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Simple Summary: The environment of cancer cells, made up of multiple cell types, macromolecules,
and signaling molecules, displays numerous properties that promote cancerous diseases. This tumor
microenvironment is characterized by a high degree of diversity, offering a substantial number of
specific markers that can be exploited to target tumor processes, both for diagnosis and therapy.
The fibroblast activation protein, overexpressed on the surface of cancer-associated fibroblasts, has
attracted considerable interest through the design of inhibitors, used as radiolabeled molecular
imaging probes in nuclear medicine. Some of these experimental radiopharmaceuticals have already
been extensively studied in clinical settings, notably for cancer imaging when other molecular
imaging techniques present limitations. Despite this, innovative analogs continue to be developed,
some of which for both diagnostic and therapeutic applications.

Abstract: The tumor microenvironment (TME) is a dynamic and complex medium that plays a central
role in cancer progression, metastasis, and treatment resistance. Among the key elements of the
TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the
extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast
activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in
both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities
for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These
FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to
traditional radiopharmaceuticals such as [18F]FDG, especially in cancers with low metabolic activity,
like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of
positron emission tomography (PET) imaging but also hold potential for theranostic applications
by delivering targeted radionuclide therapies. This review examines the biological underpinnings
of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer
diagnostics, highlighting the potential of FAP as a target for precision oncology.

Keywords: tumor microenvironment; cancer associated fibroblasts; fibroblast activation protein;
nuclear medicine; molecular imaging; radiopharmaceuticals

1. Introduction

The tumor microenvironment (TME) plays a crucial role in cancer progression, signifi-
cantly influencing how tumors grow, evade the immune system, and develop resistance to
treatments [1]. Unlike early cancer models that primarily focused on tumor cells themselves,
contemporary oncology places great emphasis on the TME as a complex ecosystem com-
posed of stromal cells, immune cells, blood vessels, and extracellular matrix components [2].
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This dynamic environment not only supports tumor cell survival and proliferation but also
contributes to invasion and metastasis. Understanding the TME has therefore become a
central concern in the development of more effective diagnostic and therapeutic strategies.

Among the various components of the TME, cancer-associated fibroblasts (CAFs) have
gained increasing attention [3]. These stromal cells, particularly through their expression
of fibroblast activation protein (FAP), are involved in cancer progression by modifying
the extracellular matrix, promoting angiogenesis, and suppressing immune responses.
FAP is highly expressed in CAFs within the TME, particularly in many epithelial tumors,
making it an attractive target for diagnostic imaging and therapeutic approaches [4]. In
this context, the development of FAP-targeted imaging agents has opened new frontiers in
nuclear medicine, providing tools to visualize and quantify the TME influence in cancer.
These agents, particularly FAP inhibitors (FAPIs), allow for non-invasive imaging that can
complement existing modalities like [18F]FDG PET, offering high specificity and sensitivity
in certain cancer types, revealing tumors that might otherwise go undetected [5].

Within this scope, the present review aims to provide a comprehensive examination
of the biological rationale for targeting FAP in cancer imaging and therapy. First, the
influence of the tumor microenvironment in cancer progression will be outlined, paying
special attention to the interaction between immune cells, CAFs, and the extracellular
matrix. Then, the pivotal role of CAFs in the TME will be specifically explored, with a focus
on FAP biochemical properties and its contributions to tumorigenesis, highlighting why
this enzyme is a critical player in the TME and a promising target for nuclear medicine.
From there, the design, development, and clinical application of key FAP-targeting imag-
ing agents will be detailed, with a focus on quinoline-based FAPI molecules. We will
discuss their performance in clinical settings, comparing their efficacy to other oncology
radiotracers such as [18F]FDG. Finally, an overview of the most recent and innovative
FAPI derivatives (especially non-quinoline compounds) will be given, highlighting their
respective advantages and level of clinical development.

2. A Dive into Tumor Microenvironment
2.1. General Considerations About Tumor Microenvironment

In 2000, Hanahan and Weinberg proposed six hallmark characteristics of cancer that
tumor cells acquire during their development: sustained proliferative signaling, evasion
from tumor suppression, resistance to cell death, replicative immortality, induction of
angiogenesis, and activation of invasion and metastasis [6]. In 2011, two additional traits
were highlighted: reprogramming of energy metabolism and evasion of immune destruc-
tion [7]. These hallmarks provide an essential framework for understanding the underlying
mechanisms of cancer development and progression.

A solid tumor is defined by an aggregate of cancer cells, surrounded by various cell
types, as well as extracellular matrix (ECM) and signaling molecules, which together form
the tumor microenvironment (TME) [8]. Although the composition of the TME is influenced
by the tumor type, several elements are consistently found in the stroma, such as immune
cells (monocytes, macrophages, dendritic cells, lymphocytes, and neutrophils); stromal
cells (fibroblasts and endothelial cells); extracellular matrix components (glycoproteins,
collagen, and enzymes); cytokines (IL-6, IL-17, and IL-23); and blood vessels [9]. Each
of these components, illustrated in Figure 1, has immunological or mechanical functions
that influence the tumor and TME, this heterogeneity creating a dynamic environment
favorable to cancer cell growth, invasion, and survival [10].
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Figure 1. Summary of the main cell types and molecules found in the tumor microenvironment, 
grouped into 3 categories: cancer cells (first box), extracellular matrix (second box), and immune 
cells (third box). 
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2.2.1. Immune Interactions and Tumor Growth 

Within the TME, immune cells contribute to the activation of an inflammatory re-
sponse that promotes the development and spread of tumor cells (Figure 2). Under certain 
circumstances, immune cells can also inhibit tumor progression [11]. It is important to 
note that the immune system operates through two distinct mechanisms: innate immunity 
and adaptive (or acquired) immunity. Adaptive immunity is a specific immune response 
developed in response to particular antigens, typically through exposure to pathogens or 
vaccines. T- and B-lymphocytes are the primary effectors of adaptive immunity. In con-
trast, innate immunity provides non-specific protection against a broad range of patho-
gens through mechanisms such as physical barriers, phagocytic cells, and antimicrobial 
proteins. Innate immunity involves monocytes, macrophages, dendritic cells, natural 
killer (NK) cells, and neutrophils (PNNs) [12]. Details on the effects of these different cell 
types are given in Section 2.3. 

2.2.2. Angiogenesis 
Angiogenesis is a physiological process arising in cancer due to the tumor’s increas-

ing demand for oxygen and nutrients. Tumor vascularization involves the cooperation of 
various cells within the TME, including vascular endothelial cells, pericytes, and bone 
marrow-derived precursor cells [13]. Other supporting cell types, such as tumor-associ-
ated macrophages (TAMs), mesenchymal cells, PNNs, and cancer-associated fibroblasts 
(CAFs), tend to enhance tumor vascularization by releasing pro-angiogenic signals within 
the TME (Figure 2) [14]. Similarly, lymphangiogenesis refers to the formation of new lym-
phatic vessels, which provide an alternative route for cancer cell dissemination. Activated 
macrophages produce growth factors that are correlated with lymphangiogenesis in cer-
tain cancers [15,16]. 

  

Figure 1. Summary of the main cell types and molecules found in the tumor microenvironment,
grouped into 3 categories: cancer cells (first box), extracellular matrix (second box), and immune cells
(third box).

2.2. The Roles of the Tumor Microenvironment
2.2.1. Immune Interactions and Tumor Growth

Within the TME, immune cells contribute to the activation of an inflammatory re-
sponse that promotes the development and spread of tumor cells (Figure 2). Under certain
circumstances, immune cells can also inhibit tumor progression [11]. It is important to
note that the immune system operates through two distinct mechanisms: innate immunity
and adaptive (or acquired) immunity. Adaptive immunity is a specific immune response
developed in response to particular antigens, typically through exposure to pathogens or
vaccines. T- and B-lymphocytes are the primary effectors of adaptive immunity. In contrast,
innate immunity provides non-specific protection against a broad range of pathogens
through mechanisms such as physical barriers, phagocytic cells, and antimicrobial proteins.
Innate immunity involves monocytes, macrophages, dendritic cells, natural killer (NK)
cells, and neutrophils (PNNs) [12]. Details on the effects of these different cell types are
given in Section 2.3.
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Figure 2. Simplified overview of the main tumor microenvironment functions, along with the major
cell types and signaling molecules involved.

2.2.2. Angiogenesis

Angiogenesis is a physiological process arising in cancer due to the tumor’s increasing
demand for oxygen and nutrients. Tumor vascularization involves the cooperation of
various cells within the TME, including vascular endothelial cells, pericytes, and bone
marrow-derived precursor cells [13]. Other supporting cell types, such as tumor-associated
macrophages (TAMs), mesenchymal cells, PNNs, and cancer-associated fibroblasts (CAFs),
tend to enhance tumor vascularization by releasing pro-angiogenic signals within the
TME (Figure 2) [14]. Similarly, lymphangiogenesis refers to the formation of new lym-
phatic vessels, which provide an alternative route for cancer cell dissemination. Activated
macrophages produce growth factors that are correlated with lymphangiogenesis in certain
cancers [15,16].

2.2.3. Dissemination and Intercellular Interactions

Endothelial cells and stromal cells such as fibroblasts secrete growth factors that
influence angiogenesis, tumor proliferation, and tumor invasion [17]. The epithelial–
mesenchymal transition (EMT), during which tumor cells shift from an epithelial to a
mesenchymal state, drives tumor dissemination, with a fluctuating phenotype depending
on the environment [18]. The stromal cells plays a key role in these phenotypic transi-
tions, particularly through the production or inhibition of transforming growth factor-beta
(TGF-β) (Figure 2) [19]. Similarly, hepatic stellate cells are involved in the progression of
hepatocellular carcinoma by remodeling the local ECM and creating a tumor-promoting
environment [20–22].

The tumor margin represents the boundary between the tumor and healthy tissue. This
region plays a critical role in the dynamic interactions between stromal and immune cells.
Immature myeloid cells accumulate in this area, preventing the differentiation of dendritic
cells into antigen-presenting cells, thereby facilitating immune evasion of the tumor. TAMs
are recruited by tumor-derived chemotactic factors and promote tumor cell invasion by
providing pro-migratory factors such as epithelial growth factor (EGF), regulating fibrillar
collagen production to enhance tumor motility, and supporting proteolytic remodeling of
the ECM [15,23]. CAF are abundant at the tumor margin and may release pro-invasive
factors, further contributing to tumor progression [24]. Oxygenation levels at the tumor
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margin differ from the tumor core, with central hypoxia and better peripheral oxygenation.
This hypoxia influences the behavior of stromal cells and their recruitment to the tumor;
immune cells recruited by hypoxia concentrate at the periphery to support tumor invasion,
and immune cells remaining at the tumor core promote the selection of resilient cancer
cells, which subsequently migrate toward the tumor margin [13].

2.3. Tumor Microenvironment Components
2.3.1. Innate Immune Cells

Monocytes originate from myelomonocytic stem cells and form a population of cir-
culating cells capable of migrating into tissues in response to specific signals. Upon
recruitment to the TME, monocytes undergo a differentiation process and differentiate into
three distinct cell subtypes: TAMs, tumor-associated dendritic cells, and myeloid-derived
suppressor cells (MDSCs) (Figure 3) [25].
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The most commonly observed cell type in the TME is the macrophage [26]. These cells
can induce resistance to various anti-tumor therapies, notably by modulating T-lymphocyte
activity through immunoregulatory mechanisms such as programmed cell death protein-1
(PD-1) [26,27]. TAMs also promote invasive cellular phenotypes and produce proteases,
facilitating tumor invasion [15,28]. TAMs can be polarized into either M1 phenotype
(with anti-tumor activity) or M2 phenotype, driven by hypoxia and IL-4 (with pro-tumor
activity) [10,29,30]. High TAM infiltration is often associated with poor prognosis in various
cancers, including breast, lung, and gastric cancers [9].

Dendritic cells function as antigen-presenting cells, recognizing, capturing, and pre-
senting antigens to T-lymphocytes in lymphoid organs. They bridge innate and adaptive
immunity, but their function can be impaired within the TME [31]. Tumor dendritic cells
exhibit deficiencies in activation and do not effectively stimulate the immune response,
while conditions such as hypoxia and low pH further disrupt their function [32].

MDSCs represent a heterogeneous myeloid population that suppresses anti-tumor
immune responses and promotes immune evasion [25]. These immature cells hinder
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antigen presentation, T cell activation, and NK cell function, thereby facilitating tumor
progression. Elevated levels of MDSCs in cancer patients are usually associated with rapid
disease progression and reduced therapeutic efficacy [30].

2.3.2. Adaptive Immunity Cells

Like macrophages, lymphocytes are a key component of the TME [10]. Depending on
their differentiation, lymphocytes can exert both pro- and anti-tumor effects. Two types of
lymphocytes can be found in the TME: B-lymphocytes and T-lymphocytes (Figure 3).

B-lymphocytes, the main cellular elements of the humoral immune response, are
located in lymph nodes and lymphatic structures adjacent to the TME [33]. Their primary
functions include antibody production, antigen presentation, and cytokines secretion. Their
involvement in the formation of tertiary lymphoid structures is a favorable prognostic
indicator in several cancers, as it promotes cytotoxic immune responses [34]. However,
their presence can also be associated with unfavorable outcomes in other tumor types,
particularly by promoting cellular phenotypes that inhibit anti-tumor immunity [9,35].

T-lymphocytes (TLs), derived from the same precursor as B cells, feature a T-cell
receptor (TCR) that recognizes antigens presented by the major histocompatibility complex.
TLs are divided into CD8+ cytotoxic and CD4+ helper cells, with several subtypes having
either anti-tumor or pro-tumor effects [36]. CD8+ TLs target cancer cells and inhibit
angiogenesis, while CD4+ TH2 cells support B lymphocytes [37–39]. Conversely, NK cells
are particularly effective against circulating tumor cells but can also promote tumorigenesis
in the TME [40]. CD4+ TH17 cells promote antimicrobial inflammation, whereas regulatory
T cells (Tregs) suppress anti-tumor immune responses, with their reduction potentially
leading to metastatic regression in certain cancers [29,41,42].

Neutrophils, comprising the majority of circulating leukocytes, are essential for the
adaptive immune defense [43]. Their behavior within the TME can either suppress or
promote tumor growth, depending on the type and stage of cancer. Initially, neutrophils
stimulate inflammation by releasing cytokines and reactive oxygen species, inducing tumor
cell apoptosis. However, they can also have pro-tumor effects, particularly through the
release of various enzymes and the induction of immunosuppression [16].

2.3.3. Extracellular Matrix

The ECM is a complex network of macromolecules, including glycoproteins, collagen,
and enzymes, that supports biomechanical activities. This acellular structure consists of
active tissue components that influence cellular processes such as adhesion, proliferation,
and communication [44]. The ECM can limit cancer development in its early stages but
can also promote tumor progression. Its composition serves as a predictive factor for
cancer progression; tumors with high expression of protease inhibitors are associated
with a good prognosis, while those with significant expression of integrins and matrix
metalloproteinases (MMPs) are characterized by a poor prognosis [45].

2.3.4. Adipocytes

Adipocytes are specialized cells that play a role in regulating the energy balance by stor-
ing energy in the form of fat (Figure 3). They influence the TME by secreting a wide range
of metabolites, enzymes, hormones, growth factors, and cytokines. Adipocytes maintain
a dynamic and reciprocal relationship with tumor cells, thereby promoting their progres-
sion [46]. Additionally, adipocytes modify the ECM by secreting metalloproteinases [47].

2.3.5. Fibroblasts

Fibroblasts are a highly abundant and multifunctional cell type found in connective
tissue. They produce ECM and cellular membrane components [48]. Cancer-associated
fibroblasts (CAFs) present in the TME are distinct from normal fibroblasts and are signifi-
cantly more numerous (Figure 3). This particular cell type will be discussed in detail in
Section 3.1 below.
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3. Cancer-Associated Fibroblasts and Fibroblast Activation Protein
3.1. Role and Properties of Cancer-Associated Fibroblasts
3.1.1. Morphology and Subtypes

CAFs form a heterogeneous group of activated fibroblasts with multiple functions,
making them difficult to define. They do not express conventional epithelial, endothelial,
or leukocyte markers and are characterized by an elongated morphology [49]. CAFs
cannot be distinguished from normal fibroblasts under an electron microscope and are
often identified by their expression of αSMA [48]. Other markers, such as fibroblast
activation protein (FAP) and the platelet-derived growth factor (PDGF) receptor, have
been correlated with a poor prognosis, but none are exclusive to CAFs. Additionally,
CAFs exhibit significant heterogeneity, both within a single type of tumor tissue and
across different cancer types. They are often classified into three subtypes: myCAFs
(myofibroblasts), iCAF (inflammatory), and apCAF (antigen-presenting). MyCAFs are
characterized by αSMA expression, ECM proteins secretion, and activation by TGF-β.
Conversely, iCAFs secrete pro-inflammatory cytokines and are differentiated by IL-1β. The
less common apCAFs have the ability to present antigens on their surface [50]. Four CAF
subpopulations (S1–S4) can also be differentiated by their location: S1 is found in tumors
and inflammatory diseases, S4 only in tumors, and S2 and S3 in peri-tumoral regions [51].

CAFs primarily originate from resident fibroblasts adjacent to the tumor or from
mesenchymal cells recruited to the tumor mass and activated by cancer cells (Figure 4).
Several factors play a role in fibroblast activation, including TGF family ligands, the
Notch signaling pathway, and inflammatory signals such as interleukins 1 and 6 [52,53].
Similarly, the TME contributes to CAF activation, particularly through macrophages and
physical changes in the extracellular matrix, such as fibroblast stretching [54–56]. Therapies
can also induce CAF transformations: cytotoxic chemotherapies, targeted therapies, and
radiotherapy can promote CAF activation. This transformation is often associated with
mechanisms of treatment resistance. Therefore, targeting CAFs in therapy could provide a
strategy to overcome resistance to conventional treatments [49,57].
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Figure 4. Main transformation mechanisms from resident fibroblasts to cancer-associated fibroblasts.

3.1.2. Cancer Predisposition Properties

Phenotypically modified fibroblasts may play a role in cancer predisposition. Ac-
cording to the work of Kopelovich, skin fibroblasts from patients highly predisposed to
breast cancer exhibit an abnormal phenotype, including a reduced serum requirement
for proliferation [58]. Similarly, skin fibroblasts taken from patients with breast cancer,
malignant melanoma, retinoblastoma, and Wilms’ tumors show an increased prolifera-
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tion rate in vitro, suggesting that alterations in fibroblast behavior could promote cancer
initiation [59].

3.1.3. Immune Modulating Properties

Similar to normal fibroblasts, which trigger the secretion of immune factors following
tissue injury, CAFs generate cytokines and chemokines, predominantly with immunosup-
pressive properties [60]. Notably, TGF-β induces the expression of PD-1 in tumors, leading
to immune system suppression, as previously mentioned. More specifically, it has been
shown that FAP-dependent activation pathways contribute to the blockage of immune
checkpoints in colorectal cancer cells [61]. In addition, antigens presented by apCAFs result
in the activation of CD4+ T cells and the suppression of CD8+ T cells [62]. CAFs also
influence MDSCs through FAP, TGF-β, or interleukin-6 [63,64].

3.1.4. Extracellular Matrix Remodeling Properties

The ECM, as previously discussed, serves as a mechanical scaffold for tissue structur-
ing. CAFs secrete type I collagen, a fundamental component of the ECM [65,66]. Addition-
ally, type IV collagen is upregulated by CAFs, leading to the recruitment of macrophages,
increased inflammation, and enhanced angiogenesis [67]. Fibronectin, involved in tumor
invasion, is also secreted by CAFs. MMPs produced by fibroblasts contribute to the stiffen-
ing of tumor tissue and the formation of pathways that facilitate cancer cell invasion [68].
This stiffness is a marker of cancer progression, influencing tumor cell proliferation and
resistance to treatments [69]. ECM remodeling and the creation of invasion pathways by
CAFs also rely on the production of cell receptors, such as integrins, and their connection
to the actin cytoskeleton [70].

3.1.5. Tumor Growth and Invasion-Promoting Properties

Through similar mechanisms to those affecting immunity, CAFs also stimulate tumor
growth via growth factors and cytokines secretion [71]. For instance, VEGF induces mi-
crovascular permeability, leading to the extravasation of plasma proteins such as fibrin,
which triggers an influx of fibroblasts, inflammatory cells, and endothelial cells [72]. These
cells contribute to the production of an ECM rich in fibronectin and type I collagen, pro-
moting tumor angiogenesis. CAFs also produce stromal cell-derived factor 1 (SDF-1 or
CXCL12), which is involved in both the recruitment of endothelial progenitors to the tumor
and in cancer cell growth [73].

During metastasis, cancer cells separate from the primary tumor mass. The invasion
pathways created by CAFs facilitate the dissemination of tumor cells, enabling their dis-
engagement from the primary tumor [74]. Regarding growth factors, TGF-β promotes
inflammation and enhances the metastatic potential of cancer cells by inducing EMT in
epithelial cells, granting them mesenchymal properties [75]. Other metastasis-related fac-
tors secreted by CAFs and involved in EMT have been extensively studied, including IL-6,
osteopontin, hepatocyte growth factor (HGF), and CXCL12 [76,77]. Activation of the PDGF
receptor on CAFs promotes cancer cell survival and is associated with increased invasion
and poor prognosis in several cancers [78,79]. CAFs also indirectly stimulate metastasis
through their interactions with TAMs: several CAFs-released cytokines recruit TAMs, such
as CCL2 and CCL5 (chemokine ligand 2/5), while IL-4 and IL-6 polarize TAMs toward the
M2 phenotype, which supports tumor growth and metastasis [80–83]. Lastly, CAFs express
tenascin and periostin within the ECM, which are correlated with invasion, angiogenesis,
and metastatic potential [84,85].

3.1.6. Treatment Resistance

CAFs can induce resistance to therapies through various mechanisms related to their
intrinsic properties. For instance, ECM remodeling can create a physical barrier that hinders
the penetration of chemotherapeutic agents into the tumor. Hypoxia further reduces the
sensitivity to anticancer drugs [86,87]. As previously mentioned, HGF secreted by CAFs
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can confer resistance to targeted therapies such as dabrafenib in BRAF-mutated melanoma
cells [88]. Similarly, the efficacy of antiangiogenic treatments is often limited, potentially
due to the production of pro-angiogenic factors by CAFs [89]. Additionally, CAF-induced
immunosuppression may decrease the effectiveness of immune checkpoint inhibitors, such
as anti-CTLA-4, anti-PD-1, and anti-PDL-1 therapies. In this context, inhibiting CXCL12
produced by CAFs has been shown to resensitize pancreatic cancer cells to anti-PDL-1
therapy [90]. Another study demonstrated that CAF-mediated activation of the JAK-STAT
signaling pathway could confer chemotherapy resistance to gastric cancer cells, while
IL-6 secreted by CAFs could protect gastric cancer cells through a paracrine signaling
pathway [91].

Exosomes are small vesicles secreted by various cell types and contain multiple sig-
naling molecules. CAFs produce exosomes that transmit genetic information, thereby
promoting chemoresistance, as observed in pancreatic cancer, where gemcitabine-treated
CAFs generate exosomes that increase chemoresistance [92]. The differentiation of can-
cer cells into stem-like cells, which are capable of dedifferentiation, self-renewal, and
chemotherapy drug efflux, is another resistance mechanism associated with CAFs [93].
Finally, CAFs influence chemotherapy resistance in certain leukemias by acting on the cell
cycle, with growth differentiation factor 15 (GDF15) blocking the cell cycle in the G0/G1
phase, thus limiting chemotherapy sensitivity [94]. Figure 5 summarizes the various effects
exerted by CAFs, particularly in cancer pathologies.
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3.2. Structure, Expression, and Activities of the Fibroblast Activation Protein

FAP was first described in 1986 by Rettig et al., who named it based on its expression
by fibroblasts, particularly CAFs [95]. Simultaneously, a serine protease was identified
by Aoyama and Chen in melanoma cells; it was termed seprase due to its enzymatic
activity [96]. It was not until 1997 that gene sequencing revealed that FAP and seprase
referred to the same protein [97]. Overall, FAP is a type II transmembrane serine protease
with a molecular weight of 97 kDa, belonging to the dipeptidyl peptidase (DPP) family



Biology 2024, 13, 967 10 of 38

and related to the endopeptidase prolyl oligopeptidase (PE). It shares approximately 50%
homology with dipeptidyl peptidase 4 (DPP IV) [97,98].

3.2.1. Fibroblast Activation Protein Structure

FAP is a protein with a primary structure consisting of 760 amino acids, where
residues 1–4 form the intracellular domain, 5–25 make up the transmembrane domain,
and 26–760 compose the extracellular domain (Figure 6) [99]. The extracellular region
includes a beta-propeller domain formed by eight blades (each comprising three or four
beta sheets), which confers substrate selectivity to the enzyme, as well as an alpha/beta
hydrolase domain [100]. Serine proteases, including FAP and DPP IV, contain a catalytic
triad made up of a serine, aspartic acid, and histidine. The serine acts as a nucleophile,
cleaving N-terminal proline (Pro)-X peptide bonds, where X can be any amino acid except
proline or hydroxyproline, a characteristic of dipeptidyl peptidase activity. FAP exhibits
dipeptidyl peptidase activity similar to DPP IV, and like PE, it also displays endopeptidase
activity, which preferentially targets glycine (Gly)-Pro-X motifs [101]. This endopeptidase
activity is central to both specific detection methods for FAP and the design of its specific
inhibitors [100]. FAP monomers do not exhibit enzymatic activity; however, they assemble
into active homodimers or heterodimers with DPP IV [102].
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Of note, FAP exists in a soluble form known as antiplasmin-cleaving enzyme (APCE),
which circulates in human plasma without the intracellular and transmembrane regions [99].
Structurally, soluble FAP contains the same two domains as its transmembrane counterpart:
an eight-bladed beta-propeller domain and an alpha/beta hydrolase domain. This structure
also features a large cavity with a catalytic triad composed of the residues Ser624, Asp702,
and His734. The active site cavity is only accessible to elongated peptides or unfolded
protein fragments, giving soluble FAP a degree of specificity [104]. This form of FAP also
exhibits both dipeptidyl peptidase and endopeptidase activities. It is produced in various
contexts, including by reactive stromal fibroblasts during wound healing, and in some
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healthy tissues such as placenta, uterine stroma during the proliferative phase, embryonic
tissues, and multipotent stromal cells from bone marrow [105].

3.2.2. Expression and Overexpression of FAP

In the context of cancer diseases, the FAP overexpression by CAFs is well established,
but this is also true for mesenchymal stem cells, sarcoma and melanoma cells, M2 TAMs,
and adipocytes within the MET [102]. Under pathological conditions, FAP expression is
significantly elevated in the tumor stroma of breast, lung, colorectal, prostate, gastric, pancre-
atic, thyroid, cervical, and urothelial cancers [106]. This increased expression makes FAP a
relevant target for molecular imaging techniques in oncology. Overall, research data suggest
that FAP can be considered an independent poor prognostic factor for multiple cancer types
and is associated with reduced overall survival in various malignancies [107–109]. However,
in certain cancers, such as breast cancer, CAF-S4 cells show little or no FAP expression but
are still associated with the development of metastases, suggesting that FAP is not the sole
pro-tumor mechanism related to CAFs [110,111].

FAP is also expressed in liver fibrosis and cirrhosis, which could be attributed to its role
in wound healing processes. Elevated levels of FAP are correlated with the stage of fibrosis,
suggesting its potential value as a biomarker for fibrotic diseases [112]. Furthermore, it
is overexpressed in Crohn’s disease, an autoimmune disorder characterized by chronic
inflammation and intestinal fibrosis. Its presence in chronic inflammatory bowel diseases
is therefore consistent [113]. Lastly, FAP and APCE are found in rheumatoid arthritis and
osteoarthritis, where they are associated with joint inflammation, cartilage degradation,
and disease severity [114,115].

3.2.3. Enzymatic Activities of FAP

Active FAP adopts a dimeric configuration within the cell membrane, requiring a
specific region in its transmembrane domain for this association [116]. This sequence
consists of three small amino acid residues (glycine, serine, and alanine), each spaced by
three variable residues (composed of valine, alanine, threonine, and/or leucine). Mutations
affecting these residues disrupt FAP monomer association, leading to decreased enzymatic
activity and intracellular accumulation of mutant FAP. These findings suggest a connection
between FAP dimerization and its cellular localization [117]. Additionally, studies support
the hypothesis that, once integrated into the plasma membrane, FAP concentrates within
invadopodia (tumor cell protrusions) [118,119].

The dual enzymatic activity of FAP offers a variety of potential substrates. Its
endopeptidase activity allows to cleave denatured type I and type III collagen, which fre-
quently contain Gly-Pro dipeptide sequences [120]. Through this activity, FAP-expressing
CAFs can remodel the ECM by cleaving collagen and altering bioactive signaling pep-
tides in cancer. Endopeptidase activity also facilitates the cleavage of α-2 antiplasmin
(inhibitor of fibrinolysis) and fibroblast growth factor 21 (FGF 21) [121,122]. Simultane-
ously, the dipeptidyl peptidase activity enables the cleavage of neuropeptide Y, peptide
YY, substance P, and brain natriuretic peptide 32, which are involved in regulating food
intake, satiety, pain, and the renin–angiotensin–aldosterone system, respectively [123].
Figure 7 illustrates FAP’s substrates according to its enzymatic activity and the corre-
sponding cleaved bond.

CAFs overexpression of FAP leads to significant modulation of the secretome, char-
acterized by increased secretion of proliferative, inflammatory, and ECM remodeling
factors [124]. Tumor mesenchymal cells expressing FAP show enhanced adhesion and
migration on substrates such as fibronectin or type I and type IV collagen [125]. In gas-
tric cancers, FAP expression by tumor epithelial cells is associated with increased cell
proliferation, highlighting the role of FAP in tumor progression [126]. Additionally, FAP
appears to modulate immune responses, as it has been linked to the suppression of CD4+
T-lymphocyte proliferation and the promotion of cellular senescence [127]. Regarding
chemotherapy resistance, the introduction of FAP into ovarian tumor cells has been associ-
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ated with reduced sensitivity to cisplatin, a first-line cytotoxic agent for this cancer [128].
Furthermore, coculture with FAP+ mesenchymal stem cells has been observed to enhance
the survival of myeloma cells treated with bortezomib [129].
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brain natriuretic peptide 32; FGF-21: fibroblast growth factor 21.

It has been proposed that FAP may exhibit non-enzymatic activity, which could also
trigger the effects previously mentioned [127]. To demonstrate this, catalytically inactive
FAPs were studied by Baobei Lv’s team. In this work, breast cancer cells transfected to
express FAP showed increased growth, adhesion, and migration, even when enzymatic
activity was suppressed. Both wild-type and mutant FAPs caused comparable increases
in cancer-related signaling pathways and the expression of matrix metalloproteinase 9
(MMP9), suggesting that FAP might exert intrinsic effects on cellular signaling indepen-
dently of its enzymatic activity [130].

4. Fibroblast Activation Protein Inhibitors as Imaging Agents in Nuclear Medicine
4.1. Design and Development of Quinoline-Based FAP Inhibitors

As an enzyme overexpressed at the extracellular membrane of CAFs, FAP is highly
specific to the TME and represents an ideal target for molecular imaging. In this context,
FAP inhibitors (FAPIs) have been developed to design imaging agents that can be easily
labeled with beta-plus emitting radiometals for PET imaging. Early works were inspired by
talabostat, a prolyl-peptidase inhibitor with a valinyl-L-boroproline (Val-boroPro) motif that
mimics the NH2-X-Pro motif recognized by FAP’s catalytic site (Figure 8). By comparing the
active site of FAP to that of DPP IV, a general N-acyl Gly-boroPro structure was proposed
for inhibitors, based on the substrate preferences of FAP’s endopeptidase activity. This
study also identified inhibitors based on the N-acyl-Gly-Pro motif as promising FAPI
candidates [120].
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A team from the University of Antwerp built on this work to propose a similar inhibitor
structure, simply replacing the carboxylic acid group of proline with a nitrile function.
In this study, two types of modifications were examined on the initial molecular frame-
work: first, modulation of the N-acyl substituent (R1), followed by modifications to the
2-cyanopyrrolidine component (R2). The in vitro efficacy and selectivity results obtained
with these derivatives suggest the potential of an aromatic azaheterocyclic group attached
to the N-acyl. Notably, only compounds with such a group showed significant inhibition of
the FAP enzyme, without this effect being related to their ability to bind to prolyl endopep-
tidase (PE), a close relative of FAP. From the 27 compounds synthesized and evaluated in
this series, structure–activity relationships (SARs) were established (Figure 8). Replacing
the N-acyl group with a N-sulfonyl group did not alter the selectivity for FAP compared to
PE. The steric hindrance of N-acyl substituents did not interfere with the binding of the
studied ligands to FAP. Compounds with azaheterocyclic parts misaligned relative to the
acyl group, such as bicyclic or biaryl motifs, demonstrated improved inhibitory potency. At
the pyrrolidine core, a carbonitrile adjacent to the nitrogen atom increased the affinity for
FAP. This observation can be explained by an interaction between the hydroxyl group of a
serine in the enzyme’s active site and the carbon of the carbonitrile, potentially involving
the formation of a covalent carboximidate bond with the enzyme [131]. Another study
observed that such FAP inhibitors bind very tightly to the active site of FAP, resulting
in the practically irreversible character of the compounds. This supports the idea of a
covalent interaction between the carbonitrile and the serine residue of the FAP catalytic
site [132]. Substitution at position 4 of the 2-cyanopyrrolidine ring was then explored.
Fluorinated inhibitors were the only compounds that outperformed their unsubstituted
analogs, with no significant difference in median inhibitory concentration (IC50) observed
between mono- and di-fluorinated compounds. Finally, replacing the 2-cyanopyrrolidine
ring with a homologous 2-cyanopiperidine ring (enlarged by one methylene unit) led to a
loss of affinity for both FAP and PE, suggesting that the catalytic pocket of these enzymes
has limited space (Figure 8) [131].

The FAP inhibitor UAMC-1110 (Figure 9), first described in 2014, was one of the earli-
est small molecules to exhibit a high affinity for FAP (in the nanomolar range) combined
with significant selectivity over prolyl-endopeptidase (PREP) and DPP enzymes. Addition-
ally, this molecule demonstrated a favorable pharmacokinetic profile, including high oral
bioavailability and excellent plasma stability. It incorporates the previously established
SAR elements, featuring a carbonitrile and two fluorine atoms on the pyrrolidine ring,
and is based on a quinoline azaheterocycle [133]. In 2019, a more detailed SAR study
was conducted using derivatives of UAMC-1110. Specifically, the replacement of the car-
bonitrile group with an amide, to enable the addition of substituents on the pyrrolidine
ring, was explored. However, such modifications were not well tolerated. Furthermore, it
was confirmed that difluorination of the pyrrolidine residue enhanced the affinity for FAP,
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though this came at the cost of increased lipophilicity and reduced water solubility [134].
In 2021, Van Rymenant et al. continued this work, demonstrating that the addition of bulky
chemical groups at position 6 of the quinoline core did not alter the FAP affinity [132]. This
tolerance suggested the possibility of incorporating a linker and chelator in this scaffold.
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imaging agents [132,134].

In 2013, a research team from the University of Antwerp focused on 2-cyanopyrrolidine
derivatives, which had previously been explored in the design of DPP IV inhibitors, also
known as gliptins. They concentrated on a group of 2-cyanopyrrolidines that represent
the first examples of inhibitors combining a strong affinity (in the nanomolar range) for
FAP with significant selectivity against PE and DPP. Talabostat and linagliptin were used
as reference compounds. This study confirmed the structure N-(4-quinolinyl)glycyl-(2-
cyanopyrrolidine), featuring a Gly-cyanoPro motif, as highly promising for the discovery
of FAP inhibitors [135], also highlighting the essential role of the quinoline ring in obtaining
high-affinity FAPI compounds [133]. Loktev’s team built upon the N-(4-quinolinyl)glycyl-
(2-cyanopyrrolidine) structure to design the first FAPI compounds used in nuclear medicine:
FAPI-01 and FAPI-02 (Figure 10) [136].
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FAPI-01 is a quinoline derivative substituted at position 5 by an iodine-125 atom.
This gamma-emitting isotope with a long half-life (59.4 days) is particularly useful in
biodistribution studies. FAPI-01 selectively bonds human and murine FAP and is rapidly
internalized in FAP-expressing cells but exhibits time-dependent efflux. It is also prone
to deiodination. To prevent the rapid activity loss of [125I]I-FAPI-01 due to enzymatic
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deiodination, a non-halogenated derivative was developed: FAPI-02. In this compound,
the FAP-binding moiety is functionalized with a spacer bearing a DOTA chelator [136]. The
use of 68Ga-radiolabeled FAPI-02 in PET imaging was initially studied in three patients
with metastatic cancers (lung, breast, and pancreas). In all three patients, [68Ga]Ga-FAPI-02
showed significant accumulation in tumors and metastases (maximal standardized uptake
value [SUVmax] = 13.3), with no accumulation in non-cancerous tissues (SUVmax = 3.6),
and was rapidly cleared by the kidney (SUVmax = 6.1). Its 177Lu-radiolabeled counterpart
FAPI-02 was rapidly internalized into FAP-expressing cells and exhibited high tumor
uptake in mice bearing HT-1080-FAP (epithelial) or SK-LMS-1 (vulvar) cell xenografts. No
significant accumulation in normal tissues was observed, and blood clearance was rapid,
allowing highly contrasted SPECT imaging.

The research team who developed the first quinoline-structured FAPI compounds
previously discussed also designed analogs ranging from FAPI-03 to FAPI-15 and explored
their SARs in detail. In this series, FAPI-04 emerged with the best potential for clinical
use, both for diagnostic and therapeutic applications (Figure 11). Like its analog FAPI-02,
FAPI-04 exhibited rapid internalization into FAP-positive tumors and fast renal clearance
of its unbound fraction, leading to swift accumulation at tumor sites. As previously noted,
difluorination of the pyrrolidine ring enhanced the FAP affinity. This radiotracer showed a
greater affinity for FAP than for DPP IV and displayed a slower elimination rate from target
tissues [137]. Similar to [68Ga]Ga-FAPI-02, [68Ga]Ga-FAPI-04 exhibited strong accumulation
in primary tumors and metastases (SUVmax = 23.86), with minimal retention in healthy
tissues (SUVmax = 2.35) at 1 h post-injection (p.i.) in a patient with breast cancer.
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Although FAPI-04 offered the best potential, other synthesized FAPI variants helped
establish SARs. For example, derivatives with a simple 3-amino-1-propyl spacer (FAPI-06
and FAPI-07) showed adequate cellular binding at 1 and 4 h but were almost completely
cleared after 24 h. This suggests that the heterocyclic segment of the spacer is necessary
for sufficient tumor cell retention. The linkage between DOTA and propylamine (FAPI-06
and 07) is much more accessible than that between DOTA and piperazine (FAPI-02 and 04),
which may lead to more rapid enzymatic degradation. Modifications where the spacer is
attached at position 7 (instead of position 6) of the quinoline ring (FAPI-08 and FAPI-09)
exhibited faster elimination from target cells during incubation. This indicates that the
position of the spacer on the quinoline ring is another critical factor, with position 6 being
preferred, although position 8 was also explored in the subsequent series [138]. FAPI-10,
featuring a nuclear localization signal (a short targeting sequence enabling transport from
the cytoplasm to the nucleus) in its spacer structure [139], accumulated in the kidneys
and was therefore not clinically useful. Overall, comparison of the 11 synthesized FAPI
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compounds revealed that, in addition to difluorination of the pyrrolidine ring, other
structural prerequisites are necessary for optimal tumor retention, such as the position of
the spacer on the quinoline ring and the nature of the spacer itself (Figure 11) [140].

The same team conducted additional studies to optimize the tumor retention of FAPI-
04. To this end, compound lipophilicity was modulated by varying the spacer region,
primarily through bridged or substituted analogs of the original piperazine portion or
by altering the chemistry used to attach the DOTA or the spacer to the quinoline moiety
(Figure 12) [141]. In an effort to improve target binding, the electronic density of the atom
anchoring the spacer to the quinoline ring was adjusted, which influenced the proton
acceptance capacity. Specifically, the ether-oxide initially used as the anchor point for the
spacer was replaced with methylene, sulfide, amine, and methylamine groups. These
modifications, along with those made to the piperazine fraction or the spacer region, did
not significantly influence the half-maximal inhibitory concentrations (IC50). However, they
had substantial effects on in vitro efflux kinetics. More specifically, FAPI-21 (with an ether-
oxide link and a bridged piperazine) and FAPI-46 (with a tertiary amine to anchor its spacer)
were eliminated more slowly from cells than FAPI-04, even though FAPI-46 shared the same
DOTA-piperazine structure as FAPI-04. On the other hand, FAPI-39, 40, and 41 (containing
other anchoring functions) were rapidly cleared from FAP-positive cells, highlighting the
influence of the type of linkage between the spacer and the quinoline ring on this parameter.
In initial in vivo PET imaging studies conducted on HT-1080-FAP xenografted mice, FAPI-
21, 36, 46, and 55 demonstrated better tumor uptake but also higher muscular activity,
resulting in lower-quality images. Among these, FAPI-55 (with a piperidine instead of
piperazine) had the best tumor absorption, but its lipophilicity also led to prolonged hepatic
residence time. Ultimately, FAPI-46 was identified as the best theranostic agent in this
series (Figure 12), characterized by the most favorable tumor-to-healthy tissue ratio.
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Among the previously discussed derivatives, FAPI-21 (with ether anchor and bridged
piperazine) and FAPI-46 were identified as having the highest clinical potential, a finding
confirmed through early PET studies in eight patients with metastatic mucoepidermoid,
oropharyngeal, ovarian, or colorectal carcinoma. Compared to FAPI-04, both FAPI-46
and FAPI-21 radiolabeled with 68Ga demonstrated slightly better tumor-to-healthy tissue
ratios (SUVmax tumor for FAPI-21 = 11.93; FAPI-46 = 12.76; FAPI-04 = 10.07). However,
FAPI-21 also exhibited particularly intense uptake in the oral mucosa (SUVmax = 3.38),
salivary glands (SUVmax = 3.69), and thyroid (SUVmax = 3.25), the phenomenon remain-
ing unexplained by the study authors. In comparison, FAPI-46 showed lower SUVmax
values for the oral mucosa (SUVmax = 1.49), salivary glands (SUVmax = 1.38), and thyroid
(SUVmax = 2.25), suggesting potentially lower toxicity in therapeutic applications com-
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pared to FAPI-21 [141]. Table 1 summarizes the main properties of the quinoline FAPIs
discussed in this review.

Table 1. Summary of the main properties of quinoline-based FAPI vector molecules. Therapeutic
potential has only been indicated for vectors studied in patients.

Name Chelator Investigated in
Clinical Setting

Radioisotope for
Diagnostic

Potential for
Therapy

Radioisotope for
Therapy Comments

FAPI-01 NA No 125 I No NA Used for biodistribution studies
Susceptible to enzymatic deiodination

FAPI-02 DOTA Yes 68Ga Yes 177Lu
Good pharmacokinetic profile

Affinity for FAP to be improved
(non-fluorinated derivative)

FAPI-04 DOTA Yes 68Ga Yes 177Lu, 90Y
Good pharmacokinetic profile

High affinity for FAP
(fluorinated derivative)

FAPI-06,
FAPI-07 DOTA No 68Ga NA NA Derivatives with an amino alkyl linker

Low tumor cell retention

FAPI-08,
FAPI-09 DOTA No 68Ga NA NA Linker at position 7 instead of 6

Fast clearance from tumor cells

FAPI-10 DOTA No 68Ga NA NA
Derivative bearing a nuclear

localization signal
Strong accumulation in the kidneys

FAPI-21 DOTA Yes 68Ga NA NA
Derivative with a bridged piperazine linker

Slower clearance from tumor cells
Intense uptake in several non-target tissues

FAPI-34
bis-

imidazolylmethyl-
amine

Yes 99mTc No NA Derivative for SPECT imaging purposes

FAPI-36 No 68Ga NA NA

Derivative with a bridged
1,4-diazepane linker

High uptake in tumor but also in
non-target tissues

FAPI-39 No 68Ga NA NA Methylene (-CH2-) anchoring of the linker

FAPI-40 No 68Ga NA NA Thioether (-S-) anchoring of the linker

FAPI-41 No 68Ga NA NA Secondary amine (-NH-) anchoring of
the linker

FAPI-42 NOTA Yes 68Ga, [18F]AlF No NA NOTA analog of FAPI-04

FAPI-46 DOTA Yes 68Ga Yes 177Lu, 90Y, 225Ac
Tertiary amine anchoring of the linker

High tumor-to-healthy tissues ratio
Best candidate in initial quinoline series

FAPI-55 DOTA No 68Ga NA NA

Derivative with a piperidine linker instead
of piperazine

High lipophilicity causing prolonged
hepatic residence time

FAPI-76 NOTA Yes 68Ga, [18F]AlF No NA Non-fluorinated analog of FAPI-42

NA = not applicable. Bold = derivatives most widely studied in a clinical setting.

4.2. Clinical Use of FAPI-04 and FAPI-46 in Oncology

A significant number of clinical studies suggest that imaging with 68Ga-labeled FAPI-
04 or FAPI-46 could serve as an alternative to [18F]FDG PET in certain oncological in-
dications, particularly for thyroid, liver, and biliary tract cancers, as well as peritoneal
carcinomatosis. These cancers are characterized by a low uptake of [18F]FDG. For several
other cancers, such as breast, ovarian, gastric, pancreatic, and bladder cancers, [18F]FDG
uptake is inconsistent. However, for cancers like lung, head and neck, or colorectal can-
cer, where [18F]FDG tumor uptake is high, the diagnostic benefit of FAPI could be more
limited [142]. This section will therefore focus on cancers with low [18F]FDG uptake.

4.2.1. Liver and Biliary Tract Cancers

Liver cancer is the fourth leading cause of death worldwide, with over 800,000 deaths
per year [143]. The most commonly diagnosed type is hepatocellular carcinoma (HCC),
which originates from hepatocytes, followed by cholangiocarcinoma (CC), arising from
bile duct cells [144,145]. [18F]FDG is taken up by HCC cells in only 60% of cases, and
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most well-differentiated HCCs are negative on [18F]FDG PET scans (Figure 13) [146].
Similarly, the role of [18F]FDG in diagnosing CC is debated. In the study by Petrowsky
et al., PET showed no significant advantage over contrast-enhanced computed tomography
in diagnosing extrahepatic CC and intrahepatic lesions [147]. In a prospective study
of 41 patients suspected of having HCC or CC, Rajaraman et al. found that [68Ga]Ga-
FAPI-04 outperformed [18F]FDG PET with a sensitivity, specificity, and accuracy of 96.8%
vs. 51.6%, 90% vs. 100%, and 95.1% vs. 63.4%, respectively [148]. These findings are
supported by numerous other studies, particularly for [68Ga]Ga-FAPI-46 [149–151]. For
instance, a retrospective study by Siripongsatian et al. compared tumor detection rates
using MRI, [18F]FDG PET, and [68Ga]Ga-FAPI-46 PET in 27 patients with CC or HCC; the
same intrahepatic lesions detected by MRI were also identified by [68Ga]Ga-FAPI-46 PET
(100% sensitivity), whereas [18F]FDG PET had a sensitivity of only 58% [149].
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Figure 13. PET/CT scans of a 53-year-old male diagnosed with moderately differentiated
HCC. (A) The [68Ga]Ga-FAPI-04 PET/CT detected a high-affinity lesion (black and white arrows,
SUVmax = 7.36) in the liver’s right lobe. (B) In contrast, no abnormalities were identified in the liver
on the [18F] FDG PET/CT images (SUVmax = 2.36). Images originally published by Wang et al. [152].

4.2.2. Recurrent Well-Differentiated Thyroid Cancer

[18F]FDG PET imaging plays a role in evaluating recurrent differentiated thyroid
cancer (DTC) in patients with thyroglobulin-elevated negative iodine scintigraphy [153].
However, these patients are challenging to diagnose and treat, as [18F]FDG PET shows
variable sensitivity (ranging from 68.8% to 82%) and can result in false negatives in 8%
to 21.1% of cases [154]. In this context, studies have explored the potential of FAPI PET
imaging in such cancers. Fu et al. demonstrated the superiority of [68Ga]Ga-FAPI-04 PET
over FDG PET in 35 patients with metastatic DTC, showing higher SUVmax values (7 vs.
4) and improved sensitivity (83% vs. 65% for neck lesions and 79% vs. 59% for distant
metastases) [155]. The key images from this study are presented in Figure 14. Another
retrospective study involving 29 patients with recurrent papillary thyroid carcinoma also
demonstrated the superiority of [68Ga]Ga-FAPI-04 PET over [18F]FDG PET in detecting
recurrence in DTC patients (86% vs. 72.4%) [156].
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tiated thyroid cancer. 68Ga-FAPI PET/CT demonstrated superior detection compared to 18F-FDG
PET/CT for identifying local recurrence (patient 9); cervical lymph node metastases (patients 6,
16, and 17); mediastinal lymph node metastases (patients 8, 16, 17, and 21); axillary lymph node
metastases (patient 16); abdominal lymph node metastases (patient 9); lung metastases (patients 3, 9,
16, and 21); subcutaneous metastases (patient 8); and pleural metastases (patient 9). Images originally
published by Fu et al. [155].

4.2.3. Sarcomas

Soft tissue sarcomas are rare malignant tumors that develop in the extra-skeletal
connective or supporting tissues of the body, such as adipose, muscular, vascular, fi-
brous tissues, and the peripheral nervous system [157]. According to a meta-analysis of
15 prospective and retrospective studies, [18F]FDG PET is useful in diagnosing high- or
intermediate-grade sarcomas, with a typical SUV of 2 or higher. However, low-grade
tumors are more difficult to diagnose and differentiate from benign tumors, as they often
show SUVs below 2 [158]. A prospective study involving 45 patients previously diagnosed
with recurrent soft tissue sarcoma explored the potential benefits of FAPI PET imaging
compared to [18F]FDG for detecting lesions. [18F]FDG PET detected about two-thirds of
recurrent lesions, with a sensitivity of 65.96% and a specificity of 21.43%, whereas [68Ga]Ga-
FAPI-04 PET identified almost all lesions (275 out of 282) and showed significantly higher
sensitivity and specificity (97.52% and 60.71%, respectively) [159]. Another prospective
study focused on [68Ga]Ga-FAPI-46 established a correlation between histopathological
FAP expression and the intensity of [68Ga]Ga-FAPI-46 uptake in bone and soft tissue
sarcomas in 47 patients with sarcomas. It also compared [68Ga]Ga-FAPI-04 PET with
[18F]FDG PET in 43 of these patients. The exams revealed differences in disease staging,
with six patients being reclassified from locoregional to metastatic disease after undergoing
[68Ga]Ga-FAPI-04 PET [160].

4.2.4. Peritoneal Carcinomatosis

Peritoneal carcinomatosis is a form of cancer characterized by the dissemination of
tumor cells on the peritoneum, the membrane that lines the abdominal cavity and its
organs. It is typically a secondary cancer, most often originating from cancers of the diges-
tive system, such as stomach, colon, rectal, and pancreatic cancers, or from gynecological
cancers, primarily ovarian cancer [161]. Diagnosing peritoneal carcinomatosis is gener-
ally challenging due to its anatomical configuration. While [18F]FDG PET imaging is an
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option, false negatives can occur in cases of small tumor deposits, mucinous tumors, or
gastric cancers that poorly uptake [18F]FDG. Additionally, it has been shown that non-
malignant and inflammatory lesions can uptake [18F]FDG, potentially leading to false
positives [162,163]. In a retrospective study of 57 patients with peritoneal carcinomatosis,
Guzel’s team compared [68Ga]Ga-FAPI-04 with [18F]FDG and found that [68Ga]Ga-FAPI-04
images were generally characterized by low non-specific uptake in the peritoneal cavity and
a high tumor-to-background ratio (14.9 vs. 6.8 for [18F]FDG), offering superior sensitivity
compared to [18F]FDG PET for diagnosing peritoneal carcinomatosis (97–100% vs. 53–71%,
respectively) [164]. These findings were supported by Elboga’s team, who conducted a
retrospective study on 37 patients with colorectal, stomach, or pancreatic cancer. [68Ga]Ga-
FAPI-04 PET imaging revealed a greater number of lesions in all categorized regions, with
an average SUVmax of 10.7 for detecting peritoneal metastases, compared to an average
SUVmax of 3.1 for [18F]FDG [165].

4.2.5. Other Applications in Oncology

The aforementioned cancers are among those with the lowest [18F]FDG uptake, where
FAPI imaging appears to offer the most significant benefit. However, FAPI compounds
have also been studied in other tumor types, where [18F]FDG uptake can be variable.
For instance, in a prospective study involving 13 patients with gastric adenocarcinoma,
[68Ga]Ga-FAPI-04 demonstrated higher sensitivity (100% of lesions detected) compared
to [18F]FDG (50% of lesions detected) in diagnosing primary lesions [166,167]. Similarly,
while [18F]FDG is generally advantageous in diagnosing pancreatic ductal adenocarcinoma,
false positives can occur in inflammatory conditions [168]. FAPI PET combined with
MRI has shown superiority over FDG PET alone in 33 patients with pancreatic ductal
adenocarcinoma, detecting 33.3% more metastatic lymph nodes [169]. Also, [68Ga]Ga-FAPI-
04 and FAPI-46 have shown promise in imaging breast and ovarian cancers, providing
additional or complementary information to [18F]FDG for detecting primary lesions or
in post-chemotherapy follow-up (100% sensitivity and 95.8% specificity for FAPI-04 vs.
78.2% sensitivity and 100% specificity for FDG in the study by Kömek et al.) [170–172].
In contrast, [68Ga]Ga-FAPI-04 is not superior to [18F]FDG in detecting multiple myeloma,
as shown in a retrospective study of 14 patients with this cancer [167]. For tumors with
high [18F]FDG uptake, such as brain or head and neck tumors, studies do not report any
particular advantage of FAPI imaging over [18F]FDG [173–175].

4.2.6. FAPI Imaging Limitations

While FAPI-04 and FAPI-46 can be used in a number of non-oncological applications,
their non-specific uptake in activated fibroblasts can complicate PET scan interpretations,
particularly in cases of degenerative lesions and wound healing [176]. Similarly, FAPI
compounds show uptake in healthy uterine tissues [177]. Another limitation is that lymph
node staging may be less accurate than primary tumor detection. This can be attributed,
particularly in breast cancer, to the presence of two subpopulations of CAFs within the
lymph nodes: CAF-S1, which overexpresses FAP, and CAF-S4, which does not express
FAP [178].

4.3. Other Quinoline-Based FAP Inhibitors for Diagnostic Applications Studied in Humans

Following the success of the initial FAPI series discussed above, other novel quinoline
candidates have subsequently been developed.

4.3.1. OncoFAP

Functionalization of the quinoline group at position 8 with a short succinate linker
led to the discovery of OncoFAP. This FAP ligand contains a difluorocyanoproline, an
8-aminoquinoline moiety, and a carboxylic acid at the end of the succinate chain, which can
be used as a conjugation motif. As a result, it can be functionalized with different chelators
for radiolabeling, as well as fluorophores and cytotoxic drugs (Figure 15) [138].
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In biodistribution studies in mice bearing HT-1080 FAP-expressing tumors, compari-
son with [68Ga]Ga-FAPI-46 showed significantly a higher tumor uptake and tissue-to-blood
ratio for [68Ga]Ga-OncoFAP at 1 h p.i., with the parameters at 3 h p.i. becoming similar
between the two tracers. OncoFAP was subsequently evaluated in 12 patients, 8 of whom
had primary tumors, including breast cancer, fibrosarcoma, colon cancer, hepatocellular
carcinoma, and pancreatic tumors. In these patients, the tracer bound to primary tumors,
lymph nodes, and distant metastases while being rapidly cleared from healthy organs.
Compared to [68Ga]Ga-FAPI-46, [68Ga]Ga-OncoFAP showed lower liver uptake [179].

In therapeutic applications, OncoFAP was labeled with 177Lu using a DOTAGA chela-
tor and tested in athymic Balb/c AnNRj-Foxn1 mice with SK-RC52.hFAP renal carcinoma
xenografts, showing a biodistribution profile favorable for therapy [179]. One study also
used OncoFAP as a precursor for automated radiolabeling with various radioactive iso-
topes [180]. DOTAGA-OncoFAP, NODAGA-OncoFAP, and NOTA-OncoFAP derivatives
were synthesized from OncoFAP-COOH and radiolabeled with 68Ga, 18F, and 177Lu, re-
spectively. The radioconjugates [68Ga]Ga-OncoFAP and [18F]AlF-OncoFAP exhibited high
stability (>99% intact compound) in a saline solution (0.9%) and human plasma at 37 ◦C for
2 h. However, stability assays of [177Lu]Lu-DOTAGA-OncoFAP showed radiolysis-induced
degradation of approximately 10% every 24 h. This degradation was significantly reduced
to around 2% over 8 days with the addition of 20 mg of gentisic acid.

The FAP-binding capability of these radiopharmaceuticals was tested on SK-RC-
52.hFAP cells and wild-type FAP-negative SK-RC-52 cells. A notable difference in absolute
binding values was observed for FAP-positive cells: 20% for [177Lu]Lu-DOTAGA-OncoFAP,
2.3% for [68Ga]Ga-DOTAGA-OncoFAP, and only 0.25% for [18F]AlF-NOTA-OncoFAP. Tests
on wild-type SK-RC-52 cells showed very low non-specific binding for all compounds,
indicating good specificity of the radiopharmaceuticals for FAP-expressing cells [180].

Currently, [68Ga]Ga-OncoFAP, developed by Philogen and Blue Earth, is undergoing
a first phase I clinical trial in patients with advanced solid tumors (NCT05784597), while
[177Lu]Lu-OncoFAP is also being investigated in a phase I clinical trial announced in late 2023.

4.3.2. Aluminum [18F]fluoride and FAPI-42

Gallium-68 emits a β+ particle with a longer mean free path compared to fluorine-18,
resulting in a lower spatial resolution than 18F [181]. The short half-life of 68Ga (68 min) ne-
cessitates meticulous planning for the preparation of the radiopharmaceutical, administra-
tion, and image acquisition, thus limiting flexibility in the imaging procedures. Chemically,
68Ga easily complexes with cyclic chelators such as DOTA, NOTA, or NODAGA, enabling
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the development of radiotracers directed to a wide range of molecular targets, giving it
broad applications in molecular imaging.

In contrast, 18F radiolabeling requires the formation of a covalent bond between the
radioelement and its vector molecule. Such a bond is harder to form than the coordination
bonds used for 68Ga complexation, requiring larger amounts of the vector (often chemically
modified to increase its reactivity), harsher reaction conditions, and additional synthesis
steps [182]. However, a recent non-covalent 18F labeling method using the strong interaction
between fluoride ([18F]F−) and aluminum (Al3+) has overcome the chemical incompatibility
between conventional radiofluorination and the cyclic chelators used for gallium. As
a result, [18F]AlF-FAPI-42, also known as [18F]AlF-NOTA-FAPI-04 (Figure 16), can be
produced in large quantities and benefits from a longer half-life than 68Ga (110 min vs.
68 min), which is advantageous in clinical settings for performing a higher number of
examinations [183,184]. From a pharmaceutical standpoint, it is noteworthy that the
preparation of [18F]fluoride aluminum-labeled FAPIs can be automated using the same
synthesizers employed for the production of [18F]FDG [185,186].

Biology 2024, 13, x FOR PEER REVIEW 22 of 39 
 

 

4.3.2. Aluminum [18F]fluoride and FAPI-42 
Gallium-68 emits a β+ particle with a longer mean free path compared to fluorine-18, 

resulting in a lower spatial resolution than 18F [181]. The short half-life of 68Ga (68 min) 
necessitates meticulous planning for the preparation of the radiopharmaceutical, admin-
istration, and image acquisition, thus limiting flexibility in the imaging procedures. Chem-
ically, 68Ga easily complexes with cyclic chelators such as DOTA, NOTA, or NODAGA, 
enabling the development of radiotracers directed to a wide range of molecular targets, 
giving it broad applications in molecular imaging. 

In contrast, 18F radiolabeling requires the formation of a covalent bond between the 
radioelement and its vector molecule. Such a bond is harder to form than the coordination 
bonds used for 68Ga complexation, requiring larger amounts of the vector (often chemi-
cally modified to increase its reactivity), harsher reaction conditions, and additional syn-
thesis steps [182]. However, a recent non-covalent 18F labeling method using the strong 
interaction between fluoride ([18F]F−) and aluminum (Al3+) has overcome the chemical in-
compatibility between conventional radiofluorination and the cyclic chelators used for 
gallium. As a result, [18F]AlF-FAPI-42, also known as [18F]AlF-NOTA-FAPI-04 (Figure 16), 
can be produced in large quantities and benefits from a longer half-life than 68Ga (110 min 
vs. 68 min), which is advantageous in clinical settings for performing a higher number of 
examinations [183,184]. From a pharmaceutical standpoint, it is noteworthy that the prep-
aration of [18F]fluoride aluminum-labeled FAPIs can be automated using the same synthe-
sizers employed for the production of [18F]FDG [185,186]. 

 
Figure 16. Principle of aluminum [18F]fluoride radiolabeling (inspired by Carroll et al. [187]), and 
the chemical structure of [18F]AlF-FAPI-42. 

The clinical translation of this imaging agent involved 10 patients with various cancer 
types (lung, pancreatic, colorectal, prostate, and lymphoma). PET scans using [18F]AlF-
NOTA-FAPI demonstrated lower mean SUV values compared to [18F]F-FDG in most or-
gans, particularly in the liver (1.1 ± 0.2 vs. 2.0 ± 0.9), brain (0.1 ± 0.0 vs. 5.9 ± 1.3), and bone 
marrow (0.9 ± 0.1 vs. 1.7 ± 0.4). However, the mean SUV in the pancreas (3.0 ± 2.0 vs. 1.4 ± 
0.4), muscle (1.6 ± 0.4 vs. 0.7 ± 0.1), submandibular gland (3.5 ± 1.5 vs. 1.6 ± 0.5), and parotid 
gland (1.8 ± 0.7 vs. 0.9 ± 0.2) was higher for [18F]AlF-NOTA-FAPI compared to [18F]F-FDG. 
Furthermore, the fluorinated FAPI detected more lesions than [18F]F-FDG for certain pa-
tients [188]. 

Similarly, a biodistribution study of [18F]AlF-NOTA-FAPI-04 demonstrated high 
specificity for FAP binding to FAP in vitro and in vivo, both on the human U87 cancer cell 
line (glioblastoma) and in 28 patients with various cancers (lung, pancreatic, and sar-
coma). PET scans with [18F]AlF-NOTA-FAPI-04 gave highly contrasted images with neg-
ligible radiation exposure to healthy tissues [189]. The clinical use of this PET imaging 
agent has gained increasing interest, as evidenced by the numerous patient cohorts pub-
lished for various oncology applications [190–197] (Figure 17). 

Figure 16. Principle of aluminum [18F]fluoride radiolabeling (inspired by Carroll et al. [187]), and the
chemical structure of [18F]AlF-FAPI-42.

The clinical translation of this imaging agent involved 10 patients with various cancer
types (lung, pancreatic, colorectal, prostate, and lymphoma). PET scans using [18F]AlF-
NOTA-FAPI demonstrated lower mean SUV values compared to [18F]F-FDG in most organs,
particularly in the liver (1.1 ± 0.2 vs. 2.0 ± 0.9), brain (0.1 ± 0.0 vs. 5.9 ± 1.3), and bone
marrow (0.9 ± 0.1 vs. 1.7 ± 0.4). However, the mean SUV in the pancreas (3.0 ± 2.0 vs.
1.4 ± 0.4), muscle (1.6 ± 0.4 vs. 0.7 ± 0.1), submandibular gland (3.5 ± 1.5 vs. 1.6 ± 0.5),
and parotid gland (1.8 ± 0.7 vs. 0.9 ± 0.2) was higher for [18F]AlF-NOTA-FAPI compared
to [18F]F-FDG. Furthermore, the fluorinated FAPI detected more lesions than [18F]F-FDG
for certain patients [188].

Similarly, a biodistribution study of [18F]AlF-NOTA-FAPI-04 demonstrated high speci-
ficity for FAP binding to FAP in vitro and in vivo, both on the human U87 cancer cell line
(glioblastoma) and in 28 patients with various cancers (lung, pancreatic, and sarcoma).
PET scans with [18F]AlF-NOTA-FAPI-04 gave highly contrasted images with negligible
radiation exposure to healthy tissues [189]. The clinical use of this PET imaging agent has
gained increasing interest, as evidenced by the numerous patient cohorts published for
various oncology applications [190–197] (Figure 17).

[18F]AlF-NOTA-FAPI-04 also showed promise in rheumatoid arthritis; Ge et al. ob-
served that, compared to [18F]FDG, [18F]AlF-NOTA-FAPI-04 exhibited strong uptake in
inflamed joints at the early stage of arthritis, with a positive correlation between this uptake
and arthritis scores [198]. Lastly, similar to FAPI analogs previously discussed, [18F]AlF-
NOTA-FAPI-04 is currently being widely studied in the imaging of other inflammatory and
fibrotic processes, as well as in cardiology [199–202].
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4.3.3. [18F]AlF-FAPI-74

FAPI-74 has a structure similar to FAPI-42 but without difluorosubstitution of the
cyanopyrrolidine ring [203]. The binding properties of FAPI-74 to its molecular target
were evaluated in vitro using HT-1080-FAP cells transfected with FAP, demonstrating the
significant binding of [18F]AlF-FAPI-74. In vivo, the [18F]AlF-labeled tracer exhibited rapid
clearance and high tumor uptake, with only trace activity found in the intestines of HT-
1080-FAP xenografted mice. In the same study, [18F]AlF-FAPI-74 was tested on a patient
with metastatic non-small cell lung cancer, showing a performance comparable to other
FAPI tracers (rapid accumulation in the primary tumor and in hepatic and bone metastases,
SUVmax = 6.5 ± 1.1 [1 h] and 5.6 ± 0.7 [3 h], with almost no activity in normal tissues) [182].

Giesel et al. demonstrated equal performance between [18F]AlF-FAPI-74, [68Ga]Ga-
FAPI-74, and [68Ga]Ga-FAPI-04 in 10 patients with lung cancer (8 with adenocarcinoma
and 2 with squamous cell carcinoma) [203]. However, [18F]AlF-FAPI-74 seems to be more
frequently studied in current clinical settings, likely because gallium-based FAPI tracers,
such as [68Ga]Ga-FAPI-74, have already been widely investigated. In a prospective study
comparing [18F]AlF-FAPI-74 to [18F]FDG in seven patients with pancreatic adenocarcinoma,
the biodistribution of [18F]AlF-FAPI-74 in normal organs was found to be comparable to
68Ga-labeled FAP inhibitors, except in blood, skeletal muscles, and adipose tissue, where
it more closely resembled that of [18F]FDG. [18F]AlF-FAPI-74 detected 22% more lesions
compared to [18F]FDG (32 vs. 22), including both metastatic and primary lesions (Figure 18).
The SUVmax for metastatic lesions was 8.2 ± 13.9 with [18F]AlF-FAPI-74 and 5.7 ± 2.8 with
[18F]FDG, while the SUVmax for primary tumor lesions was 10.5 ± 4.5 with [18F]AlF-FAPI-
74 and 6.6 ± 3.2 with [18F]FDG [204].
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Figure 18. Example of additional lesion detection with [18F]AlF-FAPI-74 in a 69-year-old male
patient who underwent preoperative assessment after neoadjuvant chemoradiotherapy to evaluate
the treatment response, which revealed no notable uptake in [18F]FDG imaging. The red and green
arrows point to the primary lesion, while the violet arrows highlight the subtle, tumor-associated
pancreatitis affecting the remainder of the pancreas. The SUVmax of the primary lesion was 3.3 on
[18F]FDG and 5.7 on [18F]FAPI-74, respectively. Images originally published by Novruzov et al. [204].

4.3.4. Technetium-99m and FAPI-34

Technetium-99m (99mTc), the most commonly used gamma-emitting isotope in nuclear
medicine, is readily available via 99Mo/99mTc generators. Although this radiometal typi-
cally complexes quickly at room temperature with suitable chelating moieties, its reactivity
differs from 68Ga, requiring the use of specific chelators. FAPI-34 was developed with a
bis(1H-imidazol-2-ylmethyl)amine tridentate motif capable of chelating technetium in the
form of the aquo tricarbonyl complex [99mTc][Tc(CO)3(H2O)3]+ (Figure 19). This tracer
represents a promising candidate for 99mTc scintigraphic imaging due to its high contrast,
achieved by significant tumor uptake and rapid clearance from the rest of the body [205].
Clinical use of [99mTc]Tc-FAPI-34 has been reported in two patients with metastatic pancre-
atic and ovarian cancer who had previously undergone [68Ga]Ga-FAPI-46 PET imaging
and [90Y]Y-FAPI-46 therapy. Follow-up imaging with [99mTc]Tc-FAPI-34 revealed the same
lesions on both SPECT and PET scans (Figure 19) [205]. Notably, FAPI-34 could also be
used in therapy when labeled with rhenium-188 (188Re). In addition to FAPI-34, other
quinoline-based scintigraphic imaging vectors have been developed, such as [99mTc]Tc-
L1, [99mTc]Tc-HYNIC-Glc-FAPT, and [99mTc]Tc-HYNIC-FAPI-04, each utilizing different
technetium chelating groups [206–208].
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originally published by Lindner et al. [205].

4.4. Second-Generation FAP Inhibitors with a Non-Quinoline Structure

Although quinoline-based FAPI derivatives, particularly FAPI-46, are excellent imag-
ing vectors and show considerable potential for therapeutic applications, their intra-tumoral
retention time is not optimal for use in targeted radionuclide therapy (TRT) with 177Lu or
225Ac. Therefore, the development of new theranostic agents, particularly non-quinoline
derivatives, has been encouraged to optimize this parameter.

TRT is associated with the emission of beta-minus or alpha particles produced by
the radioisotope bound to the vector molecule. Alpha particles have a shorter range in
tissues (<0.1 mm) than beta particles (approximately 2 mm for 177Lu), allowing them to
selectively destroy targeted cancer cells and potentially limit the toxicity to nearby healthy
tissues. In TRT, tumor cell death is closely linked to absorbed doses (energy deposited,
measured in Grays, where 1 Gy = 1 J/kg), which cause DNA damage directly or indirectly,
either through direct particle interaction or through the ionization and excitation of water,
producing reactive oxygen species. Cell membranes and other cellular structures, like
mitochondria, can also be damaged, leading to cell death. For the same absorbed dose,
different types of radioactive particles have varied biological effects. Alpha particles have a
higher linear energy transfer (LET, indicating energy deposited per unit length or volume)
than beta-minus particles. In comparison to beta particles, alpha particles create a denser
path of ionization and excitation, leading to complex types of cellular damage that are
harder to repair, especially double-stranded DNA breaks. This explains their high relative
biological effectiveness. Consequently, the modulation of the biological effects of a TRT
strategy according to the selected radioisotope is currently being widely studied, including
with vectors targeting the tumor microenvironment, as shown below.

4.4.1. [99mTc]Tc-iFAP

In 2022, Trujillo-Benítez et al. developed a FAP inhibitor based on the structure N-
(pyridine-3-carbonyl)-D-Ala-boroPro, labeled with 99mTc via a hydrazinonicotinic acid
(HYNIC) chelator, as illustrated in Figure 20. The biokinetic profile of [99mTc]Tc-iFAP is
similar to that of [68Ga]Ga-FAPI-46 or [99mTc]Tc-FAPI-34, showing rapid clearance from
non-target tissues [209]. In a study involving 32 patients with either gliomas or various can-
cers (breast, lung, colon, NET, renal cortex, and cervical cancer), [99mTc]Tc-iFAP SPECT/CT
detected 100% of the primary tumors but demonstrated lower sensitivity for lymph nodes
and distant metastases compared to [18F]FDG [210]. However, it showed good efficacy in
distinguishing between high- and low-grade gliomas due to high contrast. In theranos-
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tics, the 99mTc/188Re pair is not compatible with iFAP, because rhenium cannot complex
with the HYNIC chelator, calling for the use of alternative vectors for potential therapy
purposes [209].
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4.4.2. PNT6555

A boronic acid derivative, N-(pyridine-4-carbonyl)-D-Ala-boroPro or compound 3099,
was first reported by Poplawski et al. and exhibited a nanomolar affinity, along with high
selectivity, for FAP compared to other enzymes in the DPP and PREP subfamilies. The com-
bination of the D-Ala-boroPro motif with the DOTA chelator via a 4-aminomethylbenzoic
acid linker led to the development of compound PNT6555, shown in Figure 21, which was
studied for both diagnostic and therapeutic applications.
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In murine FAP-positive tumor models, [68Ga]Ga-PNT6555 demonstrated selectivity
for FAP-expressing tumors and reached high tumor-to-background contrast in PET imaging.
Moreover, PNT6555 radiolabeled with 177Lu showed significant anticancer effects, outper-
forming [177Lu]Lu-FAPI-46 in terms of tumor growth inhibition after a single injection of
equivalent doses. It successfully inhibited tumor growth for up to 55 days following a
30 MBq injection per mouse. By comparison, the previously mentioned study by Liu et al.
showed that [177Lu]Lu-FAPI-46 did not produce significant tumor growth inhibition after
a 30 MBq injection in mice xenografted with the same cell line [211]. However, to draw
definitive conclusions, the comparison should be reproduced within the same experiment.
Additionally, PNT6555 labeled with 225Ac demonstrated comparable activity, delaying
tumor growth for 65 days at a 50 kBq dose, suggesting therapeutic versatility. The favorable
preclinical results of PNT6555 support its clinical potential as an alternative to quinoline-
based FAPI agents [212]. This molecule, owned by POINT Biopharma, is currently under
evaluation in humans as [177Lu]Lu-PNT6555 in a phase I clinical trial (NCT05432193) [213].
It is being tested for various cancers, including pancreatic, esophageal, colorectal cancer,
melanoma, cholangiocarcinoma, and other solid tumors with FAP overexpression [214].
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4.4.3. FAP-2286

The German biopharmaceutical company Clovis Oncology developed FAP-2286, a
cyclic peptidomimetic composed of seven amino acids. Cyclic peptides and pseudopeptides
offer the advantage of being generally more stable and rigid than their linear counterparts,
often resulting in higher affinity and specificity for their targets [215]. This rigidity also
gives cyclic peptides greater resistance to enzymatic degradation [216]. FAP-2286 consists of
a cyclized peptide sequence linked to a DOTA chelator via a 1,3,5-benzenetrimethanethiol
group (Figure 22). Complexes of FAP-2286 with 68Ga, 111In, and 177Lu have been studied
in detail [217].
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Initial studies showed that [68Ga]Ga-FAP-2286 exhibited a distribution profile similar
to [68Ga]Ga-FAPI-46, with slightly higher physiological uptake in the liver, kidneys, and
heart. Rapidly translated to clinical use, [68Ga]Ga-FAP-2286 PET imaging was performed
on 64 patients, primarily with cancers of the head and neck, liver, stomach, pancreas,
ovaries, and esophagus, for cancer staging or relapse identification. Among these patients,
63 also underwent a comparative PET with [18F]FDG and 19 with [68Ga]Ga-FAPI-46. The
final diagnosis was based on histopathological results (58 patients) and radiological di-
agnosis (comprehensive imaging review; 6 patients). [68Ga]Ga-FAP-2286 showed lower
background uptake compared to [68Ga]Ga-FAPI-46 in the thyroid, pancreas, muscles, and
salivary glands. For tumor detection, among 44 patients requiring staging, [68Ga]Ga-FAP-
2286 detected all primary tumors across nine different cancer types, whereas [18F]FDG
missed nine tumors. Moreover, [68Ga]Ga-FAP-2286 demonstrated a higher SUVmax of 11.1
compared to 6.9 for [18F]FDG and a median tumor-to-background ratio of 9.2 compared to
3.0 for [18F]FDG, indicating superior tumor lesion detectability. [68Ga]Ga-FAP-2286 and
[68Ga]Ga-FAPI-46 produced similar clinical results for tumor imaging when compared to
[18F]FDG [218,219]. To further optimize the diagnostic properties of this vector, a NOTA
analog was developed, allowing for labeling with [18F]aluminum fluoride [220].

Concerning the therapy counterpart, a preliminary study investigated the use of
[177Lu]Lu-FAP-2286 in 11 patients with progressive, metastatic adenocarcinomas of the pan-
creas (5 patients), breast (4 patients), ovary (1 patient), and rectum (1 patient). Most patients
received two treatment cycles spaced 8 weeks apart, while one patient received a single
cycle, and another received three cycles. The average administered dose was 5.8 ± 2.0 GBq
of [177Lu]Lu-FAP-2286 per cycle. [177Lu]Lu-FAP-2286 demonstrated prolonged tumor reten-
tion, with an effective half-life of approximately 44 h in bone metastases. With acceptable
side effects, these results paved the way for larger clinical trials [221]. In this regard, the
safety and efficacy of [177Lu]Lu-FAP-2286 are currently being evaluated in the phase 1/2
LuMIERE clinical trial, sponsored by Novartis (NCT04939610) [222]. Other smaller-scale
research protocols are also actively recruiting (NCT04621435 and NCT05180162).
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4.4.4. 3BP-3940

Minor structural modifications of FAP-2286 led to the development of an optimized
analog, 3BP-3940 (Figure 23). Although the scientific literature on this targeting molecule is
still limited, investigations have been conducted in both imaging and therapy. A patient
with pancreatic cancer and liver metastases received 150 MBq of 3BP-3940 labeled with
68Ga for PET imaging. The scan showed intense accumulation in the primary tumor and
metastatic lesions, confirming the targeting ability of 3BP-3940. Recently, another pep-
tidomimetic with an identical sequence, designed exclusively for diagnostic purposes, was
developed: [18F]AlF-FAP-NUR, which includes a NOTA chelator and can be radiolabeled
with 68Ga or [18F]aluminum fluoride [223].
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Regarding the use of 3BP-3940 in TRT, an initial patient received a single dose of
9.7 GBq of the vector radiolabeled with 177Lu. The treatment was well tolerated without
significant changes in the vital signs or biological parameters, suggesting good tolerance of
the radiocomplex [224]. Another study presents the first human results from a theranostic
approach involving 3BP-3940. An initial PET scan with [68Ga]Ga-3BP-3940 was used to
select patients for TRT with the same vector, labeled with various isotopes (177Lu, 90Y, and
225Ac), administered either alone or in tandem isotope combinations (177Lu + 225Ac or
90Y + 225Ac). After 1 to 5 cycles of TRT, the average cumulative activity of the different
radioisotopes administered to patients was as follows: 12.6 ± 11.5 GBq for 177Lu (n = 21,
with a maximum of 43.1 GBq); 9.8 ± 7.2 GBq for 90Y (n = 10, with a maximum of 25.7 GBq);
and 15.2 ± 8.5 MBq for 225Ac (n = 23, with a maximum of 33 MBq). One patient achieved
complete remission, four had partial remission, and three experienced disease stabilization.
The other patients showed disease progression (n = 12). Across the cohort (n = 28), the
median overall survival from the start of TRT was 9.0 months [225,226].

5. Conclusions

FAP targeting has emerged as a pivotal strategy for exploring the TME and enhanc-
ing cancer diagnostics. The development and current clinical use of FAPI compounds,
particularly those based on quinoline derivatives, allows more precise imaging of tumors
with low [18F]FDG uptake. To date, numerous quinoline-based FAPI derivatives are be-
ing investigated in phase 1 clinical trials, highlighting the ongoing interest in this class of
radiopharmaceuticals. Of note, only three molecules have advanced to phase 2 trials: [18F]F-
FAPI-04, [18F]F-FAPI-74, and [68Ga]Ga-FAPI-46. Of these, [68Ga]Ga-FAPI-46 is the most
extensively studied, demonstrating potential for both diagnostic and therapeutic applica-
tions. The progression of FAPI agents into later-stage clinical trials is crucial for the broader
adoption of FAP-targeted diagnostics and treatments. Additionally, the development of
single-vial cold kits for efficient 68Ga radiolabeling of FAPI derivatives could facilitate
broader clinical implementation. Furthermore, the potential industrial-scale production of
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covalently 18F-labeled FAPI derivatives offers the prospect of more widespread access to
high-resolution PET imaging agents. In the future, theranostic strategies involving FAPI
derivatives hold significant promise, especially through the conception and evaluation
of non-quinoline compounds such as FAP-2286 and 3BP-3940, opening up avenues for
personalized cancer treatment. As with other radiopharmaceuticals such as [177Lu]Lu-
oxodotreotide in neuroendocrine tumors or [177Lu]Lu-vipivotide tetraxetan in metastatic
prostate cancer, an important area of investigation for FAPI-based TRT will certainly be its
suitability for combined strategies pairing TRT with chemotherapy, immunotherapy, or
oral kinase inhibitors.

In summary, while significant progress has been made, the full diagnostic and thera-
peutic potential of FAP-targeting agents remains to be consolidated for potential widespread
use in routine clinical practice.
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FAPI-04 PET/CT, a New Step in Breast Cancer Imaging: A Comparative Pilot Study with the 18F-FDG PET/CT. Ann. Nucl. Med.
2021, 35, 744–752. [CrossRef]

171. Backhaus, P.; Burg, M.C.; Asmus, I.; Pixberg, M.; Büther, F.; Breyholz, H.-J.; Yeh, R.; Weigel, S.B.; Stichling, P.; Heindel, W.; et al.
Initial Results of 68Ga-FAPI-46 PET/MRI to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer. J. Nucl. Med. Off.
Publ. Soc. Nucl. Med. 2023, 64, 717–723. [CrossRef]

172. Zheng, W.; Liu, L.; Feng, Y.; Wang, L.; Chen, Y. Comparison of 68Ga-FAPI-04 and Fluorine-18-Fluorodeoxyglucose PET/Computed
Tomography in the Detection of Ovarian Malignancies. Nucl. Med. Commun. 2023, 44, 194. [CrossRef]

173. Linz, C.; Brands, R.C.; Kertels, O.; Dierks, A.; Brumberg, J.; Gerhard-Hartmann, E.; Hartmann, S.; Schirbel, A.; Serfling, S.; Zhi,
Y.; et al. Targeting Fibroblast Activation Protein in Newly Diagnosed Squamous Cell Carcinoma of the Oral Cavity—Initial
Experience and Comparison to [18F]FDG PET/CT and MRI. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3951–3960. [CrossRef]

174. Chen, S.; Chen, Z.; Zou, G.; Zheng, S.; Zheng, K.; Zhang, J.; Huang, C.; Yao, S.; Miao, W. Accurate Preoperative Staging with
[68Ga]Ga-FAPI PET/CT for Patients with Oral Squamous Cell Carcinoma: A Comparison to 2-[18F]FDG PET/CT. Eur. Radiol.
2022, 32, 6070–6079. [CrossRef]

175. Syed, M.; Flechsig, P.; Liermann, J.; Windisch, P.; Staudinger, F.; Akbaba, S.; Koerber, S.A.; Freudlsperger, C.; Plinkert, P.K.; Debus,
J.; et al. Fibroblast Activation Protein Inhibitor (FAPI) PET for Diagnostics and Advanced Targeted Radiotherapy in Head and
Neck Cancers. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2836–2845. [CrossRef] [PubMed]

176. Kessler, L.; Ferdinandus, J.; Hirmas, N.; Zarrad, F.; Nader, M.; Kersting, D.; Weber, M.; Kazek, S.; Sraieb, M.; Hamacher, R.; et al.
Pitfalls and Common Findings in 68Ga-FAPI PET: A Pictorial Analysis. J. Nucl. Med. 2022, 63, 890–896. [CrossRef] [PubMed]
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