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In our daily life, we are used to compare things. We sort physical objects (i.e. regions of
space) from smaller to bigger, or propositions from less likely to more likely. These relations
contribute to our intuitive understanding of reality, and are naturally formalized by a pre-order
on a finite Boolean algebra B.1 This framework is typically qualitative, as two elements can
only be related in three possible manners: smaller, bigger, or equivalent – without any consid-
eration of degree or magnitude. By contrast, human beings also managed to quantify some of
their intuitions through measurement, with examples including length, volume, temperature,
and probabilities. Quantitative reasoning is a core component of scientific inquiry, and its
mathematical foundations have been studied extensively in [KLTS71]. Formally, a measure on
B is a map µ : B → [0,∞] satisfying µ(a ∪ b) = µ(a) + µ(b) whenever a ∩ b = 0. We call µ
finite if in addition we have µ(a) ̸= ∞ for all a ∈ B. Obviously, a measure µ always induces
a relation ⪯µ on B, defined by a ⪯µ b ⇐⇒ µ(a) ≤ µ(b). The relations of the form ⪯µ will
be called measurable, and finitely measurable in case µ is a finite measure. So there is a direct
bridge from quantitative to qualitative comparison, but the other way around is more limited,
and this raises the question of which conditions on a relation ⪯ are necessary and sufficient for
⪯ to be (finitely) measurable. In the case of finite measures, this problem was solved by Kraft,
Pratt and Seidenberg in their 1959 paper [KPS59], and later rewritten by Scott [Sco64] in a
clearer manner. We present their result below. Given x ∈ X and a1, . . . , am ∈ B, we denote by
countx(a1, . . . , am) := {i ∈ [1,m] : x ∈ ai} the number of ai’s that contain x.

Theorem 1. A relation ⪯ on B is finitely measurable if and only if the following conditions
are satisfied, for all m ≥ 1 and for all a, b, a1, . . . , am, b1, . . . , bm ∈ B:

• Positivity: 0 ⪯ a;
• Comparability: a ⪯ b or b ⪯ a;
• Cancellation: if countx(a1, . . . , am) = countx(b1, . . . , bm) for all x ∈ X and ai ⪯ bi for
all i ∈ [1,m− 1], then bm ⪯ am.

However, this result is not fully satisfying for a number a reasons, related to the cancellation
conditions. First, they involve the high-level operator countx(a1, . . . , am), and even though they
can be rewritten in a purely Boolean manner [Gär75], they remain quite awkward to read and
compute. Second, they come in infinite number, and thus fail to provide a finite axiomatization
for various logics of measure, see for instance [Gär75, vdH96, FZ23]. It is surprising, perhaps,
that this result has never been improved in sixty years, nor proved to be optimal. In this work,
we break this uncomfortable status quo by proposing the following new characterization.

Theorem 2. A relation ⪯ on B is finitely measurable if and only if the following conditions
are satisfied, for all a, b, c, d ∈ B:

• Comparability: a ⪯ b or b ⪯ a;

∗Speaker.
1Here we only consider the case where B is finite, and thus represent it as a powerset algebra

(2X ,∩,∪, 0, 1, ·c).



• Linearity: if a ∩ c = 0 and a ∪ c ⪯ b ∪ d and d ⪯ c, then a ⪯ b.

Let us briefly sketch the proof of Theorem 2. The strategy for the right-to-left implication
is to prove that comparability and linearity entail the conditions of Theorem 1. To prove
cancellation, assume that countx(a1, . . . , am) = countx(b1, . . . , bm) for all x ∈ X, and ai ⪯ bi
for all i ∈ [1,m−1]. Consider for a moment the case where a1, . . . , am, b1, . . . , bm are all pairwise
disjoint. Then, the counting assumption yields b1 ∪ · · · ∪ bm ⪯ a1 ∪ · · · ∪ am, and by applying
linearity m − 1 times we arrive at bm ⪯ am. This does not work in the general case, because
when countx(a1, . . . , am) ≥ 2, the large union a1 ∪ · · · ∪ am fails to keep track of the different
repetitions of x. However, we can bypass this issue by ‘duplicating’ the elements of X. In a
critical lemma, we show that we can introduce equivalent copies x1, . . . , x2m of every x ∈ X,
in a way that preserves positivity, comparability, and a weaker version of linearity. We then
tweak the sets a1, . . . , am, b1, . . . , bm by replacing their members with corresponding copies, so
that one copy never occurs twice (see the example below).
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It then suffices to apply the previous reasoning to the sets a∗1, . . . , a
∗
m, b∗1, . . . , b

∗
m.

We also addressed the case of arbitrary measurable relations.

Theorem 3. A relation ⪯ on B is measurable if and only if the following conditions are
satisfied, for all a, b, c, d ∈ B:

• Comparability: a ⪯ b or b ⪯ a;
• Transitivity: a ⪯ b and b ⪯ c implies a ⪯ c;
• Monotonicity: a ⊆ b implies a ⪯ b;
• Bounded Linearity: if 1 ̸⪯ c and a ∩ c = 0 and a ∪ c ⪯ b ∪ d and d ⪯ c, then a ⪯ b.

Here the strategy is to apply Theorem 2 to a well-chosen Boolean algebra B′ ⊆ B, and to
extend the resulting finite measure to a measure on B with the desired properties.

Finally, we observe that the conditions of Theorem 2 and Theorem 3 can be checked in time
polynomial in the size of B. In the case of finitely measurable relations, this results in a direct
improvement on the polynomial space algorithm of Kraft, Pratt and Seidenberg [KPS59].
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