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Crack models based on the extended finite 
element method

Nicolas Moës

GeM Institute, UMR CNRS 6183, Ecole Centrale de Nantes, France

1 Introduction

In spite of its decades of existence, the finite element method coupled with 
meshing tools does not yet manage to simulate efficiently the propagation 
of 3D cracks for geometries relevant to engineers in industry. Indeed, initial 
creation of the mesh and modification of this mesh during the propagation 
of a crack, remain extremely heavy and lack robustness. This fact was 
the motivation behind the design of the eXtended Finite Element Method 
(X-FEM).

Even if this operation were straightforward, the question of the projec-
tion of fields from one mesh to the next one would still be raised for history 
dependent problems (plasticity, dynamics, . . . ). The possibility offered to 
preserve the mesh through the simulation is undoubtedly appealing.

The basic idea is to introduce inside the elements the proper discon-
tinuities so as to relax the need for the mesh to conform to them. This 
introduction is done via the technique of the partition of unity (Melenk 
and Babuška, 1996; Babuška and Melenk, 1997). It should be noted that 
X-FEM is not the only method based on the partition of the unity (as in 
painting several schools exist). The GFEM approach (generalized finite el-
ement method) and PUFEM (partition of unity finite element method) are 
also based on the partition of unity.

The constant ambition which distinguishes the X-FEM approach since 
its beginnings is to use the partition of unity to release the mesh from con-
straints to conform to surfaces of discontinuity, while keeping the same per-
formance as traditional finite element (optimality of convergence). Quickly 
also the X-FEM was coupled to the level set method to locate and evolve 
the position of surfaces of discontinuities.
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Figure 1. Reference problem.

2 Background on discretization methods

2.1 Problem description and notations

The solid studied is depicted in Figure 1. It occupies a domain Ω whose
boundary is denoted by S. This boundary is composed of the crack faces Sc+

and Sc+ assumed traction free, as well as a part Su on which displacement
u⋆ are imposed and, finally, a part St on which tractions t⋆ are imposed.

Stresses, strains and displacements are denoted by σ, ε and u, respec-
tively. Small strains and displacements are assumed throughout the chapter.
In the absence of volume forces, equilibrium equations read

∇·σ = 0 on Ω (1)

σ · n = t⋆ on St (2)

σ · n = 0 on Sc+ , σ · n = 0 on Sc− (3)

where n is the outward normal. Kinematics equations read

ε = ε(u) = ∇s u on Ω (4)

u = u⋆ on Su (5)

where ∇s is the symmetrical part of the gradient operator. Finally, the
constitutive law is assumed elastic: σ = EEE : ε where EEE is Hooke’s tensor.
The space of admissible displacement field is denoted U . whereas the space
of admissible virtual displacements is denoted U0:

U = {v regular : v = u⋆ on Su} (6)

U0 = {δv regular : δv = 0 on Su} (7)

The regularity space to which the solution belongs is detailed in (Babuška
and Rosenzweig, 1972) and (Grisvard, 1985). This space contains discon-
tinuous fields of displacement across the crack faces Sc. The weak form of
the equilibrium equations is written
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∫

Ω

σ : ε(δu) dΩ =

∫

St

t⋆ · δu dS ∀δu ∈ U0 (8)

Let us note that the border Sc does not contribute to the weak form because
it is traction free (this assumption will be released later). Combining (8)
with the constitutive law and the kinematics equations, the displacement
variational principle is obtained. Find u ∈ U such that

∫

Ω

ε(u) : EEE : ε(δu) dΩ =

∫

St

t⋆ · δu dS ∀δu ∈ U0 (9)

2.2 Rayleigh-Ritz approximation

Within the Rayleigh-Ritz method, the approximation is written as a
linear combination of displacement modes φi(x), i = 1, . . . , N defined on
the domain of interest:

u(x) =
N∑

i

aiφi(x) (10)

These modes must satisfy a priori the essential boundary conditions (im-
posed displacements are considered null to simplify the presentation). The
introduction of this approximation into the variational principle (9) leads
to the following system of equations

Kijaj = fi, j = 1, . . . , N (11)

The summation rule over repeated indices is assumed.

Kij =

∫

Ω

ε(φi) : EEE : ε(φj) dΩ (12)

fi =

∫

St

t⋆ · φi dS (13)

The method of Rayleigh-Ritz offers a great freedom in the choice of the
modes. These modes can for example be selected so as to satisfy the interior
equations. However, this method has the disadvantage of leading to a linear
system with dense matrix, on contrary to the finite element method which
leads to a sparse system.

2.3 The finite element method

In the finite element method, the domain of interest, Ω, is broken up into
geometrical subdomains of simple shape Ωe, e = 1, . . . , Ne called elements:

Ω = ∪Ne

e=1Ωe (14)
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The set of elements constitutes the mesh. On each element, the unknown
field is approximated using simple approximation functions, of polynomial
type, as well as unknown coefficients called degrees of freedom. Degrees
of freedom have a simple mechanical significance in general. For linear
elements, the degrees of freedom are simply the displacement of the nodes
along x and y directions. Let us indicate by uα

i the displacement of node
i in direction α (α = x or y) and by φα

i the corresponding approximation
function. The finite element approximation on element Ωe is written

u(x) |Ωe
=

∑

i∈Nn

∑

α

aαi φ
α
i (x) (15)

whereNn denotes the set of nodes of element Ωe. For instance, for a triangle,
they are six approximation functions

{φα
i } = {φ1ex, φ2ex, φ3ex, φ1ey, φ2ey, φ3ey} (16)

where φ1, φ2 and φ3 are scalar linear functions over the element with value of
0 or 1 at the nodes. Approximation (15) allows one to model any rigid mode
or constant strain over the element. This condition must be fulfilled by the
approximation for any type of elements. Continuity of the approximation
over the domain is obtained by the use of nodal degrees of freedom shared
by all elements connected to the node. The stiffness matrix, Ke

ij , and load
vector, fe

i , are given for a finite element by

Ke
iα,jβ =

∫

Ωe

ε(φα
i ) : EEE : ε(φβ

j ) dΩ (17)

fe
iα =

∫

St∩∂Ωe

t⋆ · φα
i dS (18)

The global system of equations is obtained by assembling the elementary
matrices and forces in a global stiffness and force vector. In the assembly
process, the equations related to degrees of freedom involved in Dirichlet
boundary conditions are not built.

On the contrary to the Rayleigh-Ritz approximation, the local character
of the finite element approximation leads to sparse matrices. Moreover,
the finite element has a strong mechanical interpretation: kinematics is
described by nodal displacements which are associated by duality to nodal
forces. The behavior of the element is characterized by the elementary
stiffness matrix which connects the nodal forces and displacements. The
global system to solve enforces the equilibrium of the structure: the sum
of the nodal forces at each node must be zero. Lastly, the finite element
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method did demonstrate a high level of robustness in industry which makes
it a very appropriate approach for most applications.

However, the use of the finite element method for problems with complex
geometry or evolution of internal surfaces is currently obstructed by meshing
issues. This did yield a motivation to design the so called meshless methods.

2.4 Meshless methods

We give some insights on meshless methods because they are important
to understand the history of the concept of enrichment. Within the frame-
work of meshless methods, the support of the approximation function is
more important than the elements (which actually do not exist any more).
On these supports, enrichment functions may be introduced for example to
model a crack tip (as in (Fleming et al., 1997)).

Years of active research on meshless methods did show the importance
of the support. Many researches were undertaken in the nineties to develop
methods in which the approximation does not rest on a mesh but rather on
a set of points. Various methods exist to date: diffuse elements (Nayroles
et al., 1992), Element Free Galerkin method (EFG) (Belytschko et al., 1994),
Reproducing Kernel Particle Method (RKPM) (Liu et al., 1993), h−p cloud
method (Duarte and Oden, 1996).

Each point has a domain of influence (support) with a simple shape
(circle or rectangle for example in 2D) on which approximations are built.
These functions are zero on the boundary and outside the domain of influ-
ence. Abusively, we will speak about the support i for the support associated
with node i. The approximation functions defined on the support i are de-
noted φα

i , α = 1, . . . , Nf (i) where Nf (i) is the number of functions defined
over support i. The corresponding degrees of freedom are denoted aαi . The
approximation at a given point x is written

u(x) =
∑

i∈Ns(x)

Nf (i)∑

α=1

aαi φ
α
i (x) (19)

where Ns(x) is the set of points whose support contains point x. Figure 2
shows for example a point x covered by three supports. The approximations
functions are built so that the approximation (19) can represent all rigid
modes and constant strain modes on the domain. These conditions are nec-
essary to prove the convergence of the method. Various approaches (diffuse
element, EFG, RKPM, . . . ) are distinguished, among other things, by the
techniques used for the construction of these approximation functions.

Once a set of approximation functions has been built, it is possible to add
some by enrichment. Various manners of enriching exist and we will describe

Accepted Manuscript

5



Figure 2. Three supports covering node x.

an enrichment type described as external by Belytschko and Fleming (1999)
. The enrichment of the approximation makes it possible to represent a
given displacement mode, for example F (x)ex on a subdomain denoted by
ΩF ⊂ Ω. Let us note NF the set of supports which have a non empty
intersection with Ωf . The enriched approximation is written

u(x) =
∑

i∈Ns(x)

Nf (i)∑

α=1

aαi φ
α
i (x) +

∑

i∈Ns(x)∩NF

Nf (i)∑

α=1

bαi φ
α
i (x)F (x) (20)

where the new degrees of freedom, bαi , multiply the enriched approximation
functions φα

i (x)F (x). Let us show that the function F (x)ex may be repre-
sented on Ωf . By setting to zero all degrees of freedom aαi and taking the
function F (x) out of the sum, the approximation at point x ∈ ΩF reads

u(x) =

⎛

⎝
∑

i∈Ns(x)∩NF

Nf (i)∑

α=1

bαi φ
α
i (x)

⎞

⎠F (x) (21)

The degrees of freedom bαi can be selected so that the factor in front of
F (x) is the rigid mode ex. That is possible since functions φα

i are able to
represent any rigid mode. In conclusion, approximation (20) can represent
F (x)ex on ΩF . Enrichment made it possible within the framework of the
Element Free Galerkin Method to solve problems of propagation of cracks in
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two and three dimensions without remeshing (Krysl and Belytschko, 1999):
the crack is propagated through a set of points and is modeled by enrich-
ment of the approximation with discontinuous functions F (x) on the crack
or representing the singularity on the crack front. Great flexibility in the
writing of the approximation and its enrichment as well as the possibility
of creating very regular fields of approximation are two important assets of
meshless methods and the EFG approach in particular. The use of meshless
methods however presents a certain number of difficulties compared to the
finite element method:

• Within the finite element method the assembly of the stiffness ma-
trix can be done by assembling the contributions of each element. In
meshless methods, the assembly is done rather by covering the domain
by points of integration and by adding the contribution of each one of
them. The choice of the position and the number of integration points
is tedious for an arbitrary set of approximation points;

• the approximation functions are to be built and are not explicit;
• the support size is a parameter in the method which the user must
choose carefully;

• the boundary conditions of the Dirichlet type are delicate to impose.
Finally, it must be pointed out that due to the lack of the element concept,
meshless methods are not at all trivial to implement in legacy finite element
codes.

2.5 The partition of unity

Melenk et Babuška (1996) did show that the traditional finite element
approximation could be enriched so as to represent a specified function on
a given domain. Their point of view can be summarized as follows. Let us
first us recall that the finite element approximation is written on an element
as

u(x) |Ωe
=

∑

i∈Nn

∑

α

aαi φ
α
i (x) (22)

Since the degrees of freedom defined at a node have the same value for
all the elements connected to it. The approximations on each element can
be “assembled” to give a valid approximation in any point x of the domain:

u(x) =
∑

i∈Nn(x)

∑

α

aαi φ
α
i (x) (23)

where Nn(x) is the set of nodes belonging to the elements containing point
x. The domain of influence (support) of the approximation function φα

i is
the set of elements connected to node i. The set Nn(x) is thus also the set of
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nodes whose support covers point x. The finite element approximation (23)
can thus be interpreted as a particularization of the approximation (19)
used in meshless methods:

• The set of points is the set of nodes in the mesh;

• The domain of influence of each node is the set of elements connected
to it.

It is thus possible to enrich the finite element approximation by the same
techniques as those used in meshless methods. Here is the enriched approx-
imation which makes it possible to represent function F (x)ex on domain
ΩF :

u(x) =
∑

i∈Nn(x)

∑

α

φα
i a

α
i +

∑

i∈Nn(x)∩NF

∑

α

bαi φ
α
i (x)F (x) (24)

where NF is the set of nodes whose support has an intersection with domain
ΩF . The proof is obtained by setting to zero coefficients aαi and by taking
into account the fact that the finite element shape functions are able to
represent all rigid modes and thus the ex mode. We move now to the
concrete use of the partition of unity for modeling discontinuities.

3 Discontinuity modeling with the X-FEM and level

sets

The X-FEM introduces discontinuity inside elements using an enrichment
based on the partition of unity technique. Proper enrichments for displace-
ment discontinuities due to cracks will be discussed in this section. Proper
enrichment for strain discontinuity maye also be found in the literature as
in (Moës et al., 2003).

3.1 A simple 1D problem

We consider a bar shown in Figure 3. Two cases are considered : a crack
is located at a node or between two nodes.

Case a : crack located at a node Using classical finite elements, this
case is treated using double nodes. Node 2 is replaced by nodes 2− and
2+ sharing the same location but bearing different unknowns as shown in
Figure 4. The approximation reads

u = u1N1 + u−
2 N

−
2 + u+

2 N
+
2 + u3N3 + u4N4 (25)

where Ni indicates the approximation functions and ui the corresponding
degrees of freedom. Defining the displacement average, < u >, and (half)
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case bcase a
1 2 3 4

Figure 3. A bar with a crack located at a node (case a) or between two
nodes (case b).

jump, [u], at node 2

< u >=
u−
2 + u+

2

2
[u] =

u−
2 − u+

2

2
(26)

the approximation may be rewritten as

u = u1N1+ < u > N2 + [u]N2H(x) + u3N3 (27)

where

N2 = N−
2 +N+

2 (28)

The generalized Heaviside function H (generalized because the original
Heaviside function goes from 0 to 1) is represented in Figure 5. Abusively,
we shall however call it Heaviside function. In the approximation (27),
one distinguishes the continuous part modeled by functions N1, N2 and N3

to which is added a discontinuous part given by the product of N2 by the
Heaviside function. Node 2 is called an enriched node because an additional
degree of freedom is given to it.

Case b: crack located in between two nodes Let us study now case
b, Figure 3, in which the crack is located between two nodes. As in case
a, we wish to write the approximation as the sum of a continuous and a
discontinuous part. Evolving on case a, we propose

u = u1N1 + u2N2 + u3N3 + u4N4 + a2N2H + a3N3H (29)

Accepted Manuscript

9



1 2 3
- +

N+
2 N3N−

2N1

Figure 4. Double node to model a discontinuity located at a node.

1 2 3
- +

H = −1

H = +1

1 2 3
- +

HN2

Figure 5. The generalized Heaviside function (left) as well as its product
with function N2 (right).

Nodes 2 and 3 are enriched by the Heaviside function. This enrichment was
presented first (in 2D) by Moës et al. (1999). If the crack is located at a node,
there is only one enriched node. In case b, two nodes are enriched because
the support of nodes 2 and 3 are cut by the crack. A node is enriched by
the Heaviside function if its support is cut into two by the crack. One can
show that the approximation (29) makes it possible to represent two rigid
modes (to the left of the crack and the other to the right). The fact that two
(and not one) additional degrees of freedom are necessary may be surprising.
Indeed, a crack implies a jump in displacement but can also imply a jump in
strain. By linear combination of the various functions implied in (29), one
notices that enrichment brings two functions on the element joining nodes
2 and 3. These two functions are shown in Figure 7. Note that for case
a, only one additional degree of freedom is needed because finite element
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already exhibits strain jumps across element boundaries.

2 3

N2H

N3H

H = +1

H = −1

1 2 43

Figure 6. A crack located between two nodes. The Heaviside function
(left) and enrichment functions (right).

Finally, it should be noted that proposed enrichment yields the same
approximation space as if the cracked element is replaced by two elements
and a double node. This observation is limited to 1D and will not carry
over to 2D and 3D.

2 3

Figure 7. Two functions modeled by the X-FEM enrichment. We observe
a continuous function with discontinuous slope (dashed line) and a discon-
tinuous function with continuous slope (solid line).

Note that a set of variants to the Heaviside enrichment has been proposed
in the literature: the “Hansbo” alternative (Hansbo and Hansbo, 2002),
the use of virtual or phantom nodes (Molino et al., 2004), (Song et al.,
2006) and, finally, the shifted basis from Zi and Belytschko (2003). All
the variants listed above will lead to the same numerical solutions as the
Heaviside enrichment described earlier. The choice is guided in general by
the simplicity of implementation according to the target code. Also note
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that even if these various bases will lead to the same solution, the generated
matrices will not be identical (and will not have the same condition number).

3.2 Extension to 2D and 3D

We consider now 2D and 3D meshes cut by a crack. Just like in the 1D
case, we begin with the case of a crack inserted with double nodes.

1

8

1

x

y

Figure 8. Finite element mesh
near a crack tip, the circled num-
bers are element numbers

1

8

1

11 x

y

Figure 9. Regular mesh without
a crack.

Figure 8 is taken from (Moës et al., 1999) and shows a four element mesh
in which a crack has been introduced through double nodes (nodes 9 and
10). The finite element approximation associated with the mesh in Figure 8
is

u =

10∑

i=1

uiNi (30)

where ui is the (vectorial) displacement at node i and φi is the bilinear shape
function associated with node i. Each shape function φi has a compact
support ωi given by the union of the elements connected to node i.

Let us rewrite (30) in such a way that we recover an approximation
without crack corresponding to Figure 9 and a discontinuous additional
displacement. Defining the average displacement a and the displacement
jump b on the crack faces as

a =
u9 + u10

2
b =

u9 − u10

2
(31)
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we can express u9 and u10 in terms of a and b

u9 = a+ b u10 = a− b (32)

Then replacing u9 and u10 in terms of a and b in (30) yields

u =
8∑

i=1

uiNi + a(N9 +N10) + b(N9 +N10)H(x) (33)

where H(x) is referred to here as a discontinuous, or ‘jump’ function. This
is defined in the local crack coordinate system as

H(x, y) =

{

+1 for y > 0

−1 for y < 0
(34)

If we now consider the mesh in Figure 9, N9 + N10 can be replaced by
N11, and a by u11. The finite element approximation now reads

u =

8∑

i=0

uiNi + u11N11 + bN11H(x) (35)

First two terms on the right hand side represent the classical finite element
approximation, whereas the last one represents the addition of a discontin-
uous enrichment. In other words, when a crack is modeled by a mesh as in
Figure 8, we may interpret the finite element space as the sum of one which
does not model the crack (such as Figure 9) and a discontinuous enrichment.
The third term may be interpreted as an enrichment of the finite element
function by a partition of unity technique.

Derivation that we have just carried out on a small grid of four elements
may be reiterated on any 1D, 2D or 3D grid containing a discontinuity
modeled by double nodes. This derivation will yield to the same conclusion:
the modeling of a discontinuity by double nodes is equivalent to a traditional
finite element modeling to which an enrichment by the partition of unity of
the nodes located on the path of discontinuity is added. Let us note that the
nodes which are enriched are characterized by the fact that their support is
cut into two by the discontinuity.

Let us suppose now that one wishes to model a discontinuity which does
not follow the edge of the elements. We propose to enrich all the nodes
whose support is (completely) cut into two by the discontinuity (Moës et al.,
1999). At these nodes, we add a degree of freedom (vectorial if the field is
vectorial) acting on the traditional shape function at the node multiplied
by a discontinuous function H(x) being 1 on a side of the crack and -1 on
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the other. For example, in Figures 10 and 11, circled nodes are enriched.
A node whose support is not completely cut by discontinuity must not be
enriched by function H because that would result in enlarging the crack
artificially. For example, for the mesh shown in Figure 11, if nodes C
and D are enriched, the crack will be active up to the point R (since the
displacement field will be discontinuous up to point R). However, if only
nodes A and B are enriched by the discontinuity, the displacement field
is discontinuous only up to point Q and the crack appears unfortunately
shorter.

In order to represent the crack on its proper length, nodes whose support
contains the crack tip (squared nodes shown in Figure 11) are enriched
with discontinuous functions up to the crack tip but not beyond. Such
functions are provided by the asymptotic modes of displacement (elastic if
calculation is elastic) at the crack tip. This enrichment, already used by
Belytschko and Black (1999) and Strouboulis et al. (2000) allows moreover
precise calculations since the asymptotic characteristics of the displacement
field are built-in. Let us note that if the solution is not singular at the crack
tip (for example by the presence of a cohesive zone), other functions of
enrichment can be selected (Moës and Belytschko, 2002; Zi and Belytschko,
2003).

We are now able to detail the complete modeling of a crack with X-
FEM located arbitrarily on a mesh, Figure 12. The enriched finite element
approximation is written:

uh(x) =
∑

i∈I

uiNi(x) +
∑

i∈L

aiNi(x)H(x) (36)

+
∑

i∈K1

Ni(x)(
4∑

l=1

bli,1F
l
1(x)) +

∑

i∈K2

Ni(x)(

4∑

l=1

bli,2F
l
2(x))

where:
• I is the set of nodes in the mesh;
• ui is the classical (vectorial) degree of freedom at node i;
• Ni is the scalar shape function associated to node i;
• L ⊂ I is the subset of nodes enriched by the Heaviside function. The
corresponding (vectorial) degrees of freedom are denoted ai. A node
belongs to L if its support is cut in two by the crack and does not
contain the crack tip. Those nodes are circled on Figure 12;

• K1 ⊂ I et K2 ⊂ I are the set of nodes to enrich to model crack tips
numbered 1 and 2, respectively. The corresponding degrees of freedom
are bli,1 and bli,2, l = 1, . . . , 4. A node belongs to K1 (resp. K2) if its
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P

A B

C D

Figure 10. Crack not aligned with a
mesh, the circled nodes are enriched
with the discontinuous function H(x).

Q

A B

C D

P R

Figure 11. Crack not aligned with a
mesh, the circled nodes are enriched
with the discontinuous H(x) function
and the squared nodes with the tip en-
richment functions.

Figure 12. Crack located on a structured (left) and unstructured mesh
(right). Circled nodes are enriched with the Heaviside function while
squared nodes are enriched by tip functions.
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support contains the first (resp. second) crack tip. Those nodes are
squared in Figure 12.

Functions F l
1(x), l = 1, . . . , 4 modeling the crack tip are given in elasticity

by:

{F l
1(x)} ≡

{√
rsin( θ2 ),

√
rcos( θ2 ),

√
rsin( θ2 )sin(θ),

√
rcos( θ2 )sin(θ)

}
(37)

where (r, θ) are the polar coordinates in local axis at the crack tip. It
must be noted that the first function is discontinuous across the crack.
The three others are able to model strain discontinuity across the crack
fraces. Similarly, functions F l

2(x) are also given by (37); the local system of
coordinates being now locate around the second crack tip.

The extension to the three-dimensional case of the modeling of cracks
by X-FEM was carried out in (Sukumar et al., 2000). Just like in the two-
dimensional case, the fact that a node is enriched or not and the type of
enrichment depend on the relative position of the support associated with
the node compared to the crack location. The support of a node is a volume,
the crack front is a curve (or several disjoint curves) and the crack itself is a
surface. Enrichment functions for the crack front remain given by (37). A
node is enriched if its support is touched by the crack front. The evaluation
of r and θ can be done by finding the nearest point on the crack front, then
by establishing a local base there. The use of level sets dealt with in the
following section makes it possible to avoid this operation.

3.3 Cracks located by level sets

To locate a curve in 2D, one can indicate all points located on this curve
for example using a parametric equation. One can qualify this represen-
tation as explicit. Another manner, implicit, to represent the curve is to
consider it as the iso-zero level of a signed distance function. The distance
is counted positively if one is inside the curve and negatively in the con-
trary case (the curve is supposed to separate the space in two zones). On a
finite element mesh the level set is interpolated between the nodes by tradi-
tional finite element shape functions. In short, the location of a surface in
3D (curve in 2D) is given by a finite element field defined near the surface
(curve). The knowledge of the signed distance is indeed needed in a narrow
band around the surface.

For instance, in the Figure 13 one can see the value of a level set locating
a circle on a grid (negative inside the circle and positive outside). The iso-
zero contour of the level set function indicates the position of the circle.
The level set is defined likewise in 3D. Figure 14 gives for example the iso-
zero for a level set defined on a fine grid. The level set locates the material
interface between strands and matrix in a so-called 4D composite.
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0 0.6-0.6

Figure 13. A level set locating a circle of radius 0.7 in a 2 by 2 plate. Five
contours are plotted with level set values of -0.6, -0.3, 0.0, 0.3 and 0.6

As we indicated above, a level set separates space in two zones, a positive
zone and a negative zone. A crack does not separate a domain into two
(unless it is broken!). A unique level set is thus not enough to locate a crack.
One needs two of them. The first one denoted φn separates space into two
by considering a tangent extension from the crack whereas the function φt

makes it possible to locate the front. These two level sets are represented
in Figure 15. The set of points characterized by φn = 0 and φt ≤ 0 defines
the position of the crack whereas points for which φn = φt = 0 defines the
front. The representation of a crack by two level set functions was for the
first time introduced by Stolarska et al. (2001) in 2D and Moës et al. (2002)
in 3D. Figure 15 gives the iso-zero contour of both level sets for a crack
in 2D. Coordinates r and θ appearing in the enrichment functions (37) are
computed from the equations given in (Stolarska et al., 2001)

r = (φ2
n + φ2

t )
1/2 θ = arctan(

φn

φt
) (38)

The implicit representation is particularly interesting when the curve
(surface) evolves. Indeed, contrary to the explicit representation which does
not make it possible to manage topological changes easily. These changes
are taken into account very naturally in the implicit level set representa-
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tion. By topological changes, one understands for example the fact that two
bubbles meet to form a unique bubble or the fact that a drop can separate
in two drops. Another example of topological change is the case of a crack
initially inside a cube (Figure 16 left) which after some propagation cuts
the four faces of the cube. The crack front initially circular is split into four
independent curves (Figure 16 right).

Figure 14. The iso-zero of a level set function locating the interface
between strands and a matrix in a 4D composite.

The article (Osher and Sethian, 1988) was one of the first to present
robust algorithms for level sets propagation. The use of the level sets for
computational science then very quickly developed as attested by a sequence
of three books (Sethian, 1996, 1999; Osher and Fedkiw, 2002). These algo-
rithms of propagation were initially mainly developed within the framework
of finite differences. Indeed, level sets were initially used for fluid mechan-
ics applications: for instance to follow free interfaces or interfaces between
various phases. Some articles however did develop algorithms appropriate
for unstructured finite element meshes as (Barth and Sethian, 1998).
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Figure 15. Two level set functions locating a crack on a 2D mesh.

Figure 16. A lens shaped crack (left) propagating in a cube and finally
cutting four cube faces (right).
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4 Technical and mathematical aspects

4.1 Integration of the element stiffness

Integration on the elements cut by the crack is made separately on each
side of the crack. The φn level set cuts a triangular (tetrahedral) element
along a line (a plane). The possible cuts are indicated on Figures 17 and
18. For elements close to the crack tip, use of non polynomial enrichment
functions requires special care (Béchet et al., 2005).

Figure 17. Two scenarios of the level set cut of a triangle.

4.2 Topological and geometrical enrichment strategies

The initial enrichment strategy for the crack tip consisted in enriching
a set of nodes around the tip. A node is enriched if its support touches the
crack tip (Moës et al., 1999). In 3D, nodes for which the support touches
the crack front are enriched (Sukumar et al., 2000).

This type of enrichment may be called topological because it does not
involve the distance from the node to the tip (front). As a matter of fact,
the topological enrichment is active over an area which vanishes to zero as
the mesh size goes to zero. Another enrichment, developed independently
in (Béchet et al., 2005) and (Laborde et al., 2005) may be called geometrical
because it consists in enriching all nodes located within a given distance to
the crack tip. Both enrichment strategies are compared in Figure 19.

In order to study the influence of the enrichment on the convergence rate,
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Figure 18. Four scenario of the level set cut of a tetrahedron.
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a plane strain benchmark problem is set up. A square domain in plane strain
is subjected to a pure mode I. The square boundary is subjected to the exact
tractions corresponding to the mode I of infinite problem. Rigid modes are
prevented. The exaggerated deformed shape of the benchmark problem is
shown in Figure 20. To be precise the domain size is Ω = [0, 1] × [0, 1]
and tractions applied correspond to KI = 1 and KII = 0. The crack tip is
located at the center of the square. Young modulus is 1 and Poisson ratio 0.
A convergence analysis is performed for a uniform grid which is recursively
refined. The energy norm error, ǫ, measuring the distance between the
exact, σ,u, and approximated field σh,uh

ǫ =

(∫

Ω
(σh − σ) : EEE−1 : (σh − σ) dΩ

∫

Ω
σ : EEE−1 : σ dΩ

)1/2

(39)

=

(∫

Ω
ε(uh − u) : EEE : ε(uh − u) dΩ

∫

Ω
ε(u) : EEE : ε(u) dΩ

)1/2

(40)

is plotted in Figure 21. For the topological enrichment only the nodes whose
support is touching the crack tip are enriched. In the case of the geomet-
rical enrichment, nodes within a distance of re = 0.05 from the crack tip
are enriched. It can be observed that the convergence rate is 0.5 when the
topological or no enrichment is present. The topological enrichment yielding
however a smaller error. On the contrary, the geometrical enrichment pro-
duces a order of 1 convergence. In order to analyze these convergence rates,
we must recall the convergence rate result of the classical finite element
method (see for instance (Bathe, 1996))

ǫ = O(hmin(r−m,p+1−m)) (41)

The regularity of the solution is indicated by r (u ∈ Hr(Ω)) whereas p
is the degree of the finite element interpolation and m is the error norm
used. For our benchmark, r = 3/2, p = 1 and m = 1, so we indeed get
a convergence rate of 0.5 The topological enrichment yields a lower error
than a pure FEM analysis because the X-FEM approximation spans a larger
space than the FEM one. However, it does not affect the convergence rate
since the enrichment area goes to zero as the mesh size goes to zero. In
the case of the geometrical enrichment, the enrichment is able to represent
exactly (even as h to zero) the rough part of the solution. The classical
part of the approximation is thus only in charge of the smooth part of the
solution yielding the optimal order of 1 convergence rate. This was proved
by Laborde et al. (2005). It was also shown in this paper that (for the
benchmark problem) if the polynomial approximation is raised, higher (still
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Figure 19. Extent of the enrichment zone as the mesh size decreases. Ge-
ometrical enrichment (top) and topological (bottom) enrichments are com-
pared.

optimal) convergence rates are obtained. The polynomial degree needs only
to be raised in the classical part and Heaviside parts of the approximation
(first and second term term in the right hand side of (37)).

4.3 Solver and condition number

When solving a linear system of equation Kx = f , an important number
to take into account is the condition number defined as the ratio between
the maximum and minimum eigenvalue of the K matrix.

κ =
λmax

λmin
(42)

This condition number has a direct impact on the convergence rate for an
iterative solver and on the propagation of round offs for a direct solver. For
instance, for the conjugate gradient iterative solver, the error at iteration
m reads (Saad, 2000):

‖x−xm‖K ≤ 2

[√
κ− 1√
κ+ 1

]m

‖x−x0‖K (43)
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Figure 20. Mode I benchmark problem : Exaggerated deformed shape of
a square slab under mode one loading.

where x0 is the initial guess, xm the iterate m and

‖a‖K =
√
aTKa (44)

Thus the higher the condition number, the slower is the convergence. To be
precise, the bound (43) is in general pessimistic. Indeed, first of all κ can
be calculated on the basis of the eigenvalues for which the corresponding
eigenvector projected on the right hand side is not zero. Then, the κ can
be reajusted progressively with the iterations while being based only on the
eigenvectors remaining active through the iterations (see detail in (Saad,
2000)).

The conditioning of X-FEM was studied in (Béchet et al., 2005) and
(Laborde et al., 2005) for the two types of enrichment: topological and
geometrical. The evolution of the condition number according to the size of
elements of the grid is given in Figure 22 for the stiffness and mass matrices.
They are plotted for the benchmark problem already discussed in section
4.2.

We note that for the geometrical enrichment, the condition number grows
dramatically with the mesh size. A specific preconditioner was designed in
(Béchet et al., 2005) to circumvent the increase. The effect of the pre-
conditioner is also given in Figure 22. This preconditioner could be called
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Figure 21. Relative error in the energy norm for the mode I benchmark
problem. The top curve corresponds to no enrichment (slope 0.5). The
middle curve is the result for the topological enrichment whereas the bottom
curve (slope 1) is for the geometrical enrichment.

pre-preconditioner X-FEM preconditioner because it takes care of the speci-
ficity of X-FEM. After its application, regular FEM preconditioner may be
used. The idea behind the X-FEM preconditioner is quite simple. On en-
riched nodes, the enriched shape functions are orthogonalized with respect
to the classical shape function. The matrices related to a given node are
thus diagonal.

4.4 Inf-sup condition for cracks under contact

We now consider a more complex scenario for which the crack faces may
contact each other or may be loaded through hydraulic pressure for instance.
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Figure 22. Condition number as a function of the mesh size for the mass
and stiffness matrices. Topological (top) and geometrical (bottom) enrich-
ments are considered as well as the influence of the preconditioner.
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To take into account this more general case, we need to reconsider the
mathematical formulation of the problem. The new formulation will differ
from the earlier formulation (9) for which the crack faces were assumed
traction free. Let t+ be the stress vector felt by the crack face Sc+ as shown
in Figure 23.

n+

n−

t+

t−
Sc−

Sc+

Figure 23. Notations to describe the stress vector on the cracks faces.

Due to the continuity of the stress vector across the crack, the crack Sc−

will feel the opposite action: t− = −t+. The traction free conditions (3) on
the crack faces is now replaced by

σ+ · n+ = t+ on Sc+ , σ− · n− = −t+ on Sc− (45)

and the corresponding variational principle now reads
∫

Ω

ε(u) : EEE : ε(δu) dΩ −
∫

S
c+

t+ · [[δu]] dS =

∫

St

t⋆ · δu dS ∀δu ∈ U0

(46)
where [[δu]] indicates the difference between the value of δu on Sc+ and Sc− .
To complete the formulation, we need to provide the relationship between
the stress vector and the crack opening. In the case of an elastic joint gluing
together both side of the crack, the relationship will simply read :

−t+ = k[u] (47)

where k is the “joint” stiffness. Note that the law above does not prevent
the crack faces to penetrate each other, contact needs to be added.

In order to describe more complex laws on the crack faces, we shall
introduce a couple of notations. The stress vector will be decomposed into
its normal (scalar tn) and tangential components (vector tτ )

t+ = tnn
+ + tτ , tn = t+ · n+, tτ = t+ − tnn

+ (48)
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Similarly the displacement jump is decomposed into a scalar normal jump
(un) and tangential vectorial jump uτ

−[[u]] = unn
+ + uτ un = −[[u]] · n+, uτ = −[[u]]− unn

+ (49)

Regarding the normal part of the traction law on the interface, the most
common choices are depicted in Figure 24. The cohesive type law is rather

tn tntn

fc

uc

(a) (b) (c)

un un
un

Figure 24. A set of classical normal law on the crack faces: basic contact
(a), elastic interface (b), cohesive interface (c)

complex since it is non convex (tn may not be expressed as the derivative
of a convex potential in un). It is also irreversible in the sense that the
unloading does not follow the loading curve as shown in Figure 25.

un

tn

fc

uc

Figure 25. Cohesive law with the loading unloading depicting the gradual
loss of stiffness of the interface

Regarding the tangential behavior of the interface, the case without fric-
tion leads to the nullity of the part of stress vector: tτ = 0 whereas a
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Coulomb fiction law is driven by the following relationship

uτ = λtτ , λ ≥ 0, f =‖ tτ ‖ −μtn ≤ 0, fλ = 0 (50)

An elegant way to formulate the Coulomb friction law is through the bipo-
tential framework introduced by (de Saxcé, 1992). Note also that the cohe-
sive law may be extremely rich in terms of mechanical phenomena: plasticity
or speed effect may be added.

Using the decomposition (48) and (49), the variational principle (46)
may be rewritten as

∫

Ω

ε(u) : EEE : ε(δu) dΩ +

∫

S
c+

tnδun dS +

∫

S
c+

tτ · δuτ dS

=

∫

St

t⋆ · δu dS ∀δu ∈ U0 (51)

The variational principle (51) gives the equilibrium condition to be met
for given tractions on the crack faces. Since these are unknown they will
be discretized. We first consider an interface law without friction and basic
contact (case a in Figure 24). Mathematically, this law is expressed locally
by

un ≥ 0, tn ≤ 0, tnun = 0 (52)

Let L be the space of regular function tn defined on Sc+ . The goal is to find
the pair (u, tn) ∈ U0 × L such that
∫

Ω

ε(u) : EEE : ε(δu) dΩ +

∫

S
c+

tnδun dS =

∫

St

t⋆ · δu dS ∀δu ∈ U0

∫

S
c+

δtnun dS = 0 ∀δtn ∈ L

The above does not in fact enforce correctly contact, it enforces in fact
un to be zero on the crack (the crack cannot open). For the above to
model contact, we need to impose a priori un ≥ 0 and tn ≤ 0 in the
approximation space which is of course very cumbersome. Fortunately, we
do not need these a priori assumptions by using the work of Ben Dhia et al.
(2000). The contact conditions (52) may be summarized by a single (highly
nonlinear) equality

tn = χ(tn, un)(tn + βun) (53)

where β is a strictly positive parameter and

χ = χ(tn, un) = 0 if tn + βun ≥ 0 (54)

χ = χ(tn, un) = 1 if tn + βun < 0 (55)
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The variational principle now reads: find the pair (u, tn) ∈ U0×L such that
∫

Ω

ε(u) : EEE : ε(δu) + βχunδun dΩ

+

∫

S
c+

χtnδun dS =

∫

St

t⋆ · δu dS ∀δu ∈ U0

∫

S
c+

χδtnun +
(χ− 1)

β
tnδtn dS = 0 ∀δtn ∈ L

In the system above, spaces U and L no longer involve sign conditions and we
may proceed to the space discretization. The X-FEM discrete displacement
space Uh

0 has already been described earlier. Regarding the discrete pressure
space L, extra care needs to be taken in order to satisfy the so-called Inf-Sup
Babuska-Brezzi condition.

Ω

Sc
A B C D E

Ω

1 2 3

4 5 6

Figure 26. A crack cutting a mesh.

To illustrate the problem, consider the rectangular domain depicted in
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Figure 26 (fully) cut by a crack. The two parts of the domain are pressed
towards each other. It is tempting to discretize tn based on the 1D mesh
on Sc with 5 “nodes”, labelled A to E. Unfortunately, this yield highly
oscillatory pressure tn over Sc (Ji and Dolbow, 2004; Moës et al., 2006).
If the mesh is refined, the oscillatory behavior may even get worse. This
oscillatory behavior is to be related to locking issue similar to what happens
in incompressible formulation when the pressure is too rich and creates
checkerboard type patterns. This problem is specific to the X-FEM because
the crack lays inside the element. If the crack is meshed, this issue does not
appear. A set of papers have been devoted to alleviate this locking issue,
following different strategies

• following a Nitsche type approach (Nitsche, 1971; Hansbo and Hansbo,
2002, 2004)

• following a residual-free bubble stabilization approach (Mourad et al.,
2007; Dolbow and Franca, 2008)

• following a Barbosa and Hugues type stabilization of the Lagrange
multipliers (Haslinger and Renard, 2008)

• using a mortar based approach (Kim et al., 2007)

• proper choice of the Lagrange multiplier space (Moës et al., 2006),
(Géniaut et al., 2007) and more recently (Béchet et al., 2009).

We will now detail the later paper (Béchet et al., 2009) which is par-
ticularly attractive because the pressure field is discretized using the same
nodes as the displacement field. The nodes of all element cut by the crack
will bear a pressure tn degree of freedom (these nodes are numbered from
1 to 6 in Figure 26). It was proved in (Béchet et al., 2009) that by apply-
ing specific ties between the pressure degrees of freedom, the inf-sup was
fulfilled.

The algorithm to create the ties goes as follows. Let E be the set of
edges cut by the crack. We pick in E a set of independent edges. Two edges
are said to be independent if they do not share a common nodes. Note that
the choice of independent edges is not unique. In Figure 26, the set may be
for instance (2,4),(3,5) or (1,4),(3,5) or even (1,4),(2,5),(3,6). On the more
complex mesh depicted in Figure 27, a possible set of independent edges is
indicated by dots (and square at the end nodes).

The pressure degrees of freedom at the end nodes of each independent
edge are forced to be equal. These is illustrated by the numbers which are
the same on Figure 27 (top), for the end nodes of each independent edge.

Once the independent edges have been selected, some nodes of edges in
E may not have been taken care of. This is the case for the circled nodes
in Figure 27 (bottom). The pressure field at these nodes is linked to the
value at the squared nodes to which it is connected to through an edge in E
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(when the squared are multiple, either one is picked or a linear combination
may be built with coefficients forming a partition of unity (Béchet et al.,
2009)). The algorithm described above may also be applied in 3D.

1

1

2

2

3

3 4

5

5

6

64

1

54

Figure 27. (Top) Selection of the independent edges. These edges are in
between square nodes. The connected squared nodes will have the same
pressure degree of freedom. (Bottom) Isolated nodes are located by circle
nodes. Their pressure degree of freedom is forced equal to the one of a
square they can connect to through a cut edge.
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5 Configurational analysis of the crack front

5.1 The Eshelby tensor

Eshelby tensor is a second order tensor generally non symmetric defined
by

Pij = wδij − σkjuk,i, w =
1

2
σklǫkl (56)

in the case of small strain linear elasticity.
This tensor is a so called configurational tensor because it gives informa-

tion on the change of energy in a system when its configuration is changed.
Consider the clamped domain shown at the top in Figure 28. If a part of the
domain is taken out (middle Figure), the energy int the system will change.

Let us assume that we keep removing material with a velocity of material
retrieval v (bottom Figure 28). The rate of loss of potential energy is given
by (in tensorial and indicial notations) by

U̇ =

∫

S

v · P · n dS =

∫

S

viPijnj dS (57)

where n is the outer normal.
Since the boundary of the material being retrieved is traction free (σijnj =

0) the integrand above reduces simply to −w ‖ v ‖ which is indeed negative
implying a drop of potential energy in the system. The drop value is sim-
ply related to the elastic energy density present before the advance of the
front. Again, we stress the fact that this simple expression was obtained
on a traction free boundary. More complex expressions arises in the case of
loaded boundaries and the general formula (57) must then be used.

Imagine now that the growing front depicted in Figure 28 (bottom)
does not remove material but replaces a material with another one (phase
change). We obtain then picture 29. The change in potential energy now
reads

U̇ =

∫

S

v · [[P ]] · n dS (58)

The jump denoting the Eshelby tensor on right before the front minus the
one right behind the front. This jump will be zero if the two material phases
are identical. Indeed, replacing a material by the same one does not change
at all the configuration and thus the potential energy.

The Eshelby tensor gives information on the change of energy in a system
due to a change of configuration. On the other hand the Cauchy stress
tensor gives information in the change of energy in system due to a change
in spatial location. To understand this, consider now in Figure 28 (bottom)
that the velocity v is an imposed velocity on the particles of the domain
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Ω
vS

n

Figure 28. Top: a clamped domain subjected to some loadings, middle:
the same loading applied to a different configuration, bottom: this Fig-
ure represents a spatial or configurational velocity on the boundary of the
domain.
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Ω
v

n

S

Figure 29. The clamped domain with a material interface.

(and no longer a rate at which material is being removed). This imposed
velocity will generate stresses. The change in potential now reads

U̇ =

∫

S

v · σ · n dS =

∫

S

viσijnj dS (59)

The similarity with (57) is clear.
If we now consider Figure 29 a material interface being pushed (we are

not talking about a phase change but the fact that the interface is being
pushed at some velocity). The change in energy reads

U̇ =

∫

S

v · [[σ]] · n dS (60)

The jump term [[σ]] · n is the reaction to the imposed velocity.
Assuming the stress σ, strain ε and displacement u fields satisfy elas-

ticity equations (equilibrium, compatibility and constitutive behavior) :

σij,j = 0 ǫij =
1

2
(ui,j + uj,i) σij = Eijklǫkl (61)

the Eshelby tensor is divergence free

∇·P = 0, Pij,j = 0 (62)
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5.2 Energy integrals

The fact that the Eshelby tensor is divergence free means that over any
closed contour S the following integral is zero

∫

S

P · n dS (63)

where n is the outward normal to the contour. In fact, the assertion is
true provided the domain described by the close contour has a smooth and
continuous solution (and thus the divergence theorem may be applied). In
other words the expression above is wrong if the contour S surrounds a
crack tip. The integral (a related version to be precise) will be however
very useful to characterize the strength of the singularity.

Next, we show that even though the integral around a crack tip is not
zero, the result obtained will be the same whatever the contour chosen.
More precisely, we have the following property introduced by Rice.

J =

∫

S1

q · P · n1 dS1 =

∫

S2

q · P · n2 dS2 (64)

The contour S1 and S2 are depicted by dashed lines in Figure 30. The
vector q is a vector indicating the direction of the crack (assumed straight
at this point). To prove (64), we first define Ω12 as the domain bounded
by S1, S2, S12c+ and S12c−. Over the Ω12, the mechanical field are smooth
and we may apply the divergence theorem:

∫

S1∪S2∪S12c+∪S12c−

q · P · n dS = q ·
∫

Ω12

∇·P dΩ = 0 (65)

where n is the outward normal to Ω12. Since n and q are orthogonal over
S12c+ ∪ S12c− and the traction is free over these segments, we have

q · P · n = 0 on S12c+ ∪ S12c− (66)

yielding (64).
The physical meaning of the J integral is the power dissipated as the

crack tip advances with the speed q. Rice did show that J was related in
linear elasticity to the stress intensity factor of the crack (for a unit crack
tip velocity).

J =
(1− ν2)

E
(KI

2 +KII
2) +

1

2μ
KIII

2 (67)

The contour integral (64) may be transformed into a so-called domain
integral Destuynder et al. (1983). In order to perform the transition from
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S1 S2S12c+

Ω12

S12c− q

n2

n1

Figure 30. Notations to prove the J-rice contour independence property.

a contour to a domain integral, let us change slightly the definition of the
virtual velocity q. It is a unit vector aligned with the crack within the
contour S0 and it drops to zero on the contour S, see Figure 31. We may
write

J =

∫

S0

q·P ·n0 dS+

∫

S

q·P ·n dS = −
∫

Ω

∇·(q·P ) dΩ = −
∫

Ω
∇ q : P dΩ

(68)
Thus

J = −
∫

Ω
∇ q : P dΩ (69)

The domain Ω in the above is the domain enclosed by the contour S, since
in the proof (68), the contour S0 may be taken as small as one wishes
around the tip. Compared to (64), the domain integral (69) is much more
appropriate to finite element computations since the domain integral may
be split as integral over elements. In fact, only one layer of elements do
contribute to the integral as depicted in Figure 32 since the over the inner
elements of the domain the q field is uniform.

5.3 Energetic information for cohesive cracks

So far, we discussed only straight traction free crack. Let us now consider
that the crack faces are no longer traction free due to a contact or the
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n

n0

Ω

Figure 31. Notations for the domain integral proof.

S

q

Figure 32. Elements contributing to the J domain integral.

presence of a cohesive zone. The J domain integral (69) (or its contour
expression (64)) is then no longer contour independent. Independency may
be regained by adding a boundary term to the J integral on the crack faces
enclosed by the domain (contour). The more general expression is

J = −
∫

Ω
∇ q : P dΩ

︸ ︷︷ ︸

JΩ

+

∫

Sc+∪Sc−

q · P · n dS

︸ ︷︷ ︸

Jcoh

(70)

In order to show the domain independency, we use the notation depicted
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in Figure 33. We need to show that

−
∫

Ω1

∇ q : P dΩ +

∫

S1c+∪S1c−

q · P · n dS =

−
∫

Ω2

∇ q : P dΩ +

∫

S2c+∪S2c−

q · P · n dS (71)

The notations are detailed in Figure 33. Removing the contribution from
the domain Ω0 from both sides, we get.

−
∫

Ω1\Ω0

∇ q : P dΩ +

∫

S1c+∪S1c−\S0c+∪S0c−

q · P · n dS =

−
∫

Ω2\Ω0

∇ q : P dΩ +

∫

S2c+∪S2c−\S0c+∪S0c−

q · P · n dS (72)

Applying the divergence theorem on both sides and owing to the fact that
the Eshelby tensor is divergence free, we get the proof.

S1 S2S0

Ω0

Ω1

Ω2

Figure 33. Notations to prove the J domain integral independency in the
case of cohesive cracks. The domains Ωi, i = 1, . . . , 3 are enclosed by the
contours Si, i = 1, . . . , 3. Similarly, the notation Sic+− denotes the part of
the crack enclosed by the contour Si.

In the case of a cohesive crack it is interesting to detail the expression
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of the boundary term.

Jcoh =

∫

Sc+∪Sc−

q · P · n dS (73)

=

∫

Sc+

(q · ∇u+) · (σ+ · n+) dS + (74)

∫

Sc−

(q · ∇u−) · (σ− · n−) dS (75)

= −
∫ l

0

t+
d[[u]]

ds
ds ‖ q ‖ (76)

= −
∫ uc

0

tn dun ‖ q ‖ (77)

The last inequality was obtained assuming no friction on the crack faces.
The boundary term is thus negative and is the opposite of the area under
the cohesive law (value -0.5fcuc is we consider the cohesive law depicted in
Figure 25. The value of the J domain integral is zero for a cohesive crack
since there is no singularity at the crack tip, we thus have

J = 0 = JΩ
︸︷︷︸

≥0

+ Jcoh
︸︷︷︸

≤0

(78)

The JΩ part is positive and represents the strength of the singularity at the
crack tip if all cohesive forces were removed. The cohesive forces do create
an opposite singularity. Even though no singularity exist at the tip of a
cohesive crack, the stress field at some distance of the crack tip (larger that
the cohesive zone length) behave as if there was a singularity (K dominance
zone). The integral JΩ is able to compute the strength of this K field. Note
that the integral JΩ is domain independant provided the domain always
embeds fully the cohesive zone.

Finally, the condition J = 0 may be used as a robust way to find the
proper load for a given extent of the cohesive zone as in (Moës and Be-
lytschko, 2002). Since cohesive crack do not yield a singular field, the tip
enrichment described in (37) is not appropriate. Non singular tip func-
tions may be used as described in (Zi and Belytschko, 2003) or (Moës and
Belytschko, 2002). Some authors prefer to consider only the Heaviside en-
richment so that elements are either not cut or completely cut: (Wells and
Sluys, 2001), (Mergheim et al., 2005) and (Meschke and Dumstorff, 2007).
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Journal de Mécanique théorique et appliquée, 2(1):113–135, 1983.

J.E. Dolbow and L.P. Franca. Residual-free bubbles for embedded dirichlet
problems. Comp. Meth. in Applied Mech. and Engrg., 197:3751–3759,
2008.

C.A.M. Duarte and J.T. Oden. An hp meshless method. Numerical methods

for partial differential equations, 12:673–705, 1996.

Accepted Manuscript

41



M. Fleming, Y. A. Chu, B. Moran, and T. Belytschko. Enriched element-
free Galerkin methods for crack tip fields. International Journal for

Numerical Methods in Engineering, 40(8):1483–1504, 1997.
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J. Nitsche. Über ein Variationsprinzip zur lösung von Dirichlet-problemen
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