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The role played by viscoelasticity in the bulk material during 
the propagation of a dynamic crack in elastomers

Abstract Investigation of dynamic fracture of elas-

tomers can still be considered to be a relatively open

area. When a sheet of elastomer is stretched in a tensile

machine and a crack is introduced, the crack propagates

at a speed that depends on the initial stretch level. There

are instances where this speed is noted to exceed the

shear wave speed based on the elastic modulus under

high imposed stretches. Such cracks are called tran-

sonic cracks. It was usually hypothesized that either the

hyperelastic or viscoelastic stiffening of the bulk mate-

rial raises the wave speeds resulting in crack speeds

entering the transonic regime. This article revisits the

experiments performed on Polyurethane elastomers in

Corre et al. (Int J Fract 224(1):83–100, 2020) to study

the implications of both these hypotheses. Crack prop-

agation has not been explicitly modeled, but the crack

speeds are implicitly imposed on the geometry using

the boundary conditions extracted from the experimen-

tal data. It has been determined that the viscoelasticity

in the bulk is needed to describe and understand the

transonic cracks in polyurethane elastomer. The inclu-
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sion of viscoelasticity results in the notions of ‘rub-

bery’ and ‘glassy’ wave speeds and hence, the transonic

regime is defined considering the rubbery wave speed.

Keywords Dynamic fracture · Viscoelasticity ·
Transonic cracks · Elastomer

1 Introduction

Theoretically, a crack propagating in a solid can travel

as fast as a Rayleigh wave, cR (Freund 1990), although

in reality, such a speed is hardly achieved. Cracks

are known to branch at speeds of about 40% to 60%

of cR (Ravi-Chandar and Knauss 1984; Sharon et al.

1996). Often special techniques such as introducing a

weak plane or weakening the material in the prospec-

tive crack path are needed to prevent or at least delay

the branching event and make the crack propagate at

about 90% of cR (Washabaugh and Knauss 1994).

However, in some instances, cracks propagating along

weak planes under mode-II loading were observed

to travel faster than the shear wave and such cracks

are called Transonic cracks. The theory of LEFM has

been extended to include such cracks (Freund 1979,

1990; Huang and Gao 2001). For mode-II cracks in

this regime, a Mach cone corresponding to shear wave

along which the particle speeds exhibit discontinuities

have been experimentally observed to tail the crack tip

(Rosakis et al. 2000; Rosakis 2002). The existence of
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these cracks have been confirmed numerically (Needle-

man 1999) as well.

Some studies, such as in Petersan et al. (2004), Chen

et al. (2011), Marder (2006), performed on elastomers

reveal that the cracks can travel at speeds that exceed

the speed of elastic shear wave, cs , when subjected to

high stretch ratios. Recent experiments by Corre et al.

(2020), Morishita et al. (2016) also confirm this obser-

vation. As a reminder, Linear Elastic Fracture Mechan-

ics (LEFM) forbids the crack speed from exceeding

cR (Freund 1990) for a Mode-I crack. Earlier experi-

mental works on the fracture of elastomer membranes,

for instance, Gent and Marteny (1982) and balloons

(Stevenson and Thomas 1979) also report ‘higher’

crack speeds when compared to the wave speeds. They

attribute this to an increase in the stiffness of the mate-

rial (and hence the wave speeds) in the vicinity of the

crack tip because of either the higher strain rates and

viscoelastic effects or the higher strains at the tip and

hyperelastic stiffening. However, these articles make

no specific mention about Transonic cracks.

Some analytical (Guo et al. 2003) and numerical

(Buehler et al. 2003) works investigate the effect of

local hyperelastic stiffening on the crack speeds. In

Buehler et al. (2003), a material that increases its stiff-

ness (by a factor of 4) after a certain strain level (called

onset strain) has been used to investigate crack speeds

obtained. Molecular dynamics simulation was used for

this purpose and the crack path is constrained to the

center of the specimen to prevent branching. It was

observed that the crack speed entered the Transonic

regime starting from a certain value of the onset strain.

It has been mentioned, however, that in such a case,

‘Mach cones of shear wave front’ were observed. In

Guo et al. (2003), a steady state crack motion has

been investigated in a material with an upturn in stress

strain curve in mode-III. In the vicinity of the crack tip

where the strains are higher (because of presence of the

crack tip and hence strain concentration), the modulus

is higher and so are the wave speeds. The equations of

motion, hence, when written in this region, maintain

their ellipticity. However, in the region farthest from

the tip where the strains are smaller, the modulus and

hence the wave speeds are smaller than the crack speed

and hence the equations of motion become hyperbolic.

A discontinuity in stresses along the boundary separat-

ing these two regions can be noted along with discon-

tinuities in the region where the material has a smaller

modulus.

Some lattice based models have been used in Chen

et al. (2011), Marder (2006) where Transonic cracks

were observed in elastomers. In those references, a

shock wave theory for fracture has been proposed as

well. However, Chen et al. (2011), Marder (2006) do

not report a shock wave that tails the crack tip in either

their simulations or the experiments. They instead treat

the crack faces behind the tip to be of a wedge shape

(noted to be ‘strikingly similar to Mach cone’ in Peter-

san et al. (2004)) in the Transonic regime. This is dif-

ferent from the shock front in the usual sense where the

first time and spatial derivatives of displacement exhibit

discontinuity along a moving surface. From the exper-

iments performed on specimens of different geome-

tries, Chen et al. (2011) concluded that the crack speed

depends only on the applied stretch and not on the spec-

imen geometry once the crack goes into the Transonic

regime, while it is seen to depend on specimen geom-

etry as well in the subsonic regime.

In this article, the experiments performed by Corre

et al. (2020) will be examined further to check for the

presence of discontinuities in velocity and strain in the

transonic regime. Such fronts have been observed in the

impact and retraction tests performed on latex rubber

and SBR in Niemczura and Ravi-Chandar (2011a, b),

although their existence does not match the theoretical

predictions using a Hyperelastic model based on the

theory in Knowles (2002). This discrepancy has been

attributed to the hysteretic behavior of the material.

It will be determined if hyperelastic stiffening of

the bulk material mentioned in the earlier studies is

necessary (and sufficient) to reproduce the displace-

ment and velocity fields observed in the experiments for

cracks propagating in sub- and trans-sonic regimes. The

effect of viscoelasticity in the bulk will be examined

as well. The propagation of crack will not be explic-

itly modeled. Instead, the crack speeds will be implic-

itly imposed onto the geometry using the methodology

described in Sect. 3. Explicit modeling of crack and

rate effects at the crack tip will be presented in another

article. The FE software ABAQUS (Abaqus 2014) will

be used. Section 2 will present the results and addi-

tional observations of the experiments performed in

Corre et al. (2020). Section 3 contains the methodol-

ogy used and some numerical analysis performed using

various constitutive models and the resulting observa-

tions. Sections 4 and 5 contain further discussions and

conclusions.
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2 Experimental analysis

In Corre et al. (2020), a Polyurethane specimen is

stretched to a required strain level in a pure shear con-

figuration and a seed crack is then introduced at one

end. In this section, the velocity and strain fields from

those tests will be analyzed further.

To be self-sufficient, a brief summary of the test

protocol followed in the mentioned reference will be

included below.

2.1 Test protocol and data acquisition

Experiments were conducted on 200 mm long (taken as

x-direction), 40 mm tall (y-direction) and 3 mm thick

(z-direction) specimens in Corre et al. (2020). The test

protocol is as below.

– The specimen is held along the longest side between

the jaws of a tensile machine using the supports

molded onto its top and bottom.

– Once secured, the specimen is stretched by pulling

the top jaw of the Instron machine at a speed of 20

mm min−1.

– Once the target stretch level (λ = h f

h0
, h f is the

final specimen height and h0 is the initial height—

40 mm) is reached, a crack of about 3 to 4 mm long

is introduced at the left end of the specimen in the

middle using a razor blade.

The crack then propagates through the specimen,

breaking it into two pieces. A High Resolution (HR)

and a High Speed (HS) camera are used to monitor the

whole experiment. The HR camera captures the images

at a rate of about 3 fps, while the HS camera captures at

rates between 10,000 and 30,000 fps. The HR camera

is hence used to record the initial stretching of the spec-

imen while the HS camera records the fracture process.

The HS camera is managed by a device that stops the

camera once the crack breaks the specimen. The propa-

gation of crack leads to a drop in the reaction forces on

the Instron machine which the triggering device keeps

a track of to stop the HS camera. The data from both the

cameras are then used to obtain the displacement fields

in the specimen during the entire experiment using the

DIC technique using VIC-2D software (VIC-2D CS

2009). The images recorded during the initial stretch

and the crack propagation steps can be found at Coret

and Corre (2017).
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Fig. 1 Experimental results for 40 mm tall samples from Corre

et al. (2020)

2.2 Additional observations on the 40 mm specimen

The distinction of crack propagation regime into either

Sub- or Trans-sonic requires the determination of the

shear wave speed. For linear elastic materials, shear

wave speed is computed as cs =
√

G/ρ, where G and

ρ are the shear modulus and density, respectively. How-

ever, for elastomers, the computation is not straight-

forward because of the non-linear strain measures and

material behavior. Corre et al. (2020) uses the expres-

sion developed in Boulanger and Hayes (2001) to com-

pute cs using the Mooney–Rivlin model. The computed

shear wave speed under planar loading and the co-

efficients in Section 3.4 can be seen as a blue line in

Fig. 1. The material density has been taken to be 1100

kg/m3 Corre (2018).

As mentioned earlier, the specimen that is 40 mm

tall has been tested in Corre et al. (2020) and Transonic

cracks were observed. The shear wave speeds (cs) and

the observed crack speeds vs the applied stretch can be

seen in Fig. 1. Different symbols indicate the results

from two batches. Figure 6 of Corre et al. (2020) also

contains the crack opening profiles for different crack

speeds.

In this section, the velocity and strain fields will be

examined for the presence of discontinuities that were

mentioned earlier. Transonic cracks in elastomers in

mode-I have been reported as well in Petersan et al.

(2004), Chen et al. (2011), Mai et al. (2020). However,

those studies do not report any discontinuities in strain

or velocity fields. Chen et al. (2011), Marder (2006)

state that the crack opening behind a crack moving

in the Transonic regime has a wedge shape. However,

3



Acc
ep

te
d 

M
an

us
cr

ip
t

no mention of the weak discontinuities has been made

there as well.

2.3 Velocity and strain profiles

The velocity fields from different experiments, λ = 1.7

and 3.5, can be seen in the Fig. 2 along with the yy

component of deformation gradient. The crack speed

at λ = 1.7 is about 15 m s−1and at λ = 3.5 is about 56

m s−1(Fig. 1). The shear wave speed, cs , computed can

be seen to be about 40 m s−1. Hence, with respect to cs ,

the former crack is subsonic and the latter is Transonic.

It can be seen from the Fig. 2a and c that the velocity

magnitude fields do not show a significant difference in

the form between the two experiments. The maximum

value can, however, be seen to be higher in the case

of stretch level of 3.5 as expected because of a higher

crack speed. A similar comment can be made regarding

the yy component of deformation gradient, although

the values higher than 1 can be observed in the regions

behind the tip for 3.5 case. However, a jump in any of

these quantities has not been observed (compare with

Figs. 13 and 14—details of which will be discussed

later).

In addition to the above, the variation of velocity

magnitude along a line about 5 mm above the crack

path has been plotted in Fig. 3 for both 1.7 and 3.5

cases. There is a gradual increase in particle speeds as

the crack tip is approached, maximum value observed

behind the tip because of the crack faces moving apart

as the tip passes through. The variation of yy com-

ponent of the deformation gradient can be seen in the

Fig. 4 for both the cases. Both fields can be seen to be

continuous—there is no jump observed which wouldn’t

have been the case should there be a shock front present.

This article, hence, addresses the following questions—

‘Why don’t we observe shocks in the bulk material even

when a crack propagating in an elastomer travels faster

than the shear wave (in the transonic regime)? Which

material model more appropriately captures the behav-

ior of the bulk material?’.

2.4 The residual strains

An additional observation has been made from the frac-

ture tests on the 40 mm tall specimen. As mentioned

earlier, a Pure Shear specimen is stretched to a required

value and a seed crack is initiated using a razor blade

on the left edge. The crack then runs from the left to the

right edge. When the crack is just near the right edge

(for example at about 20 mm from the right edge), it has

been observed that the specimen at the left does not go

back to zero strain level—some residual strain is left

behind (Fig. 4), which eventually goes to zero after

about a few minutes to few days after the experiment.

The strain level at the left end at the instant described

depends on the initial stretch and hence the crack speed.

This indicates the presence of relaxation times that are

larger than the duration of the experiment, that is typ-

ically about 10 ms. The yy-component of deformation

gradient near the left edge are seen to vary between 1.1

and 1.9 for prestretch levels between 1.7 and 3.5.

Such observations have also been made during the

retraction tests performed on the rubber, for example, in

Niemczura and Ravi-Chandar (2011b), Mason (1963)

and even during the experiments related to the propaga-

tion of cracks (Kadir and Thomas 1984). The cited ref-

erences attribute this effect to the presence of relaxation

times that are larger than the duration of experiment—

in short, viscoelasticity. The other studies on dynamic

cracks such as Petersan et al. (2004), Chen et al. (2011),

Gent and Marteny (1982) do not report such an obser-

vation.

3 FE simulations

In this section, it will be examined, using the available

experimental data, if the increase in modulus of the

material because of an upturn in stress strain curve in

uniaxial case is sufficient to capture the response of

the bulk material for crack speeds in Transonic regime,

using the methodology that will be explained below.

3.1 Simulation methodology

As mentioned in the earlier section, DIC technique has

been used to obtain the displacement fields throughout

the experiment. These fields are available everywhere

in the body, except for some regions near the crack

tip, crack faces and other boundaries. It is intended to

check if the material model can reproduce the fields

observed in the experiments if appropriate crack speed

history and boundary conditions are imposed. For this

purpose, the horizontal and vertical displacement val-
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Fig. 2 Experimental results

plotted on undeformed

configuration. a Particle

velocity magnitude (m s−1)

for λy = 1.7. b Deformation

gradient, Fyy for λy = 1.7.

c Particle velocity

magnitude (m s−1) for

λy = 3.5. d Deformation

gradient, Fyy for λy = 3.5

0 2.23 4.46 6.72 8.94 11.15 13.4

(a) Particle velocity magnitude (m s −1) for λy = 1.7.

1 1.35 1.7

(b) Deformation gradient, Fyy for λy = 1.7.

0 20.5 41 61.5 82 102.5 123

(c) Particle velocity magnitude (m s −1) for λy = 3.5.

1 2.25 3.5

(d) Deformation gradient, Fyy for λy = 3.5.

Fig. 3 Particle velocity

distribution for two different

stretches about 5 mm above

the crack path

Fig. 4 Vertical component

of deformation gradient,

Fyy , distribution for two

different stretches about 5

mm above the crack path
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Fig. 5 Data extraction from experiments as input to FE model

Table 1 Model co-efficients

Parameter C10 C20 C30 C21 C12

Value (Pa) 1.044E6 −0.02273E6 336.0 124.0 −2.47

Fig. 6 Experimental results

vs model prediction,

uniaxial and pure shear

case. Model coefficients in

Table 1

ues are extracted along the green line as in the Fig. 5 all

through the experiment. This data is then used as input

for the simulations as boundary conditions (that change

with time). The displacement and velocity profiles from

the simulations are then compared to the experiments.

The line along which the data are extracted (the green

line) is about 1.5 mm away from the crack path (the red

line).

It shall be noted that the crack propagation has not

been explicitly modeled. Rather, the boundary con-

ditions imposed are similar to when a crack passes

through the material. The response of the bulk material

under different constitutive assumptions will be exam-

ined and compared with the experiments. It is also pos-

sible to perform the current study by explicitly mod-

eling the crack propagation by using a cohesive zone

model, for instance. However, such an approach would

require an additional assumption on the constitutive

behavior of the failing material. As mentioned earlier,

modeling of failing material be done in another arti-

cle. The current approach bypasses that requirement by

implicitly imposing the crack speed through boundary

conditions.

The simulations have been performed using

ABAQUS (Abaqus 2014) assuming that Plane Stress

condition prevails (element CPS4 has been used). The

HHT-α integration scheme (Hilber and Hughes 1976)

has been used to evolve the solution in time. An ele-

ment size of 0.3 mm has been used. The adaptive time

step size is determined based on a half step residual

criterion to ensure the accuracy of the solution.
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3.2 Using a hyperelastic model

The Hyperelastic material model has been calibrated

using the load-displacement data from uniaxial and

pure shear tests. Additionally, a simulation has been

performed on the Pure Shear case to check if the dis-

placements predicted by the model match the displace-

ments observed in the experiments. The results can

be seen below. A polynomial model has been picked

for the analysis as it has the ability to predict the

upturn of the Stress–Strain curve—a phenomenon that

is believed to promote Transonic cracks. The strain

energy density for a polynomial model is (Rivlin and

Saunders 1951)

W =
N

∑

i+ j=1

Ci j ( Ī1 − 3)i ( Ī2 − 3) j , (1)

where Ī1 and Ī2 are the first and second invariants of

the deviatoric part of Green strain tensor, C̄ = J− 2
3 C

and J is the determinant of the deformation gradient.

Ci j s are the model parameters. The resulting model

co-efficients that are not zero can be seen in the Table

1.

It can be seen from the Fig. 6 that the model

prediction does not exactly match the experimental

load-displacement results for the uniaxial case. It was

observed that moving the hyperelastic model closer to

the uniaxial case reduces the capacity of the model to

predict the deformed shape of the model under planar

loading as can be seen in the Fig. 7. The black lines indi-

cate the deformed shape observed in the experiments.

Some modification in model parameters was needed to

bring in the displacements closer to the experimental

results. This lead to a slight difference in the model

prediction in the uniaxial case. The model nonetheless

exhibits an upturn in Stress strain response under uni-

axial loading.

3.2.1 Results

In this section, results of simulations performed with

just a hyperelastic material model will be discussed.

The simulations have been carried out using the

Polynomial model calibrated above. The simulation

methodology will be discussed first, followed by the

results and discussion.

(a)

(b)

Fig. 7 Deformed shape comparison, λy = 3.5. The black lines

indicate the deformed shape from experiment. a Model fitted to

Uniaxial test only. Ogden model with µ1 = 4.82E−2 MPa, α1

= 3.91, µ2 = 2.8 MPa, α2 = 0.27 has been used (Corre 2018). b

Current model parameters

A half model has been used for the analysis, where

the above extracted displacement fields are imposed on

the bottom edge after initially stretching it to a target

stretch level. It was observed that using α = 0 for time

integration did not result in convergence. Hence, a value

of -0.33 has been used. Two cases have been analyzed

- one for a stretch level of 1.7 and the other for 3.5.

The results of the velocity and strain fields have been

presented below and compared with the experimental

results.

The velocity magnitude distribution from the FE

simulation can be seen in the Fig. 8. It can clearly be

seen that for a stretch level of 1.7, the results from the

simulations match with that of the experiments (Fig.

2a) both qualitatively and quantitatively.

The velocity profile for the case of λ = 3.5 can be

seen in the Fig. 9. In this case, it can be seen to be

different from the experiments both quantitatively and

qualitatively. As mentioned earlier, the crack speed in

this case is 56 m s−1, which is greater than the shear

wave speed, about 40 m s−1. It can be seen that the

velocity magnitude increases sharply from 0 to about

120 m s−1in a span of two or three elements, that is
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Fig. 8 Particle velocity

magnitude using

hyperelastic model (in m

s−1) for λy = 1.7 plotted on

undeformed configuration

0 2.23 4.46 6.72 8.94 11.15 13.4

Fig. 9 Particle velocity

magnitude using

hyperelastic model (in m

s−1) for λy = 3.5 plotted on

undeformed configuration

0 20.5 41 61.5 82 102.5 123

about 1 mm. The Fig. 10 shows the velocity variation

along the length of specimen at about 5 mm above the

crack path in FE simulations together with the results

from the experiment. A clear difference can be seen

between both the cases. In short, using a hyperelastic

model can be seen to give a velocity profile that is close

to the profile observed in the experiments for the sub-

sonic case. The same, however, cannot be said about the

transonic cracks even with a hyperelastic model with

an upturn in uniaxial stress strain curve.

In the previously cited references Guo et al. (2003);

Buehler et al. (2003), which considers an elastic mate-

rial with such a stiffening behavior, a profile along

which the fields exhibit jumps has been identified as

seen in the FE simulations, but not in the experiments.

Hence, at least for the current material, a Hyperelastic

model may not be sufficient for the crack speeds enter

the Transonic regime.

3.3 Inclusion of viscoelasticity

The previous section shows the inability of just a

Hyperelastic model to reproduce the experimental

results in Transonic regime. In this section, a vis-

coelastic model will be used with the Polynomial

model described in the previous section for hyperelas-

tic branch. The Finite Linear Viscoelatic model (Simo

1987) has been used for this purpose. It will be demon-

strated that this model predicts the displacement and

velocity fields to a good accuracy at least up to a stretch

level of 3.5.

Stresses in the finite linear viscoelastic model can

be expressed to be (Simo 1987)

S = J pC
−1 + J− 2

3 DEV [H], (2)

where p is the pressure, H is the viscous over stress

and DEV is the deviatoric projection in the reference

configuration defined to be

DEV [·] = · −
1

3
(· : C) C

−1. (3)

The viscous overstress is expressed as

H =
∫ t

−∞
g(t − s)

∂

∂s
DEV

[

2
∂ψ0(C̄)

∂ C̄

]

, (4)

where g is the memory kernel that can be expressed

as g(t) = g∞ +
∑N

i=1 gi e
− t

τi in the case of linear

viscoelasticity. Here, g∞ and gi s indicate the ratio of

the modulus of the hyperelastic and the viscous arms to

the glassy modulus respectively. The model parameters

gi and τi can be found in Table 2. The time integration of

the term H is performed using the technique presented

in Taylor et al. (1970).

For the plane stress analysis, the value of p is found

by using the condition that the out-of-plane stress com-

ponent S33 is zero. The initial model parameters were

initially obtained from DMA tests performed on the 40

mm specimen batch in Corre (2018). The polynomial

model from the previous section has been chosen for

the hyperelastic part. Adding viscoelasticity removes

the shock-front-like feature that was observed in Fig. 9

and the velocity distribution looks qualitatively like that

of the experiments. To match the results even quantita-

tively, the model coefficients have further been refined

using the FE simulations based on the boundary con-

ditions from crack experiments using the methodology

of the previous section. A default value of -0.05 has

been used for α in time integration.
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Fig. 10 Comparison of

particle velocity magnitudes

between experiments and

simulations for Hyperelastic

case, λ = 3.5 about 5 mm

above the crack path

Table 2 Viscoelastic model parameters

Branch(i) 1 2 3 4 5 6 7 8 9 10

gi 0.7312 0.02 0.02 0.2 0.01 0.005 0.0014 0.0011 0.0012 0.0005

τi (s) 1E−10 1E−9 1E−8 1E−7 1E−6 1E−5 1E−4 1E−3 1E−2 1E−1

Fig. 11 Particle velocity

magnitude using

viscoelastic model (in m

s−1) for λy = 3.5 plotted on

undeformed configuration

3.3.1 Results

If Viscoelastic model with the corrected model param-

eters is used to perform the FE simulations like in the

previous section, the velocity profile looks like in the

Fig. 11.

It can be seen from Fig. 11 (to be compared with

Figs. 2c and 9) that the results from simulation with

viscoelastic model are closer to the experimental results

both qualitatively and quantitatively for Transonic case.

The particle velocities from the experiments and the

simulations plotted on the deformed configuration can

be seen in the Fig. 12.

The variation of velocity magnitude along a length

of the specimen at a distance of about 5 mm in the

undeformed configuration can be seen in the Fig. 13

together with the experiments and Hyperelastic based

FE simulation. The velocity distribution in the FE sim-

ulation with viscoelasticity can be seen to be quite close

to the experimental results.

The yy-component of deformation gradient at about

5 mm above the crack path can be seen in the Fig. 14.

A sharp ‘jump’ can be observed for the hyperelastic

case, similar to what has been observed for the velocity

variation. The viscoelastic case is closer to the exper-

imental result. Also, the yy-component of the Cauchy

stress tensor along the same path can be seen in the Fig.

15 for hyperelastic and viscoelastic cases. Consistent

with the jump in the velocity magnitudes seen, a corre-

sponding jump in the stress component can be seen in

the hyperelastic case. A smooth and continuous varia-

tion for the viscous case can also be seen. Its variation

along the data extraction line (1.5 mm above the crack

path), behind the tip, can be seen in Fig. 16.

Appendix A contains further analysis where the

position of data extraction line is changed to see if it

impacts the results in any manner.

3.4 Viscoelastic model with Mooney–Rivlin

hyperelastic branch

In the above presentation, the viscoelastic model has

been used together with a hyperelastic model that

exhibits an upturn in the stress strain response. In this

subsection, the effect of using a hyperelastic model that

does not exhibit this upturn in the stress-strain response

in parallel with the Viscous branches will be examined.

Mooney–Rivlin (MR) model has been chosen for this
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Fig. 12 Particle velocity

magnitude (m s−1) for

λy = 3.5 plotted on

deformed configuration. a

Experimental result. b

Simulation with

hyperelastic model. c

Simulation with viscoelastic

model

0 20.5 41 61.5 82 102.5 123

(a) Experimental result.

0 20.5 41 61.5 82 102.5 123

(b) Simulation with hyperelastic model.

0 20.5 41 61.5 82 102.5 123

(c) Simulation with viscoelastic model.

Fig. 13 Comparison of

particle velocity magnitudes

between experiments and

simulations for Hyperelastic

and viscoelastic cases,

λ = 3.5 about 5 mm above

the crack path
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Fig. 14 Fyy comparison

between simulations and the

experiment for λy = 3.5,

about 5 mm above the crack

path

Fig. 15 yy-component of

Cauchy stress about 5 mm

above the crack path,

λy = 3.5

Fig. 16 yy-component of

Cauchy stress behind the tip

along the data extraction

line (1.5 mm above the

crack path), λy = 3.5

Fig. 17 Experimental

results vs model prediction

(Mooney–Rivlin), uniaxial

and pure shear case

11
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Fig. 19 Comparison of

results for particle velocities

with Mooney–Rivlin and

Polynomial Hyperelastic

branches, λy = 3.5, about 5

mm above the crack path

purpose. The strain energy function for this model is

(Rivlin and Saunders 1951)

W = C10( Ī1 − 3) + C01( Ī2 − 3). (5)

For the material at hand, C10 = 0.8MPa and C10 =
0.03MPa. The uniaxial and planar response of this

model together with the experimental data can be seen

in Fig. 17. Similar to the Polynomial model, the model

response can be seen to differ from the experiments

with the co-efficients chosen. This is to ensure that the

displacement predictions by the model are closer to the

experiments in pure shear case (similar to Fig. 7).

The simulation in the previous section for the Tran-

sonic case has been performed againwith theMooney–

Rivlin hyperelastic branch. The resulting velocity pro-

file can be seen in the Fig. 18 (to be compared with

Figs. 2c and 11).

It is quite clear that the velocity distribution exhibits

no ‘jumps’ even in this case. Also, the variation of

velocity along the specimen about 5 mm above the

crack path can be seen in the Fig. 19, along with the

result from the previous section.

No significant difference can be seen between the

two cases. Hence, the hyperelastic stiffening can be

deemed to be neither necessary nor sufficient for the

crack to enter the Transonic regime at least for the mate-

rial at hand.

Fig. 20 Rubbery and glassy wave speeds in linear viscoelas-

ticity. R Rayleigh, s shear, d dilataional. A and B indicate the

possible range of the wave speeds that depend on the glassy to

rubbery modulus ratio

4 Discussions

The previous sections contain the results from the

experiments together with the results from FE simula-

tions with hyperelastic and viscoelastic models. Exper-

iments indicate that a ‘shock front’ was not observed

even after the crack speeds exceed the elastic shear

wave speed—a jump has not been observed either in

velocity or strain fields which would have been the case

if a shock front was present.

The crack speeds have been observed to exceed the

shear wave speed in other studies in the literature like

Petersan et al. (2004), Chen et al. (2011) and Mai et al.

(2020). The material tested in Chen et al. (2011) is

Latex rubber and the tests were performed at 85 ◦C

to prevent strain crystallization. SBR was tested in

Mai et al. (2020). The current study is performed on

Polyurethane. The strain fields reported in Mai et al.

(2020) do not exhibit any jumps as is the case in the cur-

rent study even for crack speeds in Transonic regime.

Chen et al. (2011) does not report any such shock fronts

12
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Fig. 21 Horizontal

displacement (in mm)

results for λy = 3.5 plotted

on undeformed

configuration. a

Experimental, b

Simulation—hyperelastic

case, c Simulation—

viscoelastic case

(a)

(b)

(c)

Fig. 22 Particle velocity

magnitude (in m s−1) results

for λy = 3.5 plotted on

undeformed configuration. a

Experimental. b

Simulation—hyperelastic

case. c

Simulation—viscoelastic

case

(a)

(b)

(c)

as well, but instead report that the crack faces in this

regime are wedge shaped (which were noted to resem-

ble a shock front in Petersan et al. (2004)).

An interesting comparison can be made regarding

the ratios of crack speed to the shear wave speed at a

prestretch level of 3.5 in different studies. In Mai et al.

(2020), the speed ratio can be seen to be 1.84, while in

Chen et al. (2011), the ratio is smaller than 1.25. In the

current study, the ratio is about 1.38. This indicates per-

haps an obvious conclusion that the material properties

(mainly viscoelasticity) determine the extent to which

the crack speed can exceed the shear wave speed.

The hyperelastic model calibrated using the uniax-

ial and pure shear cases is used to perform FE simula-

tions with the displacements extracted from the exper-

iments in Corre et al. (2020). It shall be noted that the

hyperelastic model does not exactly follow the Uniax-

ial stress–strain curve. The calibrated model, however,

is seen to exhibit an upturn in the stress–strain curve

which is usually deemed to be one of the reasons for

crack speeds to go into Transonic regime (Gent and

Marteny 1982; Stevenson and Thomas 1979; Buehler

et al. 2003). The FE result using this model, however,

is seen to produce ‘jumps’ in both the velocity and

strain fields for the cases when the crack speeds are

Transonic—a result not seen in the experiments.

Including viscoelasticity is seen to bring the results

closer to the experiments. The strain and velocity fields

no longer exhibit the discontinuities that were observed

in the hyperelastic case. The maximum horizontal dis-

placements and the velocity magnitudes have been

observed to be within 10 % of the experiment results.
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The crack faces behind the tip, being a free edge, is

ideally traction-free. As presented in Fig. 4, the residual

strains behind the tip are non-zero. The computation of

tractions from strains involves making a constitutive

assumption about the material. Using a hyperelastic

model in the simulations results in non-zero stresses

along the edge as a consequence of the non-zero strain

(despite it being a free edge in the experiments). See

Fig. 16, where the yy component of Cauchy stress

is plotted along the data extraction location (1.5 mm

above the crack path). However, using a viscoelastic

model with relaxation times that are comparable to the

duration of the experiment, the stresses along the edge

behind the tip quickly drop to small values within 15 %

of the far-field stresses (and smaller than in the hyper-

elastic case). Refining the model further can perhaps

bring even those stresses to zero.

Hence, at least for the material in the current study,

the cracks can go Transonic as a result of the viscoelas-

tic ‘stiffening’ of the material. A suggestion of this kind

can be found in Stevenson and Thomas (1979). How-

ever, no evidence has been presented in that study as to

whether the Transonic cracks are a result of Viscoelas-

tic stiffening or hyperelastic stiffening. A similar com-

ment has been made in Marder (2006). However, in that

work, a Kelvin type model has been assumed for the

elastomer where the wave speeds increase unboundedly

with the frequency. Hyperelastic stiffening has been

deemed to be not necessary, but its sufficiency has not

been discussed. In studies where this sufficiency has

been studied Buehler et al. (2003), ‘Mach cones’ cor-

responding to shear waves were reported that tail the

crack tip (Figure 4 of the reference).

The notion of limiting speed for a crack comes from

the inclusion of inertial effects in the study of the prob-

lem (Freund 1990). The LEFM establishes the limiting

speed as the Rayleigh wave speed in mode-I, while in

mode-III, it is the Shear wave speed based on the elas-

tic properties of the material. In studies where the iner-

tial effects are included together with Viscous effects

(Graham and Walton 1995; Atkinson and Popelar 1979;

Willis 1967), the limiting speed is seen to depend on

the glassy modulus of the material rather than on the

rubbery modulus (Fig. 20). Hence, the crack is allowed

to exceed the rubbery shear wave speed. Such a result

can also be observed in Geubelle et al. (1998), where

spectral methods are used to investigate the problem of

viscoelastodynamic mode-III crack. Using a rate inde-

pendent cohesive zone type model, an analysis has been

made on the effect of relaxation times on crack speeds.

From Figure 11 of the reference, it can clearly be seen

that the crack speed exceeds the rubbery shear wave

speed (cs), but remains smaller than the glassy shear

wave speed (c∗
s ). However, no specific comments have

been made in regards to the presence or absence of

shock fronts in those references.

In Fisher and Gurtin (1965), the propagation of

waves of order N in viscoelastic media has been stud-

ied. Waves of order N have the solution, u, which is

N − 1 times continuously differentiable and exhibit

discontinuities in the N th derivative along a hypersur-

face. It has been determined in that study that such

waves, should they exist, travel with a speed that is

derived based on the glassy modulus of the material

rather than the rubbery modulus. Shock fronts, by def-

inition, are waves of order 1 and hence travel with that

speed as well. Hence, it might be possible that shock

fronts can be observed in viscoelastic material only

when the crack speed exceeds even the glassy shear

wave speed of the material. In short, a weak disconti-

nuity, should it exist, would be made of high frequency

waves at the sharp front. As a consequence of viscoelas-

ticity, this region behaves with a high modulus which

in turn roughly raises the shear wave speeds to a value

that is (equal to or) greater than the crack speed. This,

in turn, prevents a shock wave from developing.

Perhaps, the cracks whose speeds exceed cs while

still remaining below c∗
s should be called r—Transonic

(r stands for rubbery) to distinguish them from cracks

that travel faster than c∗
s . One such instance may be

found in Gori et al. (2018), where a mode-II crack

propagating in a PMMA specimen along a weak plane

has been studied experimentally. It was observed that

because of the viscoelastic behavior of the material,

the crack speed exceeds c∗
s (hence cs) and cd as well.

Based on the inclination of the ‘mach fronts’ observed,

the shear wave speed was computed and was seen to

be in good agreement with the shear wave speed com-

puted based on the modulus corresponding to the strain

rates in that region.

5 Conclusions

This article revisits the experiments performed on

Polyurethane elastomer in Corre et al. (2020) to study

the phenomenon of Transonic cracks. The crack propa-

gation has not been explicitly modeled. Instead, the dis-
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placement fields extracted from the experiments using

the DIC technique are used as input to perform FE

simulations. This way, the crack speed is used as an

input. The simulations have been performed first using

a hyperelastic model with an upturn in the stress-strain

curve. In the Subsonic case, particle velocities were

seen to be closer to the experiments while in the Tran-

sonic case, a ‘jump’ was observed. Inclusion of vis-

coelasticity was seen to eliminate the ‘jump’ observed

earlier and bring the results closer to the experiments.

Inclusion of viscoelasticity results in the notions of

‘rubbery’ and ‘glassy’ wave speeds as opposed to

the quasi-static hyperelastic case where only the ‘rub-

bery’ wave speed exists. More analyses have been per-

formed with the viscoelastic model with the hypere-

lastic branch that does not exhibit the aforementioned

upturn. The results were still observed to be closer to

the experiments in the Transonic case. Hence, for the

material in the current study, Transonic cracks are seen

to be the consequence of ‘viscoelastic stiffening’ of

the bulk material. Hyperelastic stiffening was seen to

be not necessary.
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Appendix A: FE simulations for a different data

extraction location

For the results of FE simulations presented in earlier

sections, the boundary conditions were extracted along

a line just above the crack path (green line in Fig. 5).

To examine the effect of the location of data extraction

line on the observed results, some more analyses have

been performed where the data is extracted from the

middle of the top half of the specimen instead of just

above the crack path (purple line in Fig. 5). The new

data extraction location is about 10 mm from the crack

path in the undeformed configuration.

The analyses in the previous sections are then

repeated with new data as boundary conditions. The

results can be seen in Figs. 21 and 22.

Even in this case, the results of FE simulations with

viscoelastic model can be seen to be closer to the exper-

iments. In the case of horizontal displacements from

Fig. 21, a bean shaped profile can be seen in the exper-

imental result and the FE simulation with viscoelas-

ticity. The case with just hyperelastic model does not

exhibit this distinct profile. It shall be noted that the

experimental result does not include the data near the

top edge of the specimen.

Similarly, the velocity magnitudes from experiment

and viscoelastic FE simulation are closer while hyper-

elastic result is not. This demonstrates the robustness

of the viscoelastic model used and also indicates the

presence of viscoelastic effects in regions far from the

crack tip.
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