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Introduction: In 2012, NASA’s Mars Science Lab-
oratory started its journey through Gale crater, Mars.
One instrument of the payload is ChemCam which uses
LIBS (laser-induced breakdown spectroscopy) to ana-
lyze the chemical composition of martian rocks and
soils [1,2]. With a pulsed laser, material is ablated from
the surface of the sample, which then forms a plasma.
The plasma contains excited atoms, ions and simple
molecules that emit characteristic radiation. By analyz-
ing this radiation spectroscopically, the composition of
the sample can be determined. ChemCam typically cre-
ates a raster of 5 measuring points on a target (since sol
3007, prior to that 10 points were typically acquired),
each of which is subjected to 30 laser pulses, i.e. 30
LIBS plasmas are created one after the other, and the ra-
diation of each is recorded. Standard ChemCam LIBS
data processing averages the spectra, excluding the first
5 to avoid dust contribution, and uses multivariate cali-
bration to determine the geochemical composition at the
point of measurement [3]. The aim of this study is to
explore ChemCam LIBS data from the sulfate bearing
unit (SBU) using an unsupervised decomposition tech-
nique, in which all 30 spectra of a measurement point
are taken into account. The idea is that this also ac-
counts for trends with the depth of the LIBS crater as
with each laser shot, material slightly deeper is ablated.
The 30 laser shots can produce different depths, depend-
ing on the material properties of the target, but typically
the average depth can be expected to be about 100 ym
[4]. Correlations of element emission lines over suc-
cessive shots can provide support for mineral identifica-
tion, assuming that the elements belong predominantly
to one mineral phase [5]. A method from the field of
tensor component analysis (TCA) will be used, which
extends matrix decomposition techniques to more than
two dimensions [6]. TCA has previously been applied
to ChemCam LIBS data from samples with a predom-
inantly felsic composition, demonstrating the potential
of this method for identifying more detailed mineral and
depth trends [7].

Method: There are two main approaches to multi-
way tensor decomposition: the Tucker decomposition
and parallel factor analysis (PARAFAC) [6], the lat-
ter being used in this study. The typical data matrix
of ChemCam LIBS points and spectrum (wavelength,
6144 channels) is extended by a third dimension asso-
ciated to the shots (here: 30). In brief, the basic idea
is to decompose the tensor in a sum of rank one ten-
sors [6], the number of which R needs to be fixed in ad-
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Figure 1: Depth trends of all 10 factors shown as a function
of shot number.

vance. With ChemCam LIBS data, each rank-one ten-
sor, which we will also refer to as a factor, has dimen-
sions corresponding to observation points, consecutive
shots (depth), and wavelength (spectra). We use non-
negative PARAFAC so that all values are restricted to be
> 0. For the computation, the hierarchical alternating
least squares (HALS) algorithm provided in python’s
TensorLy [8] package was utilized.

Data: In this study, we analyze recent ChemCam
data from the sulfate bearing unit (sol 3597-4037) with
TCA, omitting data measured during a detour to the
Gediz Vallis deposits (sol 3638-3690) and that of the
marker bed (sol 3709-3771). The compositions in
this region show strong contributions from salts such
as Ca- and Mg-sulfates as well as halite. In total,
shot-to-shot data from 1275 observation points are an-
alyzed, resulting in a data tensor with dimensions of
1275 x 30 x 6144.

Results:

We computed models with 3-14 ranks and decided
for the one with 10 ranks based on a reconstruction
error < 10% and no further significant decrease with
more ranks. We cannot provide a detailed analysis of
each of the 10 factors here. Instead, we offer general
observations and a rough interpretation of each factor
below. Fig. 1 displays the depth dimension and Fig. 2
shows the spectral dimension of all factors, while both
the trends and main spectral signatures are summarized
in Table 1. Overall, it is noticeable that three factors ex-
hibit a similar trend with depth, initially increasing and
then decreasing (factors 1, 2, 5). Upon examining the
spectral dimensions of these factors, it becomes appar-
ent that each factor has a corresponding partner with an
almost identical spectral dimension. These pairs are as
follows: Factor 1 and 3 with strong Mg, 2 and 6 with
strong Fe, and 5 and 9 with strong Ca emission lines.
With depth, the partner factors 3, 6 and 9 have oppo-
site trends, i.e. they increase with depth. All three pairs
show a pairwise correlation of their values in the obser-
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Figure 2: Spectral dimension of all 10 factors. Strongest and

characteristic emission lines were annotated.

vation points dimension. This means that observation
points, for example, with a high value on factor 3 (Mg,
1) also have a high value on factor 1 (Mg, |). It can
be interpreted that the two opposing trends add up at
most observation points, resulting in a constant level of
the corresponding element after dust removal. However,
some observation points deviate from this correlation,
showing either a decreasing or increasing trend for the
element with depth. Moreover, transitions between the
elements of the three pairs (Mg, Fe, Ca) can be identi-
fied. For example, some observation points have high
values for factors 2 and 3, indicating increasing Mg and
decreasing Fe with depth. The spectral dimensions of
the Ca and Mg factors also show S emission lines which
points to the presence of Ca- and Mg-sulfates. Addition-
ally, factor 1 (Mg, |) exhibits a strong H signal, consis-
tent with hydrated Mg-sulfate. This is one of the few
differences from factor 3 (Mg, 1), as its spectral dimen-
sion exhibits a somewhat weaker H signal, see Fig. 3.
Another factor representing a salt is factor 7 with the
spectral dimension (Fig. 2) showing strong Na and ClI
emission lines indicating halite. Here only one trend
was found by TCA having a short increase during the
first 10 shots and then being mostly constant (Fig. 1).
The dust contribution is covered with factor 8 with typi-
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IFactor [Trend Main spectral feature

1 short T to | Mg

2 short T to | [Fe

3 T Mg

4 T to — baseline bedrock
5 short 1 to | |Ca

6 i IFe

7 T to — NaCl

8 | dust

9 T Ca

10 T to — floats

Table 1: Broad summary of the depth and spectral trends of
all 10 factors with 1: increasing; |: decreasing; — :constant.
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Figure 3: Zoom to spectral region with H and C emission
lines showing all factors. H signal is strongest on factors 1
(Mg, |) and 8 (dust).

cal emission lines of Mg, Ca, Ti and H [9] and a decreas-
ing trend with shot number. Factor 10 can be assigned
to likely GVR float rocks with emission lines mainly
in agreement with a Stimson-like composition [10] and
enhanced Ti and Cr lines.

Conclusions: As expected, the TCA model is dom-
inated by factors related to salts such as Ca and Mg sul-
fates and halite. Their factors seem to remain relatively
constant with depth, although in some cases, we ob-
serve transitions between Ca, Mg and Fe contributions.
Based on their appearance on distinct and uncorrelated
factors, as well as the occasional transitions with depth,
it is likely that these elements do not belong to the same
mineral phase for most LIBS observations in SBU.

Outlook: Next, we will investigate the observa-
tion point dimension in more detail, mainly the point-
to-point variability of individual targets and how their
distribution relates to the rover’s traverse. Additionally,
we will explore the possibility of clustering observation
points with similar values on the spectral and depth fac-
tors. Further investigation of the TCA itself will be con-
ducted to determine if prior knowledge of the factors or
concepts such as regularization can improve the results.
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