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Abstract
This paper explores the electrical and thermal conductivity of complex contact spots on the surface
of a half-space. Employing an in-house Fast Boundary Element Method implementation, various
complex geometries were studied. Our investigation begins with annulus contact spots to assess the
impact of connectedness. We then study shape effects on ”multi-petal” spots exhibiting dihedral
symmetry, resembling flowers, stars, and gears. The analysis culminates with self-affine shapes, rep-
resenting a multiscale generalization of the multi-petal forms. In each case, we introduce appropriate
normalizations and develop phenomenological models. For multi-petal shapes, our model relies on
a single geometric parameter: the normalized number of ”petals”. This approach inspired the form
of the phenomenological model for self-affine spots, which maintains physical consistency and re-
lies on four geometric characteristics: standard deviation, second spectral moment, Nayak parameter,
and Hurst exponent. As a by product, these models enabled us to suggest flux estimations for an infi-
nite number of petals and the fractal limit. This study represents an initial step into understanding the
conductivity of complex contact interfaces, which commonly occur in the contact of rough surfaces.

Keywords: Conductivity, flower-shaped spots, self-affine spots, boundary element method, fractal
limit

Supplementary material for this article is supplied as a separate archive available from Zenodo
10.5281/zenodo.10200997. The fast BEM code used for simulations is shared as open-source at
github.com/vyastreb/HBEM and a snapshot used for all simulations in the paper is available at Soft-
ware Heritage SWHID.
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1 Introduction

The study of mechanical contact plays a crucial role in numerous natural and engineering systems.
Some of these systems involve sliding motion, frictional resistance, lubrication and wear, while oth-
ers operate exclusively in normal contact. In the former case, the interplay of mechanical deformation,
chemistry, and thermal effects due to frictional heat generation and diffusion significantly influence the
overall behavior of the interface [Blok, 1963, Bowden et al., 2001, Rice, 2006]. This heat generation,
coupled with intense shear deformation, can lead to phase transitions/transformations, recrystallization,
and other metallurgical or chemical effects [Jacobson and Hogmark, 2009, Goldsby and Tullis, 2011,
Yamashita et al., 2015], such as local welding/galling and abrasive or adhesive wear, depending on oxy-
gen influx [Baydoun et al., 2020, Baydoun et al., 2022]. In the case of normal contact, frictional dissipa-
tion within the interface remains minimal. However, the nature of contact interfaces profoundly impacts
their conductive properties for both heat and electric charge.

In both natural and engineering systems, all surfaces exhibit roughness. As a result, at relatively
light contact loads, the true contact area – formed by several intimately contacting ”asperities” – is
smaller than the apparent contact area between solids. Apart from other mechanical and physical prop-
erties, the contact area fraction and its morphology also dictate energy transfer through the contact in-
terface. Since the contact area fraction evolves under increasing load [Archard, 1953, Archard, 1957,
Greenwood and Williamson, 1966], the interface conductivity depends on this load as well.

Surface roughness can be described by its height distribution or its moments. In the simplest
case, surfaces can be described as Gaussian, but in practice, most surfaces in contact exhibit an asym-
metric height distribution due to wear or residual plastic deformations induced during contact, par-
ticularly after the running-in process. An example of this asymmetry is asphalt concrete, which,
due to manufacturing techniques, inherently has relatively flat plateaus and deep valleys. Although
height distribution or first moments of roughness are relevant parameters for specific applications,
they do not adequately describe mechanical contact between rough surfaces, where the curvature
of contacting ”asperities” is of primary importance. Consequently, power spectral density (PSD)
and its first moments represent the key parameters in describing the elastic contact of rough sur-
faces [Greenwood and Williamson, 1966, Nayak, 1971, Persson, 2001, Yastrebov et al., 2017].

Aligned with PSD-based models which provide a multiscale representation of surface fea-
tures, some authors proposed fractal models of surface roughness [Majumdar and Tien, 1990,
Majumdar and Bhushan, 1991, Dodds and Robson, 1973], which, to some extent also ensure a suitable
description of real rough surfaces in the framework of Archard’s concept of ”protuberances on protuber-
ances on protuberances” [Archard, 1953] however the mechanical consistency of such models dealing
with elasto-plastic contact remains questionable.

In the study of rough surfaces in contact, one can adopt either statistical or deterministic approaches.
The former, which includes multi-asperity models [Greenwood and Williamson, 1966, Bush et al., 1975,
Greenwood, 2006, Carbone and Bottiglione, 2008] and
Persson’s model [Persson, 2001, Manners and Greenwood, 2006], deals with probability densities and
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average statistical properties of roughness. This approach is applicable to contacts with a statistically
meaningful number of contacting asperities.

These analytical and semi-analytical methods are built on certain assumptions and, as such,
have limitations when it comes to predicting the rigorously formulated contact problem between
rough surfaces [Manners and Greenwood, 2006, Carbone and Bottiglione, 2008, Yastrebov et al., 2017].
On the other hand, deterministic approaches, such as multi-asperity models with interac-
tions [Afferrante et al., 2012, Yastrebov, 2019, e.g.] can effectively account for a small number of
contact spots, their interaction and spatial heterogeneities in roughness. Different more advanced
methods can be employed to address contact problems within a deterministic framework. The
most versatile is the finite-element method [Hyun et al., 2004, Pei et al., 2005, Yastrebov et al., 2011,
Gao and Bower, 2006], which can inherently handle nonlinear and heterogeneous material behavior
and large deformations. However, it is computationally intensive and necessitates solving mechan-
ical equations not only on the surface but also in the bulk. Another group of methods, including
boundary-element and spectral methods, focuses exclusively on surface interactions and, in their basic
implementation, relies on space-invariant fundamental solutions [Kalker, 1977, Stanley and Kato, 1997,
Polonsky and Keer, 1999, Bonnet, 1999, Campaná and Müser, 2006]. Over the past few decades, these
methods have been extended to tackle more complex problems involving heterogeneous and nonlinear
materials [Putignano et al., 2015, Amuzuga et al., 2016, Frérot et al., 2019, Pérez-Ràfols et al., 2023].

When two conductive solids come into contact, a localized resistance emerges due to the discontin-
uous nature of the actual contact area. From a mathematical standpoint, at the macro-scale level, this
phenomenon is characterized by a discontinuity in potential or temperature at the interface of contact.
At smaller scales, as discussed in the pioneering works of Holm [Holm, 1957], the conductivity at con-
tact spots exhibits a continuous change in potential (temperature) for electrical (and thermal) contacts.
In a manner analogous to early models of mechanical contact involving rough surfaces, the true contact
area can be represented by a collection of discrete circular contact spots distributed across the nominal
contact area, and potentially extending even beyond it [Greenwood and Tripp, 1967, Greenwood, 1966].
The latter case is possible when there is a lack of scale separation between contacting shapes and rough-
ness characteristics, see [Greenwood et al., 1984, Yastrebov, 2019].

One of numerous examples that accounts for inelastic deformations in contact is the work of Kogut
and Komvopoulos [Kogut and Komvopoulos, 2003], where the authors used a fractal geometry with a
simple overlap (cut-off) model to establish a theoretical connection between fractal roughness parame-
ters and constriction resistance, assuming elasto-plastic deformation. However, it is worth recalling here,
that overlap models were shown to produce erroneous results and should not be used for quantitative anal-
ysis [Pei et al., 2005, Greenwood, 2006, Dapp et al., 2012]. In the elastic regime, Barber [Barber, 2003]
rigorously demonstrated the equivalence between electrical/thermal contact resistance and contact nor-
mal stiffness. Consequently, within the contact mechanics community, this equivalence is often em-
ployed as a justification for disregarding a separate study of thermoelectrical diffusion equation in me-
chanical contact of rough surfaces.

However, in real-life applications, electrical and thermal resistance are not merely reduced to contact
stiffness. First, the contact-induced deformation is often accompanied by inelastic deformations. In addi-
tion, in case of thermal resistance, due to the presence of electrically insulating or weakly conducting ox-
ide films and surface contamination, the conductive contact area is reduced [Holm, 1957],[Slade, 2017,
Ch.1-4]. Furthermore, in the case of thermal conductivity, additional convective and radiative contri-
butions to heat exchange cause the conductivity to deviate from the strict mathematical equivalence
between elastic stiffness and thermal/electric resistance established by Barber [Barber, 2003]. There-
fore, in all aforementioned contexts, a study of coupled thermo-/electromechanical problems is worth
investigation.

The growing demand for micro-electric devices [Tu, 2003] has spurred an increasing need
for electrical contact models at the microscale. The constriction resistance model re-
mains consistent with experimental studies [Watanabe, 1986] and can be extended to vari-
ous contact shapes [Nakamura, 1993, Sano, 1985] as well as to multi-spot contact configura-
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tions [Thomas and Probert, 1970, Nakamura and Minowa, 1986]. Contact resistance is influenced by
the hardness and resistivity of the contacting solids, but is also affected by oxidation at the con-
tact surface [Cuthrell and Tipping, 1973]. However, the study of simple conductive effects reaches
its limits at small scales, where electrical resistance must incorporate the ballistic description of elec-
trons’ motion, also known as Sharvin’s resistance [Mikrajuddin et al., 1999, Jensen et al., 2005]. Sim-
ilar research has been conducted for thermal contact resistance, which has numerous applications in
aerospace, automotive and electronic domains, including conductivity of bolted joints and of thermal
cooling devices [Kumano et al., 1994]. This issue is experimentally represented by the thermal con-
tact resistance (TCR), which necessitates careful attention to the set-up precision [Kempers et al., 2009]
in both steady-state and transient studies [Fieberg and Kneer, 2008, Burghold et al., 2015]. Experi-
mental advancement was accompanied by theoretical [Cooper et al., 1969, Lambert and Fletcher, 1997,
Zou et al., 2008, Jackson et al., 2008] and numerical investigations [Sadowski and Stupkiewicz, 2010,
Murashov and Panin, 2015] of thermal resistance between rough surfaces in contact.

The primary motivation for this study stems from the observation of contact spot geometry formed
between model rough surfaces (self-affine random geometry). Figure 1(a) illustrates how individual
contact spots evolve under increasing load [Yastrebov et al., 2015], while in (b) three separate contact
spots obtained from similar simulations demonstrate high complexity both in terms of connectedness
and boundary shape. Even under relatively small loads, very complex contact spots can be formed if
the spectral content of roughness [Nayak, 1971] is sufficiently rich. However, basic models of contact
resistance assume that individual contact spots distributed over the nominal contact area possess simple
shapes: elliptical or circular.

In contrast, the realistic contact shapes (Fig. 1) can be non-simply connected (having holes) and
exhibit highly complex boundaries. This complexity can be characterized by the ratio of the square
root of the area to its perimeter, also known as compactness. In this study, we investigate the impact
of connectedness and compactness of individual contact spots on their conductive properties. Instead of
studying contact spots obtained in direct numerical simulations or rough contact, as shown in Fig. 1, we
construct relatively simple models that capture the primary features of such spots: (1) connectedness,
and (2) low compactness. The first effect is represented by an annulus shape with a varying ratio of
inner to outer radius. Compactness, as a first approximation, is modeled through a flower-shaped spot
with varying numbers of petals and their lengths. Additionally, we explore ”multi-petal” configurations
to generalize our findings. The complexity of contact spot geometry is further addressed by modeling
self-affine contact spots, akin to multiscale petals, paraphrasing Archard with ”petals on top of petals
on top of petals.” The primary objectives of this study are twofold: firstly, to understand the subtle
relationship between the geometry of such complex shapes and their thermal and electrical conductivity;
and secondly, to construct a simplified model capable of predicting this conductivity based on a set of
basic geometrical characteristics.

(a) (b)

Figure 1: Simulation results of the true contact-area between self-affine random rough surfaces taken
from [Yastrebov et al., 2015]: (a) evolution of separate contact spots under increasing load, (b) snapshots
of separate clusters highlighting the complexity of the shape.
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This paper is structured as follows: Section 2 briefly introduces the numerical methods employed
in this study. The subsequent three sections study the effects of the topology and the shape of contact
spots on simple examples. Specifically, Section 3 explores the influence of non-simple connectedness
using the flux through an annular spot as a case study. Section 4 examines the effect of compactness on
conductivity of a simplified model of a flower-shaped spot, characterized by equally spaced, uniformly
sized petals, and similar formations. Section 5 extends this examination to self-affine spots, which could
be seen as flower-shaped spots with polydispersed petals following a self-affine distribution. The paper
concludes with Section 6.

2 Methods

Electrostatics and stationary thermal conductivity are described by elliptic partial differential equation,
also known as Poisson’s equation ∆U = S, where U takes a role of electrostatic potential or temperature,
S is the source/sink term and the flux is given by jjj =−k∇U with k being the electric or thermal conduc-
tivity. Throughout the paper we assume linear isotropic, homogeneous and constant conductivity k, i.e.
∇k = 0, ∂k/∂U = 0.

In this study, to solve Poisson’s equation (elliptic PDE) on an isotropic, linear and homogeneous half-
space we used an in-house implementation of the boundary element method (BEM) [Bonnet, 1999] in
its fast-BEM version based on hierarchical matrices [Grasedyck, 2005, Grasedyck and Hackbusch, 2003,
Hackbusch, 2015, Chaillat et al., 2017]. The solution of the Poisson’s equation can make use of a partic-
ular solution, formulated with a Green function G(xxx,yyy), resulting in an integral equation involving only
the contact area A where a constant potential U(xxx) =U0 is prescribed:

U(xxx) =
∫

A

jn(y)
k

G(|x−y|)dSy (1)

The Green’s function depends only on the distance between the ”source” point yyy and the ”observation”
point xxx G(|xxx− yyy|) stands for the elementary solution of the Poisson’s equation.

In this study we focus on a homogeneous Poisson’s problem ∆U = 0 with a constant potential U0
prescribed on the contact area A and zero flux jn = 0 outside, i.e. on Ā, see Fig. 2(a). This conductivity
problem is equivalent to a mechanical contact problem of elastic indenting a half-space by a flat indenter
with the identical section A [Barber, 2003]. The only difference is that the flux jn is replaced by the
contact pressure p and the potential U is replaced by the normal displacement uz, which could be readily
derived from the Boussinesq’s solution [Boussinesq, 1885] as

uz(x) =
∫

A

2(1−ν2)p(y)
E

G(|x−y|)dSy (2)

Here, we assume that the half-space is made of an isotropic material linearly elastic material with E
being the Young’s modulus and ν being the Poisson’s ratio. To go beyond linear contact problems, the
analogy still persists between the normal contact stiffness, the derivative of the contact force F to normal
displacement uz, and the electrical/thermal resistance R as soon as the contact area is identical to the
conducting area A:

R =
E

2k(1−ν2)

[
∂F
∂uz

]−1

. (3)

For a further discussion and a rigorous derivative of this equivalence the reader is referred
to [Barber, 2003].

The integral equation (Eq. 1) can be turned into a linear system to solve, involving the construction
of a fully-populated matrix. Hierarchical matrices allow to overcome the drawbacks of the classical
BEM, i.e. excessive storage and a tedious resolution of linear system of equations with a full matrix.
The open-source Python code is shared under BSD3 license in [Beguin and Yastrebov, ] along with the
details of its implementation and a short documentation. Constant interpolation triangular elements
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jn=0
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U0

a

(a)

b
x

A
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j1(x,y) j2(x,y)

(b) (c)

Figure 2: Conductivity through a contact spot on the half-space: (a) – the problem set-up for an annulus
with prescribed potential U0 in the zone A and zero flux jn = 0 outside, i.e. on Ā; (b-c) – an illustration of
the Richardson extrapolation technique: the same problem is solved on two meshes possessing different
reference sizes h1,h2, the resulting fluxes Q1,Q2 are extrapolated to a limit value h→ 0 assuming a linear
convergence with the mesh size h using Eq. (4).

were used. In addition, some problems were also solved using our in-house finite element suite Z-
set [Besson and Foerch, 1997, Z-set, 2023] on a cylindrical approximating of the half-space with the
height and radius of the cylinder set to be much greater than the size of the conducting spot.

To achieve accurate results using the Boundary Element Method (BEM), the problem is ad-
dressed using two distinct meshes, each characterized by a relatively fine granularity and differing
in the number of nodes. Results are then extrapolated employing the Richardson extrapolation tech-
nique [Richardson, 1911], as illustrated in Fig. 2. Two meshes are built, approximating the same contact
area, but with different reference mesh size h1 > h2 (here, we take h1 = 2h2). Since the flux converges
linearly with the mesh size, a simple extrapolation would give [Zienkiewicz and Taylor, 2000]:

Q∗ ≈ 2Q(h2)−Q(2h2).

In a general case of two different reference mesh-sizes, we get

Q∗ ≈ h1Q(h2)−h2Q(h1)

h1−h2
. (4)

More details and numerical experiments could be found in [Beguin, 2024]. Since we use linear elements,
the accuracy of the geometry approximation is also dependent on the mesh size, therefore the Richardson
extrapolation is not exact. Nevertheless, for the geometrical error, the ratio of the difference between
approximate and the true area to the true area scales as ≈ h2/(8R2) where R is the curvature radius,
therefore we ignore this error.

For the FEM, in addition to mesh-extrapolation we need to introduce a correction related to the finite
size geometry, namely, the dependence on the ratio of the average spot radius to the size of the simulated
domain, which can be seen as a geometrically related small parameter εg = b/R (see Fig. 4). The primary,
mesh-related, small parameter is given by εh = h/b. Then, if we assume a linear dependence on εg, we
can write first terms of the expansion around the exact solution Q∗ as:

Q(εh,εg) = Q∗+ chεh + cgεg +o(εh,εg).

In this case, three simulations are needed to determine the value of Q∗ and coefficients ch and cg in which
two values of εh and of εg should be used in any combination. More details on the mesh and geometry
corrections could be found in [Beguin, 2024].

6



Conductivity of Complex-Shaped Contact Spots Beguin & Yastrebov

3 Conductivity of a not simply connected spot

The total flux of a single circular spot of radius a between two half-spaces made of the material with the
same thermal/electric conductivity k was given in [Carslaw and Jaeger, 1959]:

Q◦ = 4kaU0, (5)

where U0 is the difference between electric potential or temperature between the spot and an infinitely
remote boundary.

It assumes stationary conductivity and perfect insulation outside the circular spot, i.e. we ignore
convective and radiative heat exchange for the thermal problem and ignore tunnel effect or electrical
breakdown for the electric problem. Notably, the total flux is proportional to the radius of the spot. The
flux distribution within the spot is axially symmetric and thus could be expressed in polar coordinates as
a function of radius r:

j◦n(r) = jjj ·nnn =
2U0k

π
√

a2− r2
, (6)

where nnn is the outer normal, see [Carslaw and Jaeger, 1959]. The flux diverges as 1/
√

ξ near the bound-
ary where ξ is the distance to this boundary. This solution is equivalent to the contact pressure of a
circular stamp pressed in an elastic half space [Sneddon, 1995] and to the normal stress distribution of an
external circular crack [Tada et al., 2000, p. 377]. An analytical solution for conductivity of an elliptic
spot on a half-space was later obtained in [Holm, 1957].

In this section, we study the total flux through an annulus spot of different internal radius. The
question is to which extent the flux is altered by the presence of small internal holes in not simply
connected spots. The internal radius is r = b, the external one r = a, their ratio is denoted by ξ = b/a ∈
[0,1). The boundary conditions remain the same as for the circular spot: the potential is set constant
U =U0 at the annulus (b≤ r≤ a) the zero flux is set elsewhere (r > a and r < b), at infinity the potential
is set to U = 0. The geometry is shown in Fig. 3 for three different values of ξ. We are mainly interested
in the asymptotic evolution of the total flux Q(ξ) in the limit of ξ� 1. The flux diverges at the two
borders of the annulus, however the total flux Qa should be continuous and decreasing with respect to
the relative hole radius ξ.

As ξ→ 0, the total flux should tend to Q◦, whereas for ξ→ 1, the flux should vanish Qa→ 0. We
could also conjecture, from a physical nature of the phenomenon, that the flux should be a concave
function of ξ with zero derivative at ξ = 0, meaning that small holes should not affect considerably the
flux. We could also conjecture that the local singularity on the inner edge should be less pronounced
than on the outer edge being regularized to some extent by the interaction with the whole inner border
especially for small size holes.

Smythe [Smythe, 1951] was the first to solve this problem using a superposition method and provided
methods to approximately evaluate the flux along with few tabulated results for the annulus conductivity.
Other authors [Cooke, 1963, Collins, 1963, Fabrikant, 1993] expanded Smythe’s work by reformulating
the problem as a triple integral or as a Fredholm integral equation of second kind. However, those
solutions do not provide closed form formulas for the flux; the influence of the effect of the hole cannot
be easily deduced. Fabrikant [Fabrikant, 1993] proposed an iterative method for the resolution of the
integral system. An alternative solution was obtained by Love [Love, 1976] based on constructing upper
and lower limits series provided the first terms as:

QLove

Q◦
= 1− 4

3π2 ξ
3− 8

15π2 ξ
5− 16

27π4 ξ
6− 92

315π2 ξ
7− 416

675π4 ξ
8 +o(ξ8) (7)

We used the finite element method (FEM) to solve this problem numerically as an axisymmetric
problem. The mesh has to be refined near the annulus edges to capture singularities. To do so, two
semicircular insertions of radius re are constructed near the singularity points (see Fig. 4). The element
size at the annulus’s edge is set to hmin such that hmin/b� 1. Far from the annulus, the mesh size is set
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ξ = 0.2 ξ = 0.5 ξ = 0.8

Figure 3: Geometry of the annular contact spot for various ratios of the internal to external radii ξ =
{0.2,0.5,0.8}.

Figure 4: Mesh definition and boundary conditions for modeling of an annulus contact spot, using the
parameters ξ = 0.5, hmin/r0 = 0.005 and R/a = 5

to be coarser hmax, as hmax� hmin. Supplementing the mesh refinement near the annulus’ edge, the mesh
size is set to he, at the edge of the semicircular object setting he = 10hmin.

The geometry of the axially symmetric problem is restricted to a square plane of length and width
R� b. The mesh size on the outer edge must be much smaller compared to b, i.e. h� b and near the
internal edge h� a. However, far from singularities the mesh could be coarser.

The finite element results for the flux distribution for several values of ξ are shown in Fig. 5 and
compared with the analytical solution for the circular spot (6). The density of result points allows the
reader to judge on the density of mesh used for this solution (the finite element mesh is provided in
Supplementary material [Beguin and Yastrebov, 2024]). As expected, the normal flux diverges at both
edges and the singularity at the hole (internal edge) is less pronounced than on the outer edge: it decreases
faster than the one on the outer edge. Nakamura [Nakamura, 1993] also studied this problem, by both
FEM and BEM to assess the BEM accuracy with respect to the FEM resolution, however, the author
ignored the existing analytical solution.

Simulation results for the total flux are shown in Fig. 6 with the flux normalized by the one of
a circular spot Q◦ (see Eq. (5)). To identify numerically an asymptotic solution for small holes, we
consider a contribution from the hole with a power-law of ξ:

Qfit = Q◦
(

1−αkβ

)
, (8)
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whose parameters α,β were identified by least squares method as α ≈ 0.1435 and β ≈ 3.028 in the
interval ξ < ξlim = 0.2, which are very close to analytical results of [Love, 1976, Fabrikant, 1993], α =
4/(3π2)≈ 0.1351 and β = 3 (see Eq. (7)). Nakamura’s [Nakamura, 1993] results calculated by the BEM
are also displayed for comparison, however, because of the lack of Richardson type extrapolation and
convergence study, they underestimate the flux value. The Love’s solution slightly overestimates the flux
for higher values of ξ, but this could be readily improved by including a larger number of terms in his
series. In fact, all polynomial coefficients of ξ for the series expansion of the flux function are negative
and adding new terms will slightly reduce the flux. Nevertheless, the first terms in Eq. (7) are in very
good agreement with the numerical results at least for small values of ξ.

Expectedly, we conclude that the total flux is very weakly dependent on the presence of small holes
in annulus spots because the corrective term is of order ξ3 with a small factor∼ 0.1. Therefore, we could
conclude that not simply connected spots, at least for holes located far from the outer boundary, conduct
almost as well as simply connected spots with the same outer boundary. In addition to this axisymmetric
study, one could conduct a similar study but with a hole placed with some eccentricity with respect to the
center. Such a study would provide an even stronger argument on the effect of such holes in conductivity
problems, however, this study is not included in the scope of the current paper.

0.0 0.2 0.4 0.6 0.8 1.0

r′

0

1

2

3

4

5

j n

j◦n(r
′)

ξ

0.2
0.4
0.6
0.8

Figure 5: Finite element results of the normal flux distribution for annulus spot for different values of k,
dashed line represents the normal flux of a circular spot.

4 Conductivity of flower-shaped spots

To mimic complex shapes formed by contact between random rough surface, we first consider a simple
geometrical model which we call flower-shaped spot whose boundary is described by the following
equation in polar coordinates

r(θ) = r0 + r1 cos(nθ) = r0 (1+ξcos(nθ)) , r1 < r0 (9)
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Q′Love eq.(7)
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Figure 6: Total flux of an annulus as a function of internal to external radius ratio ξ: finite element
results (circles), the least squares fit of an offset power-law for the asymptotic solution Q′fit for ξ < 0.2
and an approximate analytical solution by [Love, 1976] QLove/Q◦. (a) – normalized total flux Q′(k) =
Q(k)/Q◦; (b) – normalized flux difference compared to the circular flux (Q◦−Q(k))/Q◦ in log-log scale
highlighting the power-law flux evolution.

where r0 is the mean radius, r1 is the half-length of petals and n is their number. So the two positive
dimensionless parameters describing the shape are ξ = r1/r0 < 1 and n. Different flower-shaped spots
are presented in the Fig. 7. Note that the average radius does not change with the number of petals nor
with their length and is equal to 〈r〉 = r0. Circles of radius r0 and r0(1+ξ) = r0 + r1 are also shown in
the figure; corresponding to minimal and maximal limits for the resulting flux Qmin(r0) = Q◦ = 4kr0U0,
Qup = Q◦(r0 + r1) = 4kr0(1+ξ)U0,

1≤ Q(r0,ξ,n)
Qmin

≤ 1+ξ

n = 4,ξ = 0.1

r0

n = 4,ξ = 0.2

r0(1+ξ)

n = 7,ξ = 0.1 n = 7,ξ = 0.2

Figure 7: Examples of flower-shaped spots with ξ = {0.1,0.2} and the number of petals n = {4,7}.

The particularity of these flower-shaped spots is that the perimeter increases with the number of
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petals whereas the area remains constant. They are given by the following equations

A = πr2
0

(
1+

ξ2

2

)
, (10a)

P = r0

2π∫
0

√
1+(nξsin(θ))2dθ, (10b)

We can notice that the integrand depends on the dimensionless parameter n′ = nξ ∈ R which can take
arbitrary real values contrary to the integer number of petals n ∈ N. To characterize the shape of the
flower-shaped spot, we could also use compactness C being the ratio of the square root of the area to the
perimeter:

C(n′) =

√
A

P
=
√

π

√
1+ξ2/2

4E(in′)
, (11)

where E(x) =
∫ π/2

0

√
1− x2 sin2(θ)dθ is the complete elliptic integral of the second kind and i is imag-

inary unit. For small values of ξ, we could assume that the compactness depends on n′ only, for
n′→ 0, E(in′)→ π/2 and the compactness tends to the maximal value, i.e. the compactness of a circle
C→C◦ = 1/(2

√
π)≈ 0.282.

4.1 Conductivity results

This study was conducted using both FEM and BEM. Despite the fact that the BEM is more appropriate
for half-space approximation, the comparison of two methods with an extrapolation in terms of the size of
simulated domain employed in the FEM is also used to assess the validity of the implemented BEM. The
flower shape presents a dihedral symmetry Dn which allows us to use only one mesh section (half-petal)
with symmetric boundary conditions imposed on the lateral sides out of 2n sections needed to construct
the full spot for the FEM. The same size reduction can be performed with the BEM using instead the
repeatability of the solution. With an increasing number of petals, the angle of the central element
near the axis of symmetry sharpens. Consequently, to prevent any deterioration in the solution quality,
the smallest simulated angular sector was configured to be approximately π/6. This setup necessitates
simulating a larger segment than what is required by symmetry considerations only.

Simulation results of the normal flux are presented in Fig. 8 for n = {4,7,10} petals and for ξ = 0.1.
For the first two cases, the symmetry is fully exploited whereas for n = 10 the sector’s angle is set to π/5
to preserve good mesh quality in the center. Meshes are refined near the outer edges where the flux is
singular. For n = 4 the total flux is Q≈ 1.0084Qmin, for n = 7 the total flux is Q≈ 1.0150Qmin, and for
n = 10 the total flux is Q≈ 1.0209Qmin. So there is a trend to increase the total flux with the increasing
number of petals. Visually we can also observe that the singularity in the trough (petal’s root) is weaker
than the one near the crest (petal’s extremity). The more petals we have, the weaker the flux intensity in
the trough because of the increasing interaction with the neighboring petals; a similar trend was observed
for the annular spot for small internal radii.

In total, 97 simulations1 were carried out for ξ = 0.1 and n ∈ (1,256) as well as for ξ = 0.2 and
n ∈ (1,100). The resulting total flux with respect to the normalized number of petals n′ is presented in
Fig. 9. Those results are computed with Richardson extrapolation obtained by two meshes of different
density for FEM and BEM and using a similar extrapolation for domain’s dimensions in case of FEM
simulations.

The total flux, offset by the minimal flux Q−Q◦ could be normalized by the difference between the
maximal and the minimal theoretical fluxes, corresponding to circular spots of radii r0(1+ ξ) and r0,
respectively, i.e. we get in the denominator Qup−Q◦ = 4kr0ξU0 = ξQ◦. This normalization results in a

1Without counting simulations used to employ Richardson extrapolation.
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n = 4 n = 7 n = 10

0.62 1 2 3 4

jn

Figure 8: Simulation results for the normal flux for flower-shaped spots with n = 4,7,10 and ξ = 0.1.

universal curve for the total normalized flux for any r0 and ξ:

Q′ =
Q−Q◦

Qup−Q◦
=

Q−Q◦
ξQ◦

(12)

The normalized flux evolution seems to be logarithmic, but from the physical point of view, the flux
cannot overpass Qup, therefore we shall require that the bounds 0 ≤ Q′ ≤ 1 are respected for all n′. The
resulting flux is well fitted by a two-parameter function which, however, was found empirically:

Q′fit(n
′) = a

(
1− 1

bn′+1

)
, 0 < a≤ 1. (13)

This fit function is plotted in Fig. 9 along with FEM and BEM simulation results. The coefficients
determined by least squares fit are presented in Table 1. The slope at n′ = 0+ is equal to the product ab.
Even if the coefficients a and b are slightly different for different sets, this slope remains close for all
three independent fits, and roughly equals to 0.3. Combining Eqs. (12) and (13), we obtain the following
phenomenological equation for the total flow of a flower-shaped spot:

Q = Q◦

(
1+aξ

(
1− 1

bnξ+1

))
≈ Q◦

(
1+0.923ξ

(
1− 1

0.326nξ+1

))
, (14)

where Q◦ = 4kr0U0. For the infinite number of petals n of finite half-length factor ξ, there is a limit flux
given by this fit, limn′→∞(Q′fit) = a≈ 0.923 and this limit is independent of ξ. However, the validity of the
suggested fit beyond the studied interval of n′ cannot be taken for granted. An argument in favor of such
a limit a < 1, i.e. that the total flux for the infinite number of petals remains below the flux of a circular
shape of radius r0(1+ξ), could me made based on the area of the conductive spot. Indeed, the area of the
full circular spot is considerably bigger than this of the flower-shaped spot πr2

0(1+ξ)2 > πr2
0(1+ξ2/2).

On the other hand, the small features (infinitely thin petals) should not strongly affect the conductivity of
the spot, thus suggesting that possibly the flux should simply tend to 1... However, the current fit function
could not be properly approximate the data if one sets a = 1. The question of a rigorous definition of the
limit flux for the infinite number of petals remains open. But our initial guess, for the fitted parameters
is given by the following limit flux:

lim
nξ→∞

Q≈ Q◦(1+0.923ξ)< Qup = Q◦(1+ξ). (15)

Even though such a flower-shaped geometry, especially in the limit of infinite number of petals, is
not very relevant to contact problems between isotropic surfaces, which was at the origin for this study,
this limit value presents an interesting by-product of this study. Among other results one can deduce a
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relation between n and ξ which ensures x fraction conductivity in the interval Q◦ and Qup = (1+ ξ)Q◦,
with Q = Q◦ for x = 0 and Q = Q◦(1+ξ/2) for x = 0.5:

x = a
(

1− 1
bnξ+1

)
⇔ n′ = nξ =

[
x

b(a− x)

]
⇒ nξ≈

[
x

0.326(0.923− x)

]
, (16)

Therefore, to reach the mean flux between two limits, i.e. for x = 0.5, one would need a spot with
nξ ≈ 3.61, i.e. for ξ = 0.2 one would need approximately 18 petals and for ξ = 0.1 a double of that.
However, to reach 75% (x = 0.75), for ξ = 0.1, one would need a spot with approximately 130 petals.

Parameters Coefficients
Simulation ξ n ∈ a b ab

FEM 0.1 [1,150] 0.928 0.327 0.304
FEM 0.2 [1,100] 0.923 0.326 0.301
BEM 0.1 [1,256] 0.923 0.326 0.301

Table 1: Least squares fit for coefficients of Eq. (13) for the sets of results of flower-shaped spot obtained
using FEM and BEM simulations.
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Figure 9: Simulation results for the normalized total conductivity for the flower-shaped spot as a function
of normalized petal’s parameter n′ for different ξ, three independent least squares fit of function (13) are
also plotted; the three corresponding tangents at the origin are also plotted.
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4.2 Alternative ”multi-petal” spots

The same conductivity study could be conducted on other simple forms possessing a single-scale petal-
like structures with the same symmetry properties. Specifically we identified the following shapes: star-
shaped and gear-shaped spots shown in Fig. 10 and Fig. 11, respectively. For ”stars”, each petal is made
up by straight lines connecting the roots and extremities of ”petals”, i.e. points with radial coordinates
r0(1− ξ), r0(1+ ξ). The number of ”petals” (or ”rays”) as previously is denoted by n, and the half-
petal length r1 is again determined by the ratio r1 = ξr0. The gear-shaped spots are made of circular
arcs with constant r = r0(1−ξ) and r = r0(1+ξ) over equal angular segments. Contrary to C∞ flower-
shaped spots, star-shaped ones are only of class C0 with respect to θ whereas gear-shaped spots represent
multivalued mapping, so they are not even injective even for a single ”petal” or ”tooth”.

n = 10,ξ = 0.1

r0

n = 20,ξ = 0.1

r0(1+ξ)

n = 10,ξ = 0.2 n = 20,ξ = 0.2

Figure 10: Examples of star-shaped spots with n ∈ {10,20} petals, and half-petal length defined by
ξ ∈ {0.1,0.2}.

n = 10,ξ = 0.1

r0

n = 20,ξ = 0.1

r0(1+ξ)

n = 10,ξ = 0.2 n = 20,ξ = 0.2

Figure 11: Examples of gear-shaped spots with n ∈ {10,20} petals, and half-petal lenght defined by
ξ ∈ {0.1,0.2}.

The area of these shapes can be readily expressed by an elementary sum of triangles and a regular
polygon for the stars, or circular sectors for the gears. Similarly, the perimeters are easy to find, and the
resulting compactness can be also readily computed:

Pstar = 2
√

2nr0

√
1+ξ2− (1−ξ2)cos(π/n),

Astar = nr2
0(1−ξ

2)sin(π/n),

Cstar =

√
(1−ξ2)sin(π/n)

2
√

2n
√

1+ξ2− (1−ξ2)cos(π/n)
.

(17)
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Pgear = 2πr0(1+2n′/π),

Agear = πr2
0(1+ξ

2),

Cgear =

√
(1+ξ2)

2
√

π(1+2n′/π)
.

(18)

All those geometric features are summarized in appendix A and in Fig. 25. In summary, the star-
shaped area converges to

Astar
n→∞−−−→ πr2

0(1−ξ
2),

but for all n it is always smaller than the area of gear- and flower-shaped spots:

Astar < Aflower < Agear.

The gear-shaped spots also have a bigger perimeter than the one of flower and star for a given number of
petals:

Pflower ≈ Pstar < Pgear.

Finally, the gear-shaped spots appear to be the least compact shape, while the flower shape is as compact
as the star

Cgear <Cflower ≈Cstar.

The conductive simulations for these shapes were conducted using the fast-BEM. The star- and gear-
shaped spots present the same dihedral symmetry Dn as for the flower-shaped, which allows us again
to reduce the problem size to some extent. Example of simulation results are presented in Fig. 12. In
total, 48 simulations were performed for both gear- and star-shaped spots, for ξ = 0.1, and n ∈ (4,256).
As previously, the conductive property is assessed by computing the overall flux and helped by the
Richardson extrapolation. Those are again normalized according to (12), and finally presented in Fig. 13
complemented with previous results for the flower-shaped spots. The least square fitted parameters for
the same Eq. (13) are shown in Table 2.

Qualitatively, all three types of shapes show the same trend in the total flux evolution with the number
of ”petals”: an initial steep increase and further saturation to a more or less constant value. The thermal
conductivity of the gears is higher than that of the flowers, while the star-shaped configuration displays
a lower conductivity. We could attribute this ordering to the only basic geometric parameter which
significantly differs for all three of them, namely the area. Another consideration is the amount of area
located closer to the outward boundary, which of course is higher for the gear like geometry than those
of flower and star. In the limit of the infinite number of petals the following result (initial guess obtained
by extrapolation) is obtained (see parameter a in Table 2):

Qlim
star ≈ 0.903 < Qlim

flower = 0.923 < Qlim
gear = 0.978.

However, we would like to highlight once again that these values must be seen as a first guess, and a
more rigorous assessment (e.g., using an accurate asymptotic analysis) is needed.

Parameters Coefficients
Simulation ξ n ∈ a b ab

Gear 0.1 [4,256] 0.978 0.894 0.875
Flower 0.1 [1,256] 0.923 0.326 0.301

Star 0.1 [4,256] 0.903 0.220 0.199

Table 2: Fit parameters for Eq. (13) for the total flux of different multi-petal shapes.
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Gear
n = 20, ξ = 0.1

Star
n = 20, ξ = 0.1

0.60 1 2 3 4
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Figure 12: BEM result of the flux through a gear- and star-shaped spots of 20 petals and ξ = 0.1.
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Figure 13: Results of the normalized flux for star-, gear- and flower-shaped spots with respect to the
normalized ”petal” parameter n′ = ξn. Least squares fit of Eq. (13) is also shown.
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5 Conductivity of self-affine spots

5.1 Geometry of spots

Being inspired by shapes of contact clusters occurring in contact of random rough surfaces (see Fig. 1), in
this section we study contact spots of model complex shapes presenting some randomness. The shapes
under study (see Fig. 15) could also recall coffee or ink stains. To take up the Archard’s image of
”protuberances on protuberances on protuberances” [Archard, 1957], we constructed contact-spots in a
self-affine fashion by summing-up multiple harmonics. The goal is to imitate to some extent realistic
contact spots occurring for surfaces with a rich spectral content and to expand the results obtained for
single-harmonic flower-shaped spots to more complex forms.

The first step to generate a spot with self-affine boundary is to introduce a periodic perturbation
function h(θ) as a superposition of cosines which individually could be seen as flower-shaped spots:

h(θ) =
ks

∑
k=kl

ξk cos(kθ+θ
0
k), h(θ) = h(θ+2π), 〈h〉= 0 (19a)

ξk = ξ

(
k
kl

)−(0.5+H)

. (19b)

The summed up harmonics include all integer modes from a fixed interval k ∈ (kl,ks) with amplitudes ξk
which decay as a strict power-law of the mode number with an exponent involving the Hurst exponent
H ∈ (0,1) ensuring a self-affinity of the boundary. The randomness is provided exclusively by the phases
θ0

k which follow a uniform distribution on θ0
k ∈ [−π,π). The perturbation h(θ) thus constructed follows

a Gaussian distribution. The power spectral density (PSD) decays as a power law of the wavenumber
with the exponent −(1+ 2H). This richness of the spectrum could be defined by the ”magnification”
parameter ζ presenting the ratio of the highest to lowest wavenumbers ζ = ks/kl [Persson, 2001].

The radius of a contact spot in polar coordinates r(θ) can be readily defined with the perturbation
h(θ) as:

r(θ) = r0(1+h(θ)), (20)

naturally 〈r〉= r0. Nevertheless, in this construction, even imposing ξ < 1 does not guarantee positivity,
as the factor 1+h(θ) may become negative, consequently leading to negative values for r(θ) as well. To
overcome this problem, some smarter transformation should be used, for example:

r(θ) = r0 exp(h(θ)), (21)

whose two first terms of Taylor expansion is equivalent to (20), but the transformation (21) keeps the final
shape well defined without self-intersections: even for h→−∞, r→ 0. However, this transformation
does not preserve the mean radius at r0; the radius will change with H, ξ, kl and ζ; this deviation will
be characterized by a dimensionless quantity r̄ = 〈r(θ)〉/r0. Within this formulation the parameter ξ

plays a similar role as in the study of flower-shaped spots: here, to the first order it presents the ratio
between the amplitude of the first mode to the nominal radius. The two transformations (20),(21) are
illustrated in Fig. 14 highlighting a situation, where for transformation (20) the radius becomes negative.
Therefore, for this study we adopt the exponential transformation (21). Several examples of complex
shapes generated using the presented algorithm are shown in Fig. 15 for ξ = 0.1 and different values
of kl , ks and H but with the same set of random phases θ0

k . As the Hurst exponent increases, the spot
naturally becomes smoother.

5.2 Geometrical characteristics

The initial height perturbation h follows normal distribution with zero mean and standard deviation σh,
but it is not preserved by the exponential transformation (21). The obtained radius follows a log-normal
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h

(a)

θ

π−π

h =−1

r0

(b)

r0 exp(h(θ)) Eq. (21)
r0(1+h(θ)) Eq. (20)

Figure 14: Example of self-affine spot construction for ξ = 0.25, kl = 4, ks = 32 and H = 0.5: (a) height
perturbation h(θ) and (b) resulting spot radius for linear (20) and exponential (21) transformations.

distribution

P(r) =
1

rσh
√

2π
exp
(
− ln2(r)

2σ2
h

)
. (22)

Histograms shown in Fig. 16 present the probability density of the spot radius constructed for H = 0.25,
kl = 8, ks = 16 and two values of ξ = {0.05,0.1} and computed over 1000 generated spots, the least
squares fitted normal and log-normal densities are also plotted. For small values of ξ, the distribution is
very close to the normal one, whereas for a higher value, it clearly follows the log-normal one.

The standard deviation σh or the variance σ2
h of the height perturbation h(θ) can be computed taking

into account the orthogonality of cosine functions:

σ
2
h =

ξ2

2

ks

∑
k=kl

(
k
kl

)−(1+2H)

(23)

After the transformation, the mean radius 〈r〉 and the variance of the height distribution σ2
r can be found

as

〈r〉= r0 exp
(
σ

2
h/2
)
, (24a)

σ
2
r =

[
exp
(
σ

2
h
)
−1
]

exp(σ2
h), (24b)

The mean value of the radius is no longer equal to r0, but it tends to 〈r〉 → r0 as σh→ 0. Note that the
variance could be expressed through the first terms of the Taylor expansion as σ2

r ≈ σ2
h+1.5σ4

h+7/6σ6
h+

O(σ8
h), which demonstrates that for small values of σh, σr ≈ σh with a high accuracy. The comparison

of the analytical expression of the variance Eq. (24b) with numerically evaluated standard deviation is
presented in Appendix B.

The standard deviation of radius is an important geometric characteristic of the spot. However, the
standard deviation of the gradient and Laplacian of the radius as well as Nayak parameter [Nayak, 1971]
could also have an effect on the conductivity of the spot. These geometrical characteristics are related to
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(a) kl = 2,ks = 8 (b) kl = 2,ks = 16 (c) kl = 2,ks = 32

(d) kl = 4,ks = 8 (e) kl = 4,ks = 16 (f) kl = 4,ks = 32

(g) H = 0.25 (h) H = 0.5 (i) H = 0.75

Figure 15: Examples of self-affine spots and their geometrical characteristics for ξ = 0.1.
In the upper panel (a,b,c) kl = 2, ks = {8,16,32}, H = 0.25: (a) r̄ = 1.0017, σ = 0.057, (b) r̄ = 1.0020,
σ = 0.063, (c) r̄ = 1.0023, σ = 0.067;
in the middle panel (d,e,f) kl = 4, ks = {8,16,32}, H = 0.25: (d) r̄ = 1.0019, σ = 0.062, (e) r̄ = 1.0029,
σ = 0.075, (f) r̄ = 1.0036, σ = 0.084;
in the lower panel (g,h,i) kl = 4, ks = 128, H = {0.25,0.5,0.75}: (g) r̄ = 1.0044, σ = 0.094, (h) r̄ =
1.0028, σ = 0.074, (i) r̄ = 1.0020, σ = 0.063.

spectral moments m0, m2 and m4 as follows:

m0 = σ
2, (25a)

m2 = 〈|∇r|2〉= 1
2π

∫ 2π

0

(
1

r(θ)
∂r
∂θ

)2

dθ, (25b)

m4 =
1

2π
〈|∆r|2〉=

∫ 2π

0

(
1

r2(θ)

∂2r
∂θ2

)2

dθ, (25c)
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Figure 16: Distribution of the radius for constructed self-affine spots for H = 0.25, kl = 8, ks = 16
and (a) ξ = 0.05 and (b) ξ = 0.1. Least squares fit of the normal and log-normal distributions is also
presented.

In the limit of infinitesimal perturbations ξ� 1, we can use the following analytical equations for the
2nd and 4th spectral moments (the 0th moment is nothing but the variance of radius computed in (24b)):

m2 =
ξ2

2

ks

∑
kl

k2
(

k
kl

)−(1+2H)

, m4 =
ξ4

2r2
0

ks

∑
kl

k4
(

k
kl

)−(1+2H)

(26)

The comparison of Eq. (26) with numerically evaluated moments is presented in Appendix B. For flower-
shaped spots, the spectral moments simplify to the following forms:

mf
0 =

r2
1
2
=

ξ2r2
0

2
, mf

2 =
r2

1n2

2r2
0
=

ξ2n2

2
=

n′2

2
, mf

4 =
r2

1n4

2r4
0
=

ξ2n4

2r2
0

=
n′2n2

2r2
0

(27)

Since the normalized conductivity for flower-shaped spots was shown to depend exclusively on n′ = ξn
(see Eq. (13)), we could suggest that for a similar normalization, the main characteristic affecting the
conductivity of self-affine spots will be the standard deviation of the gradient

√
〈|∇r|2〉 = √m2. In

addition, it could be shown that the area of a spot is an affine function of m0: A≈ πr2
0(1+am0), and its

perimeter is an affine function of
√

m2: P≈ 2πr(1+b
√

m2), where a,b are positive constants.

5.3 Normalization and result

In contrast to the study of flower-shaped spots, this study is no longer deterministic and requires taking
into account the randomness of the studied geometries. The total flux for a given geometry Qi, defined as
an independent event, is assumed to have a consistent average value µ(Q) and a standard deviation σ(Q)
across the same set of spot-generative parameters. This study aims to understand the average behavior
based on these parameters. To achieve this, we compute average values for numerous realization of
spot geometries. However, this yields only an approximate value for 〈Q〉, which depends on the number
of realizations n. In practice, the standard deviation of the mean value scales as σ(〈Q〉) = σ(Q)/

√
n.
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The Bienaymé-Chebyshev inequality aids in establishing a confidence interval implying a parameter γ ∈
(0,1): the probability to find the mean value 〈Q〉 outside the interval ±σ(Q)/

√
nγ around its theoretical

value µ(Q) is smaller than γ whatever the true underlying distribution, i.e.

P
(
|µ(Q)−〈Q〉| ≥ σ(Q)√

nγ

)
≤ γ, (28)

Equivalently, the probability is (1− γ) to find the mean value in the confidence interval ±σ(Q)/
√

nγ.
When there are 11 simulations, the interval of confidence spans approximately ±3σ(Q) with the proba-
bility of 99%, effectively encapsulating the mean value 〈Q〉. In order to reduce the interval to one stan-
dard deviation with the same accuracy, i.e.

√
nγ = 1 for γ = 0.01 one would need to carry out n = 100

simulations which is computationally expensive in view of the number of parameters to be studied. For
n = 11 the probability to find the mean value in one standard deviation interval, i.e.

√
11γ = 1 is higher

than ≈9%. While the Bienaymé-Chebyshev inequality provides a rigorous lower bound, the actual ac-
curacy of our results can overpass this conservative limit. To balance the computational efforts and the
accuracy, the number of BEM simulation results per combination of parameters was set to n = 11, and
this dataset was utilized to estimate the mean value and the confidence interval obtained from the mea-
surement of the standard deviation. As seen in practice for this problem the standard deviation is much
smaller than the approximate mean value, therefore the confidence interval is very narrow and n = 11
seems to be a good compromise.

An example of flux distribution obtained by fast-BEM is displayed in Fig. 17 for ξ = 0.05, kl = 8,
ks = 128 and H = 0.25. The normal flux remains singular at the edge but less pronounced at troughs than
at crests as shown previously for the flower-shaped contact spot. Compared to the latter, it appears more
difficult to construct a good mesh for self-affine spots efficiently (fine mesh near the border and coarse far
from border). The mesh size was prescribed as a function of the edge curvature and as a function of the
shortest distance to the border. See zoom in Fig. 17, the finest used mesh reach Ne = 34340 elements. As
previously, to employ the Richardson extrapolation, two meshes of different density were used to obtain
accurate results.

Figure 17: Example of simulation results representing the flux distribution for a self-affine spot with
ξ = 0.05, kl = 8, ks = 128 and H = 0.25.

For the global flux analysis, the following geometrical characteristics describe sufficiently well the
geometry A = {〈r〉,√m0,

√
m2,
√

m4,H}: (1) the mean radius 〈r〉, the standard deviation of (2) radius
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√
m0, (3) of its gradient

√
m2, (4) of its Laplacian

√
m4 and (5) the Hurst exponent. The initial set of

independent generative parameters is I = {r0,ξ,kl,ks,H} and contains (1’) radius r0, (2’) amplitude of
perturbation ξ, (3’) lower kl and (4’) upper ks cutoffs, and (5) the Hurst exponent H. The set A is easy
to measure for any spot, and it allows to study the effect of individual parameters on the total flux; the
generative set I is complete and dimensionless, but suffers from the fact that it could not be easily derived
for an arbitrary geometry. A sensitivity analysis will be carried out on both sets.

The first task is to normalize the total flux Q produced by self-affine spots. There are two main
options: it can be normalized by the flux of an equivalent circular contact spot (a) of the same mean
radius Q◦ = 4kU0〈r〉 or (b) of the same area. The first option was selected since the mean radius also
enters the set of parameters, moreover Q◦ is equivalent to the definition of Qmin used for the flower-
shaped contact spot. The normalized total flux is thus defined by

Q′ =
Q
Q◦

=
Q

4kU0〈r〉
(29)

Therefore, since the problem does not have an internal length, we can exclude the mean radius 〈r〉 from
the set of parameters defining the total flux Q′ and consider two sets of dimensionless parameters:

• Geometrical set of parameters A ′ := {√m0/〈r〉,m2,〈r〉
√

m4,H}

• Generative set of parameters I ′ = {ξ,kl,ks,H}

By analogy with the maximal total flux Qup defined for flower-shaped spots, we could define an
equivalent upper limit for self-affine spots. It is not a good idea to define it as the maximal radius of the
self-affine spot as it could tend to infinity for very high number of modes. However, the variance of the
flower-shaped spot mf

0, Eq. (27), provides us with a hint getting back the half-petal length r1 in another
way, i.e. using this equation we can express it as r1 = (2mf

0)
1/2; therefore, the limit characteristic radius

could be expressed as 〈r〉+√2m0. Thus, the difference between two flows used for normalization takes
the following form:

Qup−Q◦ = 4kU0
√

2m0

Following the same renormalization between zero and one as was used for the flower-shaped spots, we
could define the renormalized flux as:

Q′′ =
Q−Q◦

Qup−Q◦
=

Q
4kU0

√
2m0
− 〈r〉√

2m0
(30)

The total flux normalized according to Eq. (29) is presented in Fig.18 for all simulated self-affine
spots. These spots are constructed by changing the lower cutoff kl = {2,4,8} and for four values of
the upper cutoff ks = ζkl with the magnification ζ = {4,8,16,32}. The Hurst parameter H takes the
values H = {0.25,0.3,0.4,0.5,0.6,0.7,0.75}). The colors are used to distinguish the 3 sets of the results
according to different kl . In each color set, the results are distinguished by their marker style according to
values of magnification ζ, moreover, the higher the ζ, the darker the color. Along every result-curve the
Hurst exponent H changes as shown by the arrow: the smaller the H, the higher the flux. The curves are
entwined together, but they seem to follow the same trend. Plotting the data with respect to geometrical
parameters A ′ offers a better representation than the use of the generative set of parameters I ′. The
variation in slope seems to be controlled by parameter ζ = ks/kl: increasing ζ increases the average
slope with respect to

√
m2/〈r〉 and decreases the average slope with respect to

√
m2 and 〈r〉√m4.

The results of the renormalized flux Eq.(30) with respect to
√

m2 and 〈r〉√m4 are presented in Fig. 19.
However, the role of the fourth moment in the form 〈r〉√m4 seems to be strongly correlated with

√
m2

and does not bring much additional information. The lack of simple dependency of the normalized flux
with respect to geometrical characteristics pushes us to suggest an alternative normalization. The shown
results seem to depend strongly on kl parameter. By exploring a wider spreading of

√
m2 for different kl ,

we hope to easier identify their influence, which is the objective of the following sections.
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Figure 18: Normalized flux (29) of self-affine spots: for the following generative parameters I ′: ξ =
0.05, kl = {2,4,8}, ζ = {4,8,16,32} and H = {0.25,0.3,0.4,0.5,0.6,0.7,0.75}, note that ks = ζkl . The
mean normalized flux is plotted with a marker and shaded around according to the confidence interval
half-width of ±1.35σ defined for γ = 0.05 (namely with a rate of confidence of 95%).

To provide a visual geometrical interpretation in the flux variation (see Fig. 20) related to geometrical
characteristics of self-affine spots, we present particular shapes along with the values of corresponding
geometrical characteristics and of the total flux in Table 3, the location of these particular spots is also
highlighted in Fig. 19. The pairs {S1,S2}, {S3,S4} and {S5,S6} have close values of

√
m2. The difference

between the flux of spots S5 and S6 highlights the fact that the flux does not depend only on the second
moment. Nevertheless, this could be seen as a second order effect compared to that of

√
m2. Spots S7

and S8 are among the ”roughest” spots and possess the highest flux.

Parameters A ′ Parameters I ′
Spot # Q′′

√
m0/〈r〉

√
m2

√
m4〈r〉 ξ kl ks H

S1 0.151 0.0664 0.658 14 0.05 2 32 0.25
S2 0.172 0.0664 0.666 12.7 0.05 4 32 0.6
S3 0.173 0.0657 0.958 39.8 0.05 2 64 0.3
S4 0.184 0.0645 0.972 63.8 0.05 4 128 0.7
S5 0.317 0.0800 2.06 163 0.05 4 128 0.4
S6 0.380 0.0852 1.97 130 0.05 8 128 0.75
S7 0.644 0.126 5.12 446 0.05 8 128 0.25
S8 0.749 0.182 8.77 1493 0.05 8 256 0.25

Table 3: Parameters for spots shown in Fig. 20 and the resulting total flux.
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Figure 19: Renormalized flux, Eq. (30) of self-affine spots: for ξ= 0.05, kl = {2,4,8}, ζ= {4,8,16,32},
H = {0.25,0.3,0.4,0.5,0.6,0.7,0.75}. The mean normalized flux is plotted with a marker and shaded
around according to the confidence interval half-width of ±1.35σ and of 95% of accuracy; vertical lines
and numbers correspond to spots shown in Fig. 20.

5.4 Results with renormalized standard deviation

As presented in Figs. 18 and 19, the results are clustered with respect to kl . To have more control
on geometrical characteristics, we renormalize the generative function h(θ) in order to prescribe its
dimensionless standard deviation σh =

√m0,h (see Eq. (23)):

h(θ) =

√
2m0,h

s

ks

∑
k=kl

ξk cos(kθ+θ
0
k), s =

ks

∑
k=kl

ξ
2
k (31)

with ξk defined by Eq. (19b). The exponential transformation from h(θ) to radius r(θ) (21) remains
intact. Then, for the normalized generative parameters we have: I ′′ = {√m0,h,kl,ks,H} and for the
geometrical ones we still have A ′. The main goal for such a choice is to decorrelate

√
m0/〈r〉 and

√
m2

and thus to level down m0 for kl = 8, and to level it up for kl = 2. Note also that
√

m0/〈r〉 ≈ √m0,h for
small values of the latter, see (24b) and its Taylor expansion.

The results of this set of simulations for the renormalized flux (30) are presented in Fig. 21 with
respect to the standard deviation of the radius gradient

√
m2; lower cutoffs kl = 2 (orange circles and red

squares) and kl = 8 (green crosses and cyan triangles) were used. In addition, different colors correspond
to different magnifications: ζ = 4 for red squares and cyan triangles, ζ = 8 for orange circles and green
crosses. The Hurst exponent takes three values H = {0.25,0.50,0.75}. For the same value of √m0,h ≈√

m0/〈r〉, thanks to the variation of the Hurst exponent, the value of
√

m2 varies within a certain interval,
such data points are connected by a line. Every set of such lines (of the same shade) align along their
master curve. Such results demonstrate that even though the standard deviation

√
m0/〈r〉 controls the

thermal flux to a large extent, the standard deviation of the gradient
√

m2 also influences the result. This
conclusion is possible since

√
m2 does not enter the flux normalization (30). The flux increases with

respect to both
√

m0/〈r〉 and
√

m2 as well as with respect to 〈r〉√m4 because of the strong correlation
of the latter with the second moment. For an equivalent

√
m2, the flux is higher for spots with a lower
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S1
kl = 2, ks = 32

H = 0.25√
m0/〈r〉 = 0.0664

S2
kl = 4, ks = 32

H = 0.60√
m0/〈r〉 = 0.0664

S3
kl = 2, ks = 64

H = 0.30√
m0/〈r〉 = 0.0657

S4
kl = 4, ks = 128

H = 0.70√
m0/〈r〉 = 0.0645

S5
kl = 4, ks = 128

H = 0.40√
m0/〈r〉 = 0.08

S6
kl = 8, ks = 128

H = 0.75√
m0/〈r〉 = 0.0852

S7
kl = 8, ks = 128

H = 0.25√
m0/〈r〉 = 0.1262

S8
kl = 8, ks = 256

H = 0.25√
m0/〈r〉 = 0.1317

Figure 20: Examples of self-affine spots with corresponding generative characteristics; the correspond-
ing data points are highlighted in Fig. 19, the resulting flux and geometrical characteristics can be found
in Table 3.

magnification ζ.
To provide a geometrical meaning to these results, coupled pairs of self-affine spots

{S1,S2},{S3,S4},{S5,S6} with different spectral content but similar value of m2 are displayed in Fig. 22
and are highlighted in Fig. 21 and in Table 4. Remarkably, the three foremost right lines (d) in the fig-
ure seem to continue each other. The spots {S5,S6} well illustrate this link: they in fact have the same
number of modes, but different H and m0,h.

Parameters A ′ Parameters I ′′
Spot # Q′′

√
m0/〈r〉

√
m2

√
m4〈r〉 √m0,h kl ks H

S1 0.189 0.100 0.507 5.10 0.100 2 16 0.5
S2 0.213 0.143 0.515 2.84 0.141 2 8 0.5
S3 0.510 0.0995 1.56 33.6 0.100 8 32 0.5
S4 0.476 0.0705 1.56 61.9 0.005 8 64 0.5
S5 0.665 0.0997 2.62 114 0.100 8 64 0.25
S6 0.666 0.141 2.61 94.1 0.141 8 64 0.75

Table 4: Parameters for spots shown in Fig. 22 and the resulting total flux. The spots are ordered
according to the increasing value of

√
m0.

Finally, we would like to point out that (1) the influence of
√

m0 is ultimately handled by normal-
ization; (2) the results are rather well clustered along a simple trend line in terms of m2, (3) but clearly
there is a dependence on ζ. At the same time, the shape of the trend is very similar to what was observed
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Figure 21: Results for the renormalized total flux Eq. (30) of self-affine spots with respect to standard
deviation of the radius gradient

√
m2 obtained with controlled standard deviation√m0,h ≈

√
m0/〈r〉.

for multi-petal spots and we recall that
√

m2 is analogous parameter to n′ used there. Qualitatively the
slope of the normalized total flux with respect to

√
m2 decreases suggesting an ultimate saturation as in

multi-petal shapes (see Figs. 9 and 13). For the extra generative parameter ζ ∈ I ′′ to which some depen-
dence is observed, it should be expressed through spectral moments which could be easily measured for
arbitrary shape, it will be handled in the following subsection.

5.5 Conductivity model

This study aims to quantify the flux transmitted through a spot of complex shape. While the numerical
results encompass a broad parametric space, they are not readily comprehensible in their full scope and
pose challenges for generalization. We thus make an attempt to construct a general phenomenological
model relying on geometrical characteristics and inspired from the model used for flower-shaped spots.

5.5.1 Covariance matrix

The first simple step is the construction of a covariance Ci j matrix of the normalized flux and all available
normalized parameters x̃i:

Ci j = 〈x̃ix̃ j〉, x̃i =
xi−〈xi〉

σ(xi)
, (32)

where, as previously, 〈xi〉 denotes the average value, and σ(xi) denotes its standard deviation. The
covariance matrix constructed based on all available simulation data is provided in Table 5. There is a
strong correlation between Q̃′, Q̃′′ and parameters k̃l , ˜√

m0/〈r〉, ˜√m2 and ˜√
m4〈r〉. However, because

of the strong correlation, the effect of the moment m4 is hard to isolate from the effect of m2. Very
small correlation of the flux is found with ξ̃, H̃ and α̃; slightly more correlation exists with ζ̃. According
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S1
kl = 2, ks = 16

H = 0.50√
m0/〈r〉 = 0.0315

S2
kl = 2, ks = 8

H = 0.50√
m0/〈r〉 = 0.0446

S3
kl = 8, ks = 32

H = 0.50√
m0/〈r〉 = 0.1

S4
kl = 8, ks = 64

H = 0.50√
m0/〈r〉 = 0.071

S5
kl = 8, ks = 64

H = 0.25√
m0/〈r〉 = 0.101

S6
kl = 8, ks = 64

H = 0.75√
m0/〈r〉 = 0.142

Figure 22: Comparison of pairs of self-affine spots for the same
√

m2 and for different values of√
m0/〈r〉. To simplify the reading of the parameters, they are equivalently displayed in Table 4.

to the covariance matrix, the Hurst exponent seems to be negligible, which is surprising in the light of
our previous results. In conclusion, we could confirm that the covariance matrix and eventual Principal
Component Analysis, which access only first order correlations, present too coarse tools to determine
subtle non-linear correlations. Finally, since generative parameters I are strongly linked to the method
of spot generation, in constructing our model we will focus exclusively on geometrical parameters A
which could be measured for an arbitrary shape.

5.5.2 Phenomenological model

Analyzing the obtained results, we noticed a weak logarithmic dependence of the total normalized flux
on the magnification parameter ζ = ks/kl . A relatively simple phenomenological model including this
parameter could be constructed, but since this parameter is generative, it is of no help for a general case.
Nevertheless, it is clear that the magnification ζ is intimately related to another geometrical parameter,
known as Nayak parameter [Nayak, 1971, Yastrebov et al., 2017] α = m0m4/m2

2 (see covariance matrix
in Table 5). Remark that from Eqs. (27) for the flower-shaped spot, the Nayak parameter is simply 1 so,
consistently it does not enter the phenomenological equation for the conductivity of such simple forms
Eq. (13). A rigorous link between the generative parameter ζ and the geometrical parameter α could
be provided, see Appendix B. The concrete form of this link was not used, but we could notice that
another geometrical characteristic, namely the Hurst exponent H is involved, regardless the results of the
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Q̃′ Q̃′′ ξ̃ k̃l ζ̃ H̃ ˜√
m0/〈r〉 ˜√m2

˜√
m4〈r〉 α̃

Q̃′ 1 0.9 0.1 0.7 0.3 -0.2 0.7 0.9 0.7 0.06
Q̃′′ - 1 -0.04 0.8 0.4 -0.2 0.7 0.9 0.7 0.1
ξ̃ - - 1 -0.2 -0.2 0.1 0.7 -0.06 -0.07 -0.08
k̃l - - - 1 0.06 0.0 0.4 0.7 0.4 -0.03
ζ̃ - - - - 1 0.0 0.06 0.5 0.5 0.9
H̃ - - - - - 1 -0.2 -0.2 0.3 0.2
˜√

m0/〈r〉 - - - - - - 1 0.6 0.4 -0.05
˜√m2 - - - - - - - 1 0.9 0.2
˜√

m4〈r〉 - - - - - - - - 1 0.3
α̃ - - - - - - - - - 1

Table 5: Covariance matrix of normalized flux and all normalized parameters according to Eq. (32).

covariance analysis. So, the ultimate set of geometrical dimensionless parameters is chosen to be:

A f = {√m0/〈r〉,
√

m2,H,α} ≡
{

σ/〈r〉,
√
〈(∇r)2〉,H,α

}
(33)

The fourth moment m4 does not enter explicitly in the set of parameters, only through the Nayak
parameter α similarly to models of rough contact [Greenwood, 2006, Carbone and Bottiglione, 2008,
Yastrebov et al., 2017]. Finally, we suggest the following form for the phenomenological model:

Q′′ = a
[

1− 1
b
√

m2 +1

]
(1+ cH)

{
1+

d
eα f +1

}
(34)

with the core term in square brackets which is equivalent to the phenomenological law obtained for
multi-petal spots, see Eq. (13). In addition, the effects of H and α enter the equation through the product
of linear and non-linear functions, respectively (normal and curly brackets). The former is the increasing
function of H and the latter is a decreasing function of α. Both terms provide a slight factor adjust-
ment: in the interval (1,1+ c) for H ∈ (0,1), and in the interval (1+ d/(1+ e),1) for α ∈ (1,∞). Due
to a weak dependence on the Nayak parameter, we made an attempt to integrate it through a logarith-
mic dependence, like in [Yastrebov et al., 2017], but the constructed model could not fulfil the physical
consistency, i.e. to always ensure positive normalized flux Q′′ which increases monotonically for in-
creasing α and ζ (see Appendix C). This physical consistency could be formulated as an inequality for
the exponent parameter f :

f ≥ 1−H
2H

.

The issue with this bound is that it diverges for H → 0. Therefore, we deliberately fixed the minimal
value of the Hurst exponent that we took into consideration H ≥ 0.25, providing the following condition
for the exponent f ≥ 1.5. A further study should be carried out to formulate a physically consistent
phenomenological model for the flux for spots with lower values of the Hurst exponent.

Combining Eqs. (34) and (30), the final equation for the flux is obtained as:

Q = Q◦

(
1+a

√
2m0

〈r〉

[
1− 1

b
√

m2 +1

]
(1+ cH)

{
1+

d
eα f +1

})
(35)

The coefficients are found by the least square fit of all simulation results, see Table 6. Results of the
fitting law are shown in Fig. 23 separately for two sets of simulation data: in Fig. 23(a) for the set of
contact spots parametrized by Eq. (19a), and in Fig. 23(b) for those defined by Eq. (31). A relative error
could be defined as:

E =
1
N

N

∑
i=1

|Qi−Qfit
i |

Qi
, (36)
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Parameter a b c d e f
Value 0.968 0.255 0.0867 4.38 5.49 1.50

Table 6: Parameters of the phenomenological model (34),(35) optimized through least square fit and
resulting in relative error E = 4.3 % and Pearson’s correlation factor ρ = 0.9976.

and for the fit coefficients the error reduces to E = 4.3 %. The Pearson’s correlation factor for the set of
identified parameters is equal to ρ = 0.9976.

The high concentration of data for low
√

m2 might have introduced biases during the fitting process.
Nonetheless, the obtained model captures well all the trends observed in our simulation results, notably, it
represents well the flux of the roughest contact spots with highest values of

√
m2 and α. In summary, the

obtained model could be seen as a generalization of the initial model formulated for multi-petal shapes
(flower-, star- and gear-like). The ultimate model integrates the combined effects not only of standard
deviation σ =

√
〈(r−〈r〉)2〉 = √m0 and

√
〈(∇r)2〉 = √m2 but also of more subtle shape parameters

such as the Nayak parameter α and the Hurst exponent H, which are related to bandwidth length and
fractal dimension, respectively.

As a by product, the form of the phenomenological model (35) permits us to access the fractal limit
of the self-affine spots, when the magnification ζ = ks/kl→∞, then a very simple form for the limit flux
could be obtained, depending only on the standard deviation of the spot and its Hurst exponent:

lim
ζ→∞

(Q) = Q◦

(
1+a

√
2m0

〈r〉 (1+ cH)

)
= 4kU0

(
〈r〉+a

√
2m0 (1+ cH)

)
. (37)

As a first order approximation, one could use the following value 4kU0
(
〈r〉+√2m0

)
which remains

relatively accurate due to the factor a(1+ cH) having minimal variation, remaining within the range
(0.968,1.052). In general, this fractal limit remains speculative and could be seen as our conjecture as
for the case of multi-petal shapes.

6 Conclusion

In establishing the bounds on the conductivity of rough contacts [Barber, 2003], Barber argued that ”its
greatest potential probably lies in establishing the maximum effect of neglected microscales of roughness
in a solution of the contact problem for bodies with multiscale or fractal roughness.” In our contribution,
we focus on these ”microscales” and make an attempt to assess their quantitative effect on the conduc-
tivity. If we repeat after Samuel Karlin that ”the purpose of models is not to fit the data but to sharpen
the questions”, this study indeed permitted to sharpen few of them.

6.1 Flower-shaped spots and other simple forms

For simple multi-petal shapes: flower-, star- and gear-like conductive spots we could obtain the following
results. In the limit of the infinite number of petals, rays, and teeth, the conductivity seems to converge
to different finite limits. The bigger the area, the higher its limit, therefore the gear-like shapes have the
highest and star-like shapes the lowest conductivity. We determined these limits by an extrapolation of
a constructed phenomenological model, and these results should be interpreted as a first guess. Hence,
the first question is whether a conductivity of such spots could be determined analytically in the limit of
infinite number of petals, rays or teeth? Expectedly, these limits are bounded between the conductivity
of a circle with the average radius r0 and a circle with the radius equal to the maximal extent of these
spots r0(1+ ξ). On the other hand, in this limit, the boundary of the conducting spot could be seen as
fuzzy, with the same geometrical bounds but different ”fuzziness” types, which surprisingly significantly
affects the limit. The physical and mathematical limits could be different here because of radiative and
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Figure 23: Simulation results for the normalized flux through self-affine spots (color markers and
interpolation lines) and phenomenological prediction (smaller black markers of the same type). Upper
row: initial set of data (1), lower raw: data with controlled standard deviation (2). The letters in the
second series refer to those defined Fig. 21.

eventually convective heat exchanges or because of tunneling effects. The physical conductivity should
probably hit the upper limit Qup defined by the conductivity of a circular spot of radius r0(1+ξ).
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6.2 Conductivity of self-affine spots

In terms of conductivity of self-affine random spots, based on numerous simulation results and being in-
spired by the phenomenological model constructed for a flower-shaped spot, we suggested a phenomeno-
logical model including four parameters: (1) mean radius, (2) its standard deviation (or the square root of
the zeroth spectral moment), (3) its gradient’s standard deviation (or the square root of the second spec-
tral moment), (4) its Hurst exponent and (5) its Nayak parameter. The model is applicable in a relatively
large interval of parameters and properly describes the change in flux with these geometrical parameters.
It is worth noting that the model shows an interplay between the second spectral moment and a specific
combination of the Hurst exponent and the Nayak parameter. The conductivity increases with the former
and decreases with the latter. In the generative model employed in this study, under increasing magni-
fication, the second spectral moment and the Nayak parameter increase in such a way that the flux is
always a monotonically increasing function (by construction). Nonetheless, it is conceivable to design
shapes where these two parameters are independently controlled. Consequently, the second question
arises: could an increase in the Nayak parameter actually lead to a reduction in flux in practical sce-
narios? An affirmative response would intriguingly imply the existence of an optimal Nayak parameter
(linked to an ideal shape) that maximizes conductivity. However, such a scenario seems rather unlikely.

Similar to our analysis of simple multi-petal shapes, the phenomenological model enabled us to deter-
mine the ultimate fractal limit for the conductivity of self-affine shapes as the magnification ζ approaches
infinity. This limit depends solely on the mean radius, standard deviation, and only weakly on the Hurst
exponent. However, as in our earlier findings, this identified limit should be regarded as a preliminary
estimate. The mathematical question of the conductivity of self-affine shapes in the fractal limit remains
open for further exploration. From a physical perspective, similarly to observations with flower-shaped
spots, the diffusive nature of the boundary could provide a more practical approach to determining this
limit.

6.3 Contact spots between rough surfaces

Concerning the conductivity of contact spots formed between randomly rough surfaces in contact, we can
highlight several pertinent findings. The non-simple connectedness of these spots, characterized by non-
contact areas surrounded by contact ones, does not appear to significantly affect overall conductivity.
However, the complexity of their shapes undoubtedly influences this conductivity. Drawing from our
analyses of relatively simpler cases, a set of parameters proves effective for estimating conductivity
using the developed phenomenological models (Eqs. (34) and (35)). These parameters include (1)
average radius, (2) standard deviation, (3) second spectral moment, (4) Hurst exponent, and (5) Nayak’s
parameter of the outer contour. But this model should be applied to realistic contact spots with caution.
In most cases, such spots cannot be parametrized through a function in polar coordinates r(θ) and, in
general, polar coordinates do not make much sense for complex spots (see Fig. 1). Instead, a more
general parametrization using convective coordinates defined along the outer boundary is needed. In this
study, by limiting ourselves to relatively simple geometrical models, we left more realistic contact shapes
for future research. As a preliminary simulation for this research, we present a conductivity analysis of
Koch snowflakes [Koch, 1904], with conductivity results for several initial iterations shown in Fig. 24.
Qualitatively, these results align with the observed conductivity saturation at the fractal limit, a natural
outcome for the physical problem of conduction.
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issues. In this work, a Large Language Model assisted the authors with polishing the text and, to a little
extent, with the code improvement.

A Geometrical characteristics of flower-, star- and gear-like shapes

Geometrical characteristics (perimeter, area and compactness) are summarized in Table 7 and Fig. 25 for
flower-, star- and gear-like spots. We remind that the mean radius is denoted by r0, and half-length of
petals (stars or teeth) is equal to r0ξ.

B Geometrical characteristics of self-affine spots

In Fig. 26, the analytical form for the standard deviation of self-affine spots σs Eq.(24) is compared with
the one evaluated over 1000 generated spots for each combination of generative parameters: ξ = 0.05,
kl ∈ {2,4,8,16,32,64,126}, ζ ∈ {4,8,16,32} and H ∈ [0.2,0.8]. These results are quite sensitive to kl ,
but the maximal relative error is 0.05% for kl = 32 and ζ = 8.

The second m2 and the forth m4 moments have been computed for the same set of generative param-
eters over the same 1000 spots. These moments could be computed in three different ways. First, the
discretized contour geometry could be used to evaluate these moments mD

p using Eq. (25). The discretiza-
tion consists of splitting the contour in N = max{10000,100ks} straight segments with dθ = 2π/N and
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Characteristics Flower Star Gear

Area A πr2
0

(
1+ ξ2

2

)
nr2

0(1−ξ2)sin(π/n) πr2
0(1+ξ2)

Perim. P r0E(in′) 2
√

2nr0
√

1+ξ2− (1−ξ2)cos(π/n) 2πr0(1+2n′/π)

Comp. C =
√

A
P

√
π

√
1+ξ2/2

4E(in′)

√
(1−ξ2)sin(π/n)

2
√

2n
√

1+ξ2− (1−ξ2)cos(π/n)

√
(1+ξ2)

2
√

π(1+2n′/π)

Table 7: Geometrical characteristics (area, perimeter and compactness) for multi-petal shapes: flower,

star and gear; E(in′) = E(inξ) =
π/2∫
0

√
1+(nξsin(θ))2dθ is the complete elliptic integral of the second

kind and i is the imaginary unit.
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evaluation gradient and Laplacian as

∇ri =
2(ri+1− ri)

(ri+1 + ri)dθ
, ∆ri =

4(ri+1−2ri + ri−1)

(ri+1 +2ri + ri−1)2dθ2 , (38)

where ri = r(idθ), i = 1,N. This method was used throughout the paper. Second, the moments could be
approximated by discrete sums of all mode contributions as in Eq. (26):

mS
p =

(r0ξ)2

2

ks

∑
kl

kp
(

k
kl

)−(1+2H)

. (39)

This method is however valid only for relatively small values of ξ because it ignores the exponential
transformation (21). Third, for sufficiently large values of kl , these discrete sums could be turned into
integrals with wavenumber k becoming a continuum variable of integration:

mC
p =

1
2

∫
ζkl

kl

(r(k))2 kpdk, (40)

where r(k) = ξr0(k/kl)
−H−0.5. Analytical formulas derive from the development for the moments mC

0 ,
mC

2 and mC
4 , as follows.

mC
0 =−(r0ξ)2kl

4H

(
ζ
−2H −1

)
, mC

2 =− (r0ξ)2k3
l

2(2−2H)

(
ζ

2−2H −1
)
, mC

4 =− (r0ξ)2k5
l

2(4−2H)

(
ζ

4−2H −1
)
.

(41)
For high values of kl the discrete spectrum is closer to a continuous one, and thus the spectral moments
can be deduced from Eq. (26) as detailed by Nayak [Nayak, 1971]. These analytical values are compared
with the numerically evaluated ones in Fig.27 and Fig.28. The maximum deviation is of only 0.7 % for
the m2 for parameters kl = 2,ζ = 4 and H = 0.2. However, for m4 an average discrepancy of 10 % is
observed and could raise to as much as 27 % in certain instances. Nevertheless, in all results presented
in the paper only actual values of the moments and of their combinations were used.

The Nayak’s parameter is determined using the moments m0, m2 and m4, α = m0m4/m2
2. The three

models mentioned above could be used to compute the Nayak parameter as αD, αS and αC, respectively.
The average values computed over a set of 1000 spots are compared in Fig 29. This analysis demon-
strates that a continuum model could be successfully used in practical applications. In the limit of high
magnification ζ, the second moment and the Nayak parameter scale as mC

2 ∼ ζ2−2H and αC ∼ ζ2H .

C Physical consistency of the phenomenological model

The phenomenological model of flux Eqs. (34),(35) exhibits an increasing behavior with respect of m2,
but decreases with α. Nevertheless, from general physical considerations, we conjecture that the flux
should be a monotonically non-decreasing function of the magnification ζ. So, we require that the
derivative of flux Q with respect to magnification ζ remains non-negative:

∂Q
∂ζ

=
∂Q
∂m2

∂m2

∂ζ
+

∂Q
∂α

∂α

∂ζ
≥ 0 (42)

The terms ∂Q/∂m2 and ∂Q/∂α could be redily derived from Eq. (35).

∂Q
∂m2

= a
b

2
√

m2(b
√

m2 +1)2 (1+ cH)

(
1+

d
eα f +1

)
(43a)

∂Q
∂α

= a
{

1− b
b
√

m2 +1

}
(1+ cH)

−de f α f−1

(eα f +1)2 (43b)
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Figure 26: Results of standard deviation by spectral and sample analysis, with kl =
{2,4,8,16,32,64,128} in both figures: (a) ζ = {4,8,16,32} and H = 0.2; (b) H = {0.2,0.4,0.6,0.8}
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Figure 27: Results of mean square gradient by spectral and sample analysis, with kl =
{2,4,8,16,32,64,128} in both figures: (a) ζ = {4,8,16,32} and H = 0.2; (b) H = {0.2,0.4,0.6,0.8}
and ζ = 4.

The derivatives of m2 and α with respect to ζ could be found from Eq.(41), resulting in the following
asymptotic forms:

∂Q
∂m2

∂m2

∂ζ
∼ 1
√

m2
(√

m2 +1
)2

∂m2

∂ζ
∼ ζ

−2+H (44a)

∂Q
∂α

∂α

∂ζ
∼ α f−1

(α f +1)2
∂α

∂ζ
∼ ζ

−2 f H−1 (44b)

These expressions enable us to define a constraint criterion to ensure the derivative of the flux law with
respect to ζ remains non-negative for all ζ. The exponent of ζ in Eq. (44a) must be lower than the one in
Eq.(44a), resulting in the following inequality that the exponent f should satisfy:

f ≥ 1−H
2H

(45)
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Figure 28: Results of mean square Laplacian, with kl = {2,4,8,16,32,64,128} in both figures: (a)
ζ = {4,8,16,32} and H = 0.2; (b) H = {0.2,0.4,0.6,0.8} and ζ = 4.

Figure 29: Comparison of different models which could be used to evaluate spectral moments and the
Nayak parameter: (1) discretized geometrical evaluation, (2) discrete sum for the generative function,
(3) continuous version of this discrete sum.

The problem with this constraint is that it results in too high values of f for small H and, ultimately, it
diverges for H → 0. In the current study we set the minimal value of the Hurst exponent to H = 0.25
thus resulting in f ≥ 1.5. The results for derivatives using the continuous expressions for m2 and α are
presented Fig. 30 for H = 0.25, kl = 8, and ξ = 0.05, and the fitting parameters shown in Table 6. The
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two derivative terms are distinguished: one positive, as given by Eq. (43a), and the other negative, as
given by Eq. (43a). The full derivative remains positive, however, thus keeping the required assumptions
true, even for value of ζ significantly far from the initial set of parameter. The absolute values for these
derivatives are also depicted in inset in log-log scale, showing similar power-laws of the two competing
derivatives (in dots) for high values of ζ.
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Figure 30: Derivatives of the flux phenomenological model in function of the magnification ζ for kl = 8,
H = 0.25, and ξ = 0.05 for parameters from Table 6.
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