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Abstract

We make a clean sweep of the tradition in intuitionistic modal logics by considering a
new truth condition of ♦-formulas saying that in model (W,≤, R, V ), ♦A holds at s∈W if
there exists t∈W where A holds and such that s≥◦Rt. While keeping the truth condition
of �-formulas that is commonly used, we axiomatize validity in the class of all models. The
resulting logic is the intuitionistic modal logic that we want to put forward as a candidate
for the title of “minimal intuitionistic modal logic”.

1 Syntax and semantics

Let At be a set of atoms (p, q, etc). The set Fo of all formulas (A, B, etc) is defined by
A ::= p|(A→A)|>|⊥|(A∧A)|(A∨A)|�A|♦A. For all A∈Fo, ¬A is the abbreviation for (A→⊥).

A Kripke frame or a KF is a structure of the form (W,≤, R) where W is a nonempty set,
≤ is a partial order on W and R is a binary relation on W . Let Ckfall be the class of all KFs.
A KF (W,≤, R) is forward (respectively: backward; downward) confluent if for all s, t∈W , if
s≥◦Rt then sR◦≥t (respectively: for all s, t∈W , if sR◦≤t then s≤◦Rt; for all s, t∈W , if s≤◦Rt
then sR◦≤t). Let Ckffc (respectively: Ckfbc; Ckfdc; Ckffbc; Ckffdc; Ckfbdc; Ckffbdc) be the class of all
forward (respectively: backward; downward; forward and backward; forward and downward;
backward and downward; forward, backward and downward) confluent KFs. A valuation on a
KF (W,≤, R) is a function V : At −→ ℘(W ) associating a ≤-closed subset of W to each atom.
Such a function can be extended as a function V : Fo −→ ℘(W ) associating to each A∈Fo a
≤-closed subset V (A) of W defined as usual when either A is an atom, or the main connective
of A is intuitionistic and as follows otherwise: (i) V (�A)={s∈W : for all t∈W , if s≤◦Rt then
t∈V (A)}; (ii) V (♦A)={s∈W : there exists t∈W such that s≥◦Rt and t∈V (A)}. A relational
model is a couple consisting of a KF and a valuation on that KF. Truth in a relational model,
validity in a KF and validity on a class of KFs are defined as usual. For all classes C of KFs,
let Log(C) be the logic of C.

A H-modal algebra or a HMA is a structure of the form (H,≤H ,→H ,�H ,♦H) where
(H,≤H ,→H) is a Heyting algebra and �H : H−→H and ♦H : H−→H are operators
such that for all a, b, c∈H: (i) �H>H=>H ; (ii) �H(a∧Hb)=�Ha∧H�Hb; (iii) ♦H⊥H=⊥H ;
(iv) ♦H(a∨Hb)=♦Ha∨H♦Hb; (v) if ♦Ha≤Hb∨H�H(a→Hc) then ♦Ha≤Hb∨H♦Hc. Let Chma

all

be the class of all HMAs. A HMA (H,≤H ,→H ,�H ,♦H) is forward (respectively: back-
ward; downward) confluent if for all a, b∈H, ♦H(a→Hb)≤H(�Ha→H♦Hb) (respectively:
(♦Ha→H�Hb)≤H�H(a→Hb); �H(a∨Hb)≤H♦Ha∨H�Hb). Let Chma

fc (respectively: Chma
bc ;
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Chma
dc ; Chma

fbc ; Chma
fdc ; Chma

bdc ; Chma
fbdc) be the class of all forward (respectively: backward; downward;

forward and backward; forward and downward; backward and downward; forward, backward
and downward) confluent HMA. A valuation on a HMA (H,≤H ,→H ,�H ,♦H) is a function
V : At −→ H associating an element of H to each atom. Such a function can be extended
as a function V : Fo −→ H associating to each A∈Fo an element V (A) of H defined as usual
when either A is an atom, or the main connective of A is intuitionistic and as follows other-
wise: (i) V (�A)=�HV (A); (ii) V (♦A)=♦HV (A). An algebraic model is a couple consisting
of a HMA and a valuation on that HMA. Truth in an algebraic model, validity in a HMA and
validity on a class of HMAs are defined as usual. For all classes C of HMAs, let Log(C) be the
logic of C.

2 Axiomatization and completeness

An intuitionistic modal logic is a set of formulas closed for uniform substitution, containing the
standard axioms of IPL, closed with respect to the standard inference rules of IPL, containing
the axioms �(p→q)→(�p→�q), �(p∨q)→((♦p→�q)→�q), ♦(p∨q)↔♦p∨♦q and ¬♦⊥ and

closed with respect to the inference rules p
�p , p↔q

♦p↔♦q and ♦p→q∨�(p→r)
♦p→q∨♦r . We also consider

the axioms (Af) ♦(p→q)→(�p→♦q), (Ab) (♦p→�q)→�(p→q) and (Ad) �(p∨q)→♦p∨�q.
Let Lmin be the least intuitionistic modal logic. For all intuitionistic modal logics L and for all
A∈Fo, let L⊕A be the least intuitionistic modal logic containing L and A. Let Lfc (respectively:
Lbc; Ldc; Lfbc; Lfdc; Lbdc; Lfbdc) be Lmin⊕(Af) (respectively: Lmin⊕(Ab); Lmin⊕(Ad);
Lmin⊕(Af)⊕(Ab); Lmin⊕(Af)⊕(Ad); Lmin⊕(Ab)⊕(Ad); Lmin⊕(Af)⊕(Ab)⊕(Ad)).

Proposition 1. • Lmin=Log(Ckfall)=Log(Chma
all );

• Lfc=Log(Ckffc )=Log(Chma
fc ); Lbc=Log(Ckfbc)=Log(Chma

bc ); Ldc=Log(Ckfdc)=Log(Chma
dc );

• Lfbc=Log(Ckffbc)=Log(Chma
fbc ); Lfdc=Log(Ckffdc)=Log(Chma

fdc ); Lbdc=Log(Ckfbdc)=Log(Chma
bdc );

• Lfbdc=Log(Ckffbdc)=Log(Chma
fbdc).

Proposition 2. • WK [3] and Lmin are not comparable;

• WK [3] is strictly contained in Lfc;

• Lfc and FIK [1] are equal;

• Lfbc and IK [2] are equal;

• Lfbdc is strictly contained in K — the least normal modal logic.

All in all, Lmin is the intuitionistic modal logic that we want to put forward as a candidate
for the title of “minimal intuitionistic modal logic”.

References
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