, 2 and bead A in Figure 19a. A small crystal 
misorientation between bead A and the ZOIs corresponding to sites 1 and 2 is obtained. Indeed, 
the thermal resolution within boxes B and C affects the grain orientation of bead A by supplying 
them with heat. This is what happens in a WAAM process, but over a more extended area than 
boxes B or C, without a break in orientation. 

Another limitation is the size of the calculation boxes used to simulate grain growth at the 
interfaces within the ZOIs. These boxes were intentionally reduced in size to save computational 
time and achieve smaller element sizes (for higher accuracy). However, such a choice results in 
less representation of interface curvature. In a small box, a curved interface at the boundary of a 
fusion pool may appear flat and thus distort the interpretation of continuity. Simulations are 
currently being conducted on real-sized beads with complete interfaces, which capture the full 
curvature between adjacent beads. 

6 Conclusions 

This paper is a practical study that employs experiments to extract information about the 
lower bead zones. It utilizes machine learning to estimate the distribution of orientations along 
bead boundaries, and then applies phase field modeling to ascertain solidification and grain 
orientations within the bead zones and nearby areas, especially when re-melting is considered. 
To illustrate the capabilities of our methodology, we used a simplified scenario of predicting grain 
orientations within beads made of a pure material, even though our primary focus revolves 
around alloys. It's conceivable that this approach can be readily extended to alloy materials. 
Furthermore, this research holds promise as a component of future Integrated Computational 
Materials Engineering (ICME) design strategies. 

The present study has led to the following conclusions. Firstly, the implemented method 
proved to be quickly operational for predicting certain simple growth areas in a wire deposition 
bead. Furthermore, the use of a phase field model adapted to additive manufacturing conditions 
enables the prediction of the crystal microstructure of a welding bead based on its lower contour 
shape. Moreover, the model allows to analyze crystal orientation at bead interfaces. To the best 
of our knowledge this is the first study analyzing remelting with the real chronology of the wire 
arc deposition process.  

The results obtained pave the way for interesting perspectives. A multi-phase field model 
assisted by artificial intelligence is under development. First, it will allow to overcome the lack of 
costly experimental data. On the other hand, optimized parameters for the phase field approach 
will be presented. These methods will accelerate the numerical methods employed in this field, 
thereby opening new opportunities for faster and more efficient simulations.  



 

  



7 Appendix 

[μ] = l. T−1. t−1 [Dt] = l−2. t−1 [s] = e. l−2 
[Tm] = T �τϕ� = e. l−3. t [a] = e1/2. l−3/2 

[δ] = l [τθ] = e. l−3. t [ϵ2] = e. l−1 
[L] = e. l−3 [α2] = e. l−1 �σl/s� = e. l−2 

Table 9 : Phase field model parameters dimensions. l=length, T=temperature, e=energy, 
t=time. Intentionally e was not replaced with the corresponding dimensions.  
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