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Large sliding contact along branched discontinuities with X-FEM

Maximilien Siavelis · Martin L. E. Guiton ·
Patrick Massin · Nicolas Moës

Abstract The extended finite element method (X-FEM) has 
been developed to minimize requirements on the mesh in a 
problem with a displacement discontinuity. We present the 
development carried out to take advantage of the X-FEM 
approach in simplifying the meshing of complex 3D net-

works of discontinuities with junctions. Contact with large 
sliding along the branched discontinuities is discussed. 
Solu-tions are proposed and discussed to solve some matrix 
condi-tioning issues. Several examples are presented in this 
paper in order to prove the efficiency of the proposed 
approach.
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1 Introduction

Building 3D meshes for industrial structures is difficult, espe-

cially when the mesh has to conform to complex geometries

with discontinuous surfaces. In this work we are interested

in the extended finite element method (X-FEM) which rep-

resents a discontinuity thanks to an enrichment of the nodal

degrees of freedom (d.o.f.) and thus facilitates the model

design [23]. We focus on the case of branched discontinu-

ities. Two types of approaches have been proposed to take into

account branched cracks with X-FEM. The first one, given

by [8], proposes to add to the classical X-FEM enrichment a

junction enrichment over the branched discontinuities. The

advantage of this approach is to simplify the implementa-

tion if one wants to model crack fronts. The disadvantage

is that the introduction of the discontinuities have to respect

a certain hierarchy. The second one, given by [37], is more

general and easier to implement. Based on GFEM, each dis-

continuity is independent from the others and no junction

enrichment is needed. A sequential automated procedure is

given to model closed discontinuities like grains in polycrys-

tals. The principle is to loop on the discontinuities. A d.o.f.

enrichment is added for each node intersected by the dis-

continuity. Then, to recover the partition of unity for each

multi-enriched node, the last added d.o.f. is removed. Notice

that the generalization to crack fronts is not as simple [11].

A few formulations are proposed to treat contact with

X-FEM in a small sliding context, with penalty regulariza-

tion [10,18,22] or with Lagrangian regularization [4,17,31].

With X-FEM, a naive linear P1–P1 interpolation choice for

the displacement and contact spaces, respectively (i.e. with a

contact d.o.f. located at a cut edge) is not stable and implies

oscillations [16,25]. When modeling contact conditions with

a mixed method involving Lagrange multipliers, particular

attention should be paid to the choice of the discrete space
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Fig. 1 x1 belongs to the slave surface Γc1, x̄1 is the projection of x1

on the master surface Γc2

[29] extended to 3D problems in [35] is used to perform a

master–slave pairing. In Sect. 5, solutions to solve matrix

conditioning issues are discussed. A stiffness conditioning

criterion and the orthogonalization of [3] are tested. Finally

in Sect. 6, several applications are presented to illustrate the

potential of the method.

2 Mixed continuous formulation of contact

2.1 Variational forms

The displacement can be large, especially along the discon-

tinuity interface, but small strains are assumed as well as an

elastic constitutive law. The generalization to finite rotations

with small strain kinematics used in some examples of Sect. 6

does not present any difficulty.

Let us denote by Ω the domain of interest whose bound-

aries are composed of a part Γu , Γt and Γc where condi-

tions are imposed on the displacement u, on the pressure

distribution and to satisfy contact, respectively. In this paper,

we assume Γc to represent a discontinuity with interfacial

boundaries Γc1 and Γc2 (see Fig. 1). Considering the inward

normal n to Γc2, we can write the frictionless contact force

per unit surface r that Ω2 applies to Ω1 where λ is negative

and represents the contact reaction pressure:

r = λn. (1)

Following the usual convention (see for instance [40]), con-

tact is generally imposed on a slave surface, here denoted

Γc1, with respect to a master surface Γc2, by introducing the

normal distance between a slave point x1 and its projection

x̄1 on Γc2:

dn = (x1 − x̄1) · n. (2)

When considering the spatial discretization of two surfaces

which could come into contact during the deformation, the

choice of which surface should be the slave may respect sev-

eral conditions to guarantee the validity of the numerical

solution [40]). In particular, the master surface should be

of dual unknowns with respect to the displacement space. 
The latter should typically not be less than the former, if 
one wants to satisfy the LBB condition [6] which ensures 
the existence and uniqueness of the solution [2]. A way to 
recover the satisfaction of this condition with X-FEM is to 
enrich the displacement, for example with bubble interpo-

lation functions [26]. Another possibility is to reduce the 
dual space by an algorithm that selects a subset from the 
set of cut edges. Each selected edge is called a vital edge 
and only these hold a Lagrange multiplier [25]. To provide 
a better approximation of the pressure space, this algorithm 
was improved in [17], in which a numerical validation for 
the LBB condition as in [7] is given. The introduction of 
contact d.o.f. at cut edges complicates the numerical imple-

mentation by introducing additional pseudo-nodes located 
at the middle of the edges. In [17], for the elements either 
intersected by a discontinuity or with an edge along the dis-

continuity, the Lagrange interpolation is defined in between 
the intersection points or on the interface of the element edge, 
respectively. Hence, the Lagrange interpolation differs from 
the displacement interpolation which uses the element nodes. 
This difference makes it difficult to obtain an analytical proof 
of satisfaction of the LBB condition even if the numerical 
proof is held. For that reason the vital edge based formu-

lation of [4], which gives an analytical proof of the LBB 
condition satisfaction for 2D triangular meshes, proposes to 
interpolate the contact pressure using element nodes, as for 
the displacements.

The extension to large sliding was developed in [29], by 
considering that each integration of a contact contribution is 
associated to a special contact element based on a master–

slave approach as in [5]. The difference with FEM contact 
elements is that slave and master elements are no more con-

stituted by elements discretizing the interface but are built 
with enriched bulk elements. It is then possible to update 
the master–slave association with the sliding, within a fixed 
point algorithm. To treat contact over a junction, [33] pro-

pose an approach that uses the GFEM enrichment of [37] 
with the contact formulation of [26] to model complicated 
geometries with triple interface junctions.

In the present paper, we follow the approach of [8] to

provide a new implementation of X-FEM which aims at 
describing large sliding contact along discontinuities which 
can branch sequentially. The paper is organized as follows. 
In Sect. 2, we recall the contact formulation of [5], based on 
an augmented Lagrangian solved with a Generalized Newton 
algorithm as in [1]. In Sect. 3, we describe a possible imple-

mentation of the approach of [8] that extends the formulation 
to a complex network of 3D discontinuities. In Sect. 4, we

present the extension of the junction approach to contact, 
based on the vital edge selection approach of [17]. As in [4], 
the contact unknowns are interpolated with respect to nodal 
values. For the extension to large sliding, the approach of
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supported by the less deformable body or should be the one

with the coarsest mesh to avoid part of the master surface with

free conditions. Such guidelines are not useful for the X-FEM

approach presented in this paper, since the two bodies may

be deformable and the meshes of the contacting surface are

initially coincident. The choice of the slave surface will then

be arbitrary.

The Signorini contact conditions read:

λ ≤ 0, dn ≤ 0, λdn = 0. (3)

Following [5], an augmented Lagrangian regularization is

used with the augmented multiplier:

gn = λ − ρndn, (4)

where ρn is a positive scalar with dimensions of a pressure

over a displacement. We also introduce χ , the IR− indica-

tor function, in order to rewrite the system of equations and

inequalities (3) as:

λ − χ (gn) gn = 0. (5)

Taking into account the augmented Lagrangian, the con-

tact reaction is then represented by χ(gn)gn . The variational

form of the equilibrium, for any variation of displacement u∗

that belongs to the space of kinematically admissible fields

reads:
∫

Ω

σ(ǫǫ(u)) : ǫǫ(u∗)dΩ −
∫

Γc

χ(gn)gnn · [[u∗]]dΓ

= Lmeca(u∗), (6)

where [[u]] = u(x1) − u(x̄1). The first term is the contri-

bution from the virtual internal work, denoted as the double

product between the Cauchy stress tensor σσσ and the virtual

strain ǫ and the second term is related to the work of contact

forces. The right hand side term Lmeca of Eq. (6) represents

the possible contribution from the body force and applied

pressure on Γt which are not of interest in this paper. Finally,

the formulation of [5] is mixed in terms of pressure and dis-

placements and the variational form of the contact conditions

given by Eq. (5) for all variations of λ∗ reads:

∫

Γc

−
1

ρn

(λ − χ(gn)gn) λ∗dΓ = 0. (7)

2.2 Iterative algorithm for non linearities

Algorithm 1 shows the strategy to take into account non lin-

earities. The external loop concerns the geometry change. For

each geometric configuration, a fixed point on the change of

slave–master contact association during large sliding is per-

formed. Note that the unit normal vector n which carries

the normal contact reaction is fixed during an iteration of

this loop. The second inner loop is a fixed point on the con-

tact status, i.e. χ(gn), as in [13]. Finally, the Newton–Raph-

son loop is achieved thanks to a tangent operator obtained

after linearization of Eqs. (5) and (6). See [5] for the detailed

expressions.

Algorithm 1 Iterative algorithm on each geometric

configuration.

- Fixed point on slave–master association and contact basis

- Fixed point on contact status

- Loop on Newton–Raphson iterations (geometric non linearities)

3 Multiple branched discontinuities with the X-FEM

The main idea of the X-FEM, detailed in [23], is to avoid

remeshing by proposing instead the construction of an

enriched approximation of the kinematic fields resulting from

the intersection between the geometry of the discontinuities

and the mesh. A standard finite element approximation is

enriched in the neighborhood of the discontinuity by local

functions related to additional d.o.f. We consider the nor-

mal level set ψn as the signed distance of the projection on

the discontinuity surface or its tangential extension and the

tangential level set ψτ as the distance of this projection to

the crack front. The discontinuity surface is then represented

by the iso-zero of ψn and the crack front by the intersection

of the iso-zero of the two level sets ψn and ψτ . The finite

element approximation can be written:

u(X) =
∑

i∈NX

aiφi (X) +
∑

j∈J

b jφ j (X)H(ψn(X))

+
∑

k∈K

4
∑

α=1

cα,kφk(X)Fα(ψn(X), ψτ (X)) (8)

where NX is the set of nodes of the element containing point

X; ai is the classical d.o.f. at node i ; φi (X) is the shape func-

tion associated with node i ; J ⊂ NX is the subset of nodes

enriched by the generalized Heaviside function H . A node

j is enriched with b j if the support of its associated shape

function is totally cut by the discontinuity; K ⊂ NX is the

subset of nodes enriched by the asymptotic functions Fα . A

node k is enriched with cα,k if the support of its associated

shape function is partially cut by the discontinuity (i.e. it

contains a crack front). The generalized Heaviside function

H is a discontinuous function across the discontinuity with

constant value +1 on one side and −1 in the other side. The

asymptotic functions Fα are given by:

F=
{√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}

(9)
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Fig. 2 Type of elements generated for a node support (gray) cut by

two discontinuities (left) and nodal enrichment associated to both dis-

continuities (b1 and b2 d.o.f.) (right)

where (r, θ) is the position of point X associated to the crack

front polar basis, that can be easily expressed in terms of the

local values of ψn and ψτ [24].

In this part we describe a possible implementation of the

branched crack approach of [8] which extends the junction

formulation to multiple branched discontinuities for a 3D

complex network.

3.1 Multiple Heaviside enrichment

The first difficulty is to associate several enrichment d.o.f. for

a node which has its support cut by several discontinuities.

The first idea is to associate the name of the d.o.f. to the name

of the discontinuity. For example in Fig. 2, the support of the

represented node is cut by the discontinuities F1 and F2. We

associate a b1 d.o.f. for the Heaviside function of F1 and a b2

d.o.f. for the Heaviside function of F2. The disadvantage of

this approach is the loss of a generic d.o.f. name in generic

elements to simplify the assembly of the linear associated

system.

To generate a reduced number of d.o.f., the second idea

is to dissociate the d.o.f. name from the discontinuity name.

An automatic enrichment is performed by Algorithm 2. The

principle is to introduce sequentially the discontinuities. If a

node has to be enriched by a discontinuity, we increment the

d.o.f. number for this node (see Fig. 3). The name correspond-

ing to the d.o.f. does not correspond anymore to the name of

the discontinuity, but we introduce a data structure that is

able to link the d.o.f. name to the discontinuity name during

the procedure. Then, the second term of the right member of

Eq. (8) can be rewritten as:

∑

j∈J

φ j (X)

nH
∑

iH =1

biH , j H(ψnF
(X)), (10)

Fig. 3 Sequential enrichment. Introduction of the first (left) and second

(right) discontinuities

where nH is the total number of Heaviside d.o.f. at node j ;

F is the discontinuity name associated to the d.o.f. biH
at

node j .

Algorithm 2 Sequential enrichment algorithm.

- the number of Heaviside enrichment is initialized to zero for all mesh

nodes

- loop on the discontinuities

- loop on the mesh nodes

- if the node is enriched by the discontinuity:

-we increment the number of Heaviside d.o.f.

-the current d.o.f. number for the node is associated to the current

discontinuity

3.2 Sequential cutting into sub-elements

The Gauss–Legendre integration requires continuous

domains or specific integration manipulations as in [39]. If

an element is cut by several discontinuities, we need to divide

the element into sub-elements that conform to the different

discontinuities. We adopt the sequential cutting algorithm of

elements into sub-elements described in Algorithm 3. First,

an element is subdivided into simple sub-elements. A quad-

rangle is for example subdivided into two triangles and an

hexahedron into six tetrahedra. Then, if a sub-element is cut

once, it is divided into sub-elements. If it is cut twice, a cut

sub-element is subdivided a second time. Figure 4 illustrates

the procedure for an element cut by two discontinuities.

The approach is not limited by the number of disconti-

nuities that cross an element. Nevertheless, the number of

generated sub-elements is not optimal and can imply an

important number of associated integration points. For exam-

ple in Fig. 5, if we group by area the sub-elements that

have the same Heaviside functions, we need a number of
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Fig. 4 Sub-elements generated in an element cut by two discontinu-

ities

Algorithm 3 Sequential procedure for multi-cutting.

- considering an X-FEM element

- subdivision of the element into ntetra tetrahedra (triangles in 2D)

- initialization of counter ct at ntetra

- loop on the nF discontinuities

- loop on the ntetra tetrahedra

- subdivision of itetra into nsub−tetra sub-tetrahedra

- the connectivity of the first sub-tetrahedron overwrites that of

itetra

- loop on the (nsub−tetra − 1) last sub-tetrahedra

-ct = ct + 1

-the connectivity of isub−tetra is written in position ct

- ntetra is updated to ct for the next discontinuity to take into account

the new sub-tetrahedra

12 sub-elements to generate three areas. A possible improve-

ment would be to integrate on each area with Lassere’s

method [20] that was adapted to X-FEM in [27].

3.3 Junction and multiple branched discontinuities

In the case of branched discontinuities, multi-Heaviside

enrichment and multi-cutting are activated. The model is

enriched with the junction function of [8]. The approach

is illustrated in Fig. 6. Considering a discontinuity F2 that

branches to F1, a node is enriched by an Heaviside d.o.f. for

F2 if the part of its support on the side of F1 where F2 lies is

totally cut by F2. An arbitrary reference point Xre f2 situated

on this side is sufficient to represent it. Then, the Heaviside

Fig. 5 Area cutting: each area contains sub-elements sharing the same

Heaviside function value

Fig. 6 Junction function J2 and enriched nodes (left) and, possible

deformed mesh of elements and subelements (right)

d.o.f. corresponding to F2 are associated to a truncated gen-

eralized Heaviside function. The value is ±1 and −1 on the

side of F1 where F2 lies, and zero on the other side. A simple

way to write the displacement approximation is to replace in

Eq. (10), the term H(ψnF
(X)) for F = 2 by:

J2(X)=

⎧

⎪

⎨

⎪

⎩

H(ψn2(X))

if H(ψn1(Xre f2))H(ψn1(X)) > 0

0 else.

(11)

An important difference from the multi-Heaviside approach

of Sect. 3.1 is the dependency of J2 on ψn1 , and not only on

ψn2 . One can notice that ψn1 is already used to define F1.

Only a reference point is then needed to branch a disconti-

nuity onto another one.

In the approach for multiple branches of [8], the strat-

egy allowed to branch several secondary discontinuities on

a main one but the case of a discontinuity which can be both

principal and secondary was not discussed. We consider this

case in Fig. 7, where a third discontinuity F3 that branches to

F2 is introduced, F2 branching to F1. The term H(ψnF
(X))

for F = 3 in Eq. (10) is replaced by:

J3(X)=

⎧

⎪

⎨

⎪

⎩

H(ψn3(X)) if ∀i ∈ {1, 2},
H(ψni

(Xre f3))H(ψni
(X)) > 0

0 else.

(12)
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Fig. 7 Junction function J3, enriched nodes (left) and possible

deformed mesh of elements and subelements (right). Meshes on the

right show elements as well as sub-elements used for integration but

not contributing to new d.o.f.

Fig. 8 Discontinuity network example (left) and corresponding hier-

archical tree (right). The shaded area corresponds to the domain where

the enrichment function for discontinuity 5 is non zero

To avoid ambiguities in the area where J2 is equal to zero,

we decided to set also J3 to zero in this area. The level set

ψn1 is needed to determine this area. Then, one can notice

in Eq. (12) the dependency on ψn3 and ψn2 , but also on the

previous level set ψn1 , while F3 is not directly connected

to F1. For a more complex network (Fig. 8 for example), a

hierarchical tree is built to take into account the connectiv-

ity of the branched discontinuities. Let SF be the set of the

previous branched discontinuities for F and Xre fF
a refer-

ence point for discontinuity F , the enrichment function to be

added reads:

JF (X)=

⎧

⎪

⎨

⎪

⎩

H(ψnF
(X)) if ∀i ∈ SF ,

H(ψni
(Xre fF

))H(ψni
(X)) > 0

0 else.

(13)

Fig. 9 Contact facets (shaded areas) and contact unknowns: FEM

(left), X-FEM (right). On the right side, the Lagrange multipliers of

the two nodes of each vital edge are linked by an equality relation

FEM are associated to the contact facets through their nodal

values (see Fig. 9 on the left). With X-FEM, we follow the

interpolation proposed by [4]. The contact pressure is still

evaluated on the facets, but the nodal values are associated

with the bulk element shape functions (see Fig. 9 on the right).

For the LBB condition, a reduction is performed by the algo-

rithm of [17] that selects a minimal space of cut edges, called

vital. The number of Lagrange d.o.f. is reduced to the num-

ber of vital edges. To associate one contact d.o.f. to each vital

edge, the Lagrange multipliers of the two nodes are linked

by an equality relation as proposed by [4] (see Fig. 9 on the

right). Extension to 3D, and special treatment for quadran-

gles and hexahedra is detailed in [35].

4.1 Multiple enrichment and contact formulation

The method, which was originally built for an enrichment

with a single discontinuity is generalized here to the case of

multiple enrichments. By exploiting the data structure used

for the multiple enrichment (see Sect. 3.1), the extension to

multiple enrichments is then simple. A node is enriched by

the same number of Lagrange multipliers than its number of

Heaviside d.o.f. Each Lagrange multiplier is associated to a

Heaviside one, with the same numbering for simplicity.

A simple example is illustrated in Fig. 10 where a stair-

step pressure is applied to introduce sliding. The mesh is

composed of 4 cells, so that each cell is cut twice. The sup-

port of the nodes at Y = 2 are cut 4 times and then, these

nodes hold the d.o.f. (a, b1, b2, b3, b4, λ1, λ2, λ3, λ4). As

for the example presented in Fig. 9, each pair of Lagrange

multipliers associated to a vital edge is linked by an equality

relation.

4.2 Contact over the junction

The generalization of contact to elements containing a junc-

tion is more complex. To simplify, in this section we will

assume small sliding.

In the example of Fig. 8, the set of the previous connected 
discontinuities for F5 is S5 = {1, 2, 3, 4}. Then, Eq. (13) 
gives the shaded area where the enrichment function for F5 
is non zero.

4 Contact and junction

In this section, the junction approach is extended to con-

tact conditions. The variational form of contact with an aug-

mented Lagrangian was detailed in Sect. 2. The difficulty 
with X-FEM is to approximate the contact pressure over a 
LBB stable space. Shape functions that are used in classical
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Fig. 10 Rectangle totally cut by four interfaces: data for the contact

problem (left), mesh and enrichment (right)

Fig. 11 Displacement jump in the case of one enrichment (left) and

with the introduction of a junction enrichment (right)

The computation of the contact displacement jump dn is

represented for the case of a single enrichment in the left part

of Fig. 11. The Heaviside function is +1 on the master side

and −1 on the slave side. Along the lines of [17], by choos-

ing arbitrarily the top surface as the master side, the normal

distance between a slave point and its projection given by

Eq. (2) reduces, with the help of Eq. (8), to:

dn = n ·
∑

j∈J

(−2)b jφ j (X). (14)

With the junction enrichment, the Heaviside function asso-

ciated with the discontinuity that generates the facet (see

Fig. 9) is not sufficient to compute dn and this simplifica-

tion is no longer available. From Eqs. (10) and (13) (using

the same notations), the displacement jump is more complex

and reads:

dn = n ·
∑

j∈J

φ j (X)

nH
∑

iH =1

biH , j∆HiH , j , (15)

with the jump of the enrichment function:

∆HiH , j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

JF(iH , j)(x
1) − JF(iH , j)(x̄

1)

if F is a junction,

H
(

ψnF (iH , j)(x
1)
)

−H
(

ψnF (iH , j)(x̄
1)
)

else.

(16)

Fig. 12 Introduction of contact d.o.f. into a junction: for the X-FEM

model (left) with equality relations imposed by the LBB algorithm and

for the kinematically equivalent FEM model (right)

Table 1 Number of d.o.f. per type for a junction with XFEM and FEM

Discrete scheme a b (crack I) b (crack II) λ (crack I) λ(crack II)

X-FEM 12 8 6 8 − 4 = 4 6 − 3 = 3

FEM 26 4 3

An illustration is given in the right part of Fig. 11, where

the jump over F1 depends also on the d.o.f. associated to the

Heaviside function related to F2.

We now check that our X-FEM version of contact is equiv-

alent to its FEM counterpart. Figure 12 compares the contact

d.o.f. discrete space of X-FEM at left, with that of FEM at

right, for the junction of a vertical crack II with a horizontal

crack I. Assuming 1D kinematics to simplify, the number of

d.o.f. is indicated in Table 1. Note that for the FEM model,

the slave surface is arbitrarily chosen as the bottom surface

for crack I and as the left surface for crack II. For the X-FEM

model, some nodes hold two distinct Lagrange multipliers

(one for each crack). A large circle is then used for crack II

to mark the distinction in Fig. 12. The total number of dis-

placement d.o.f. is 26 and the total number of contact d.o.f.

is 7, both for the FEM and the X-FEM case, showing that the

discrete spaces of both formulations are equivalent.

Let us now detail the discrete interpolation of the contact

reaction on both cracks. Obviously, in case of linear bulk

elements, a natural choice is to use linear P1 interpolation

for contact reactions inside the elements which do not con-

tain the junction. In the junction elements, the interpolation

scheme is constrained by the maximum number of available

contact d.o.f. (see Table 1). The element containing the junc-

tion has two independent contact d.o.f. for each crack. A first

simplified version is proposed as represented in the left part

of Fig. 13, with a P0 constant interpolation only on crack II.

The contact reaction on the part of crack I which is inside the

junction element is disregarded (assumed to be zero). A sec-

ond version is shown in the center part of Fig. 13. It improves

the representation of contact with a P0 interpolation on crack

II and on both cut parts of crack I. This version uses three

contact d.o.f. A third version finally uses the fourth available
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Fig. 13 Interpolation choice for the junction: nothing–P0 (left), P0–P0 (center) and P0–P1 (right)

Fig. 15 Contact element with X-FEM

Table 2 X-FEM element types

Element Kinematic d.o.f. Contact d.o.f.

H1

m a b1

s a b1 λ1

H2

m a b1 b2

s a b1 b2 λ1 λ2

H3

m a b1,2,3

s a b1,2,3 λ1,2,3

H4

m a b1,2,3,4

s a b1,2,3,4 λ1,2,3,4

H1 F

m a b1 c1

s a b1 c1 λ1

F a c1 λ1

(see Fig. 15). This idea has been extended here to the case

of multiple discontinuities with the enrichment described in

Sect. 3.1 and with the corresponding kinematic and contact

d.o.f., see Sect. 4.1. The list of d.o.f. depending on the enrich-

ment is given for the slave part and for the master part in

Table 2.

Limiting the maximum number of discontinuities to four

for practical purposes, the list of contact element types is:

• Hi –H j with i ∈ [1, 4] and j ∈ [1, 4],
• H1–H1 F and H1 F–H1,

• H1 F–H1 F ,

Fig. 14 Pairing example in FEM: the contact element changed in 
between the initial state (left) and the final state (right)

d.o.f. to obtain a P1 interpolation of the contact reaction pro-

file along the crack II, as shown in the right part of Fig. 13.

In the following of this paper, the P0–P0 and P0–P1 ver-

sions will be employed only in simplified problems. For more

complex problems, the nothing–P0 choice is used because

we lack a general algorithm to cut the discontinuity surfaces

in the junction elements, which is needed for the numerical

contact integration.

4.3 Large sliding

We are now interested in the spatial discretization of the var-

iational form of the equilibrium given by Eq. (6) and of the 
variational form of the contact conditions given by Eq. (7). 
In a classical master–slave FEM strategy, two surface ele-

ments are associated after the projection of a slave point of 
the slave element on the master surface. A contact element 
is then built from the union of the slave and of the master 
surface elements, see Fig. 14.

The X-FEM case differs because of the absence of ele-

ments representing the surfaces in contact. We follow here 
the strategy given by [29] for a single discontinuity. A dis-

cretized slave surface is first built by joining the points of 
intersection of the iso-zero of the normal level set function 
with the bulk X-FEM elements. When the locations of the 
intersection points is updated after adding the total displace-

ment (including its discontinuous part) to the initial position, 
it is possible to know the current location of any point belong-

ing to the initial slave surface. It is then possible to project 
it on a similarly built master surface. The key idea in [29] is

then to build a contact element resulting from the union of 
two bulk X-FEM elements, one corresponding to the slave 
surface and the other one associated to the master surface
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Fig. 16 Pairing examples between different X-FEM elements. Ele-

ment H1–H1 F for a crack front (left), element H1–H2 for a junction

(right)

Fig. 17 Application examples of contact with large sliding, using con-

tact element H1–H1 F for a crack front (left), and H1–H2 for a junction

(right)

as illustrated in Table 2 when each element type is described.

Note that the case of a F–F contact element has been disre-

garded because small sliding can be assumed in this area, as

is shown in the lower left part of Fig. 16.

For the sake of illustration, Fig. 17 shows an example of

an X-FEM simulation with large sliding for a single discon-

tinuity (left) and with a junction (right).

5 Matrix conditioning

The condition number, denoted K = 10δ , corresponds to the

ratio of the biggest to the smallest eigenvalue of the matrix.

For a computation in double precision, with a numerical error

of about 10−15, the relative error will be of about 10−15+δ .

For example, we should guarantee δ < 10 to get a numeri-

cal error less than 10−5. Straightforward use of geometrical

enrichment for crack-tips leads to ill-conditioned matrices

[3,19]. To improve the global condition number, [3] propose

to orthogonalize locally the stiffness matrices. Ill-condition-

ing is justified in [19] by the fact that the chosen functions

Fα in Eq. (8) do not form locally a free basis of function.

A global enrichment is proposed in [19] to solve the prob-

lem. However, these solutions do not prevent system ill-con-

ditioning, especially with the use of quadratic elements [19].

Fig. 18 Fit to vertex principle. If the discontinuity is too near to node

A (left), we adjust the discontinuity to go through node A (right) by

setting the level set value at node A to zero

Ill-conditioning also comes from the Heaviside enrichment,

when the crack is located close to a node. We describe in

the following sections some technical solutions to solve this

problem in case of junctions.

5.1 Fit to vertex

The fit to vertex [24] is a simple procedure that consists to

set the value ψn = 0 for a node located very near to the crack

surface. A linear criterion based on an edge lengths ratio is

used as illustrated in Fig. 18. On the left, the Heaviside d.o.f.

associated to point B leads to ill-conditioning. On the right,

we assume the linear criterion AC
AB

< 10−γ to be satisfied.

The crack is then fitted to point A by setting the level set

value at node A to zero and B is not enriched.

The value γ can be analytically related to δ (see Fig. 19)

by computing the stiffness matrix of a reference element that

is cut in configurations where the fit to vertex is borderline

to be activated. The maximum condition number can then be

predicted for these configurations. The fit to vertex, usually

realized at 1 % of the edge length (γ = 2), should be used

when ill-conditioning increases but cannot be set to a larger

value (>1 % or γ < 2) in order to avoid unrealistic changes

of the crack geometry. For the example of quadratic hexahe-

dron, the fit to vertex should be set to more than 10 % of the

edge length if one expects a maximum condition number of

about 1010, which is not acceptable practically.

The case of junctions is more complicated as shown on the

left of Fig. 20. In this example, the small gray volume gener-

ated by the second crack leads to ill-conditioning but the fit to

vertex cannot filter out its Heaviside d.o.f. To solve this prob-

lem, a relative tolerance on the distance between the inter-

section points generated by the discontinuities over the edges

during the introduction of multiple cracks is used. On the

right of Fig. 20, the introduction of the second crack generates

a new intersection point. If the distance between both inter-

section points is lower than a given criterion, then the new

intersection point is not added as illustrated by the right part

of Fig. 20. The gray volume is then automatically set to zero

and the node is not enriched for the second crack. In addition,

this linear criterion is useful to avoid to generate too small
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Fig. 19 Value of δ as a function of γ for 1D, 2D and 3D cut elements. The first line is obtained in the case of linear shape functions and the second

one in the case of quadratic shape functions (i.e. conditioning of 10δ)

Fig. 20 Example where the area associated with the support of a nodal

shape function is very small and cannot be corrected by the fit to ver-

tex (left) and tolerance on the intersection points distance to solve the

problem (right)

sub-elements during the sequential cutting (see Sect. 3.2). To

expect correct results in practice, the distance is set to 10−6

times the characteristic length of the element. If we refer to

Fig. 19, this corresponds to γ = 6 and leads to ill-condition-

ing for all 2D and 3D elements, even for 2D linear ones.

5.2 Volumetric criterion

The volumetric criterion proposed by [8] is more adapted to

the case of a junction. It consists in comparing for each sup-

port of a node that is supposed to be enriched by an Heaviside

d.o.f., the ratio of areas on both sides of the crack affected

by the Heaviside value ±1 with respect to the total area. The

criterion reads:

min(V−1, V1)

V
≤ 10−α, (17)

Fig. 21 Volumetric criterion evaluation: the gray volume is compared

to the total support of the nodal shape function. Case without junction

(left) and with junction (right)

condition number. To take that into account, we propose a

similar but more precise criterion based on the evaluation of

stiffness ratios. In the two examples given in Fig. 21, we now

evaluate the ratio of the stiffness of the gray area compared to

the total stiffness associated to the node. This new criterion

reads:

min(
∫

Ω−1

‖φ,X‖2dΩ,
∫

Ω1

‖φ,X‖2dΩ)

∫

Ω

‖φ,X‖2dΩ
≤ 10−δ, (18)

where Ω is the support of the node, Ω−1,Ω1 are the parts

of the support where the Heaviside function is ±1, φ,X is

the derivative of the shape function associated to the node in

the global coordinate basis X and δ is a parameter directly

related to the expected maximum condition number. This

parameter is typically chosen between 8 and 10, that leads

to a maximum condition number close to 10δ . This criterion

is based on a relative stiffness that allows to disregard the

material behavior which can be eliminated as it appears both

to the numerator and discriminator of the ratio. It is then pos-

sible to discriminate a priori, as for the volumetric criterion,

the d.o.f. that should be set to zero. The norms in Eq. (18)

mean that we consider the criterion in all the directions of the

space, but it is also possible to consider the directions indi-

vidually. Note that for linear elements, φ,X is quasi-constant

and the stiffness criterion is then equivalent to the volumetric

criterion.

We present an example in Fig. 22, which allows to

compare the error generated by the elimination with the

where V is the total volume of the support of the node, and 
V−1, V1 are the volumes where the Heaviside function is ±1 
with α as a parameter. The value α = 4 is typically used. If a 
node verifies the criterion, its Heaviside d.o.f. is eliminated 
by setting it to zero. Two examples are given in Fig. 21 to 
illustrate the procedure.

This criterion is relevant for linear elements (triangle, 
tetrahedron), but not for multi-linear elements (quadran-

gle, pyramid, pentahedron, hexahedron) and quadratic ele-

ments. Indeed α = 4 induces eliminating some d.o.f. and 
that perturbs the kinematic approximation and the solution 
of the problem, whereas greater values of α deteriorate the
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Z

Y

X

h

Fig. 22 Displacement for the level set function X + Y + Z + e = 0

with e = 0 (left) and evolution of the interface for a hexahedron cut in

its corner as e increases (right)

volumetric and stiffness criteria. A cube meshed with 64

hexahedra is completely cut by an interface with the level

set function X +Y + Z + e = 0 and submitted to an opening

mode without strain (see Fig. 22 on the left). The test consists

in changing the level set function by moving the parameter e

from zero to h
2

where h is the element length. Some hexahedra

become cut in their corners (see Fig. 22 on the right), gen-

erating small tetrahedra responsible for ill-conditioning. The

condition number is numerically evaluated in terms of the

small tetrahedron volume, characterized by the aspect ratio

e/h. The results are given in Fig. 24. The relative error of the

displacement on the interface is also given in Fig. 25. Without

any criterion, the fit to vertex gives a good conditioning for
e
h

≤ 0.01. The hexahedron cut in its corner being the worst

configuration in Fig. 19, the same conclusion can be expected

for other elements in other configurations. When the fit to

vertex ceases, a peak of ill-conditioning is responsible for an

important error in the displacement. Then, the condition num-

ber and the error decrease when e
h

increases. With the elim-

inations, the condition number is improved, but some errors

related to the elimination process appear on the solution.

Finally, a better condition number and errors are obtained

for the stiffness criterion than for the volumetric one.

To evaluate the influence of the error generated by the

elimination, we take up the case presented in Fig. 22. The

test is still done in opening mode, but an homogeneous com-

pression is applied on the two blocks of the structure to eval-

uate the energy error when refining the mesh. The stiffness

criterion is used for the elimination and the ratio e
h

is fixed

to 0.022. This value gives the worst relative error for this

criterion. The results are given in Fig. 23. The conclusions

of this patch test is that first, the error on the displacement

observed in Fig. 25 leads to a similar energy error, while the

latter should be numerically zero. Secondly, the energy error

does not decrease when the mesh is refined, while the ratio

of nodes where a d.o.f. is eliminated in comparison to the

total number of nodes decreases.
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Fig. 23 Condition number
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Fig. 24 Error on the displacement

5.3 Orthogonalization

The solution proposed here consists of replacing the elimi-

nation of the Heaviside d.o.f. by an orthogonalization of the

local stiffness matrix, which is based on the X-FEM precon-

ditioning of [3]. We suppose the system Ku = f to be solved.

K contains a local ill-conditioned sub matrix A (supposed to

be symmetric), associated in our case to a node enriched by

an Heaviside d.o.f. with support Ω:

K =

⎡

⎢

⎢

⎣

. . .
...

A · · ·
. . .

⎤

⎥

⎥

⎦

with A =

⎡

⎣

∫

Ω

φ,XCφ,XdΩ
∫

Ω

φ,XCφ,X HdΩ

sym
∫

Ω

φ,XCφ,XdΩ

⎤

⎦

(19)
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where C is the Hooke tensor. K is then ill-conditioned

because of A. The principle is to use a Cholesky decompo-

sition of the local matrix A, A = GGT and then, to use this

decomposition to change the terms associated to this node in

the global system:

K̃ = RKRT

f̃ = Rf

K̃ũ = f̃

u = RT ũ

with R =

⎡

⎣

II 0 0

0 G−1 0

0 0 II

⎤

⎦ , (20)

A good conditioning is then obtained for K̃.

In our implementation, this procedure is simplified. First,

the orthogonalization is only done for a node where a Heavi-

side d.o.f. satisfies a certain value of the stiffness ratio given

by the left hand side of Eq. (18). This ratio is denoted ǫ. Sec-

ondly, it is not mandatory to use the exact local matrix for

the Cholesky decomposition: a simplified matrix is used. As

for Eq. (18), the simplified matrix is obtained in two steps.

To have a dimensionless matrix, the material behavior is dis-

regarded and the matrix is normalized:

A1 =

⎡

⎢

⎢

⎣

∫

Ω

φ2
,XdΩ

∫

Ω

φ2
,X HdΩ

sym
∫

Ω

φ2
,XdΩ

⎤

⎥

⎥

⎦

∫

Ω

‖φ,X‖2dΩ

=

⎡

⎢

⎢

⎢

⎢

⎣

∫

Ω

φ2
,XdΩ

∫

Ω

‖φ,X‖2dΩ

∫

Ω

φ2
,XdΩ−2

∫

Ω−1

φ2
,XdΩ

∫

Ω

‖φ,X‖2dΩ

sym

∫

Ω

φ2
,XdΩ

∫

Ω

‖φ,X‖2dΩ

⎤

⎥

⎥

⎥

⎥

⎦

.

(21)

Then, a normalized block matrix is employed:

A2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∫

Ω

‖φ,X‖2dΩ

∫

Ω

‖φ,X‖2dΩ
II

∫

Ω

‖φ,X‖2dΩ−2
∫

Ω−1

‖φ,X‖2dΩ

∫

Ω

‖φ,X‖2dΩ
II

sym

∫

Ω

‖φ,X‖2dΩ

∫

Ω

‖φ,X‖2dΩ
II

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
[

II ±(1 − 2ǫ)II

sym II

]

(22)

to finally obtain at the zero order approximation:

G=
[

II 0

±II 2
√

ǫII

]

and R=

⎡

⎢

⎢

⎢

⎣

II 0 0

0

[

II 0
±1

2
√

ǫ
II 1

2
√

ǫ
II

]

0

0 0 II

⎤

⎥

⎥

⎥

⎦

. (23)

In 1D, the procedure leads to the matrix:

K̃ =

⎡

⎢

⎢

⎣

. . .
...

G−1AG−T · · ·
. . .

⎤

⎥

⎥

⎦

with G−1AG−T =
[

1 ±
√

ǫ

sym 1

]

E

(24)

where E is Young’s modulus. Note that the condition number

of A is 1−ǫ
ǫ

and becomes
1+

√
ǫ

1−
√

ǫ
for G−1AG−T .

The decomposition is only ǫ ratio dependent and can thus

be computed if necessary, at the same time as the stiffness

criterion and only once even for non-linear problems. These

simplifications allow to save CPU time. We propose to use

the stiffness ratio on the example presented in Fig. 22 as

follows:
⎧

⎪

⎨

⎪

⎩

ǫ > 10−δo nothing is done,

10−δo > ǫ > 10−δ orthogonalization,

ǫ < 10−δ elimination.

(25)

The results using δo = 5 and δ = 14 are plotted in Figs. 24

and 25. With this new procedure, the condition number is

bounded by 106 and an iterative solver can be used without

global preconditioning for this example. However, good con-

ditioning does not guarantee good results, especially when

ǫ is near 10−14 (the error curve with orthogonalization fits

the one without criterion) and the elimination has to be

reactivated for lower values of ǫ. This error comes from the

numerical evaluation of the local matrix associated with the

Heaviside d.o.f. This phenomenon can be understood in 1D.

We denote A′ the numerical evaluation of A in Eq. (19).

Introducing the numerical error ǫ′:

A′ =
[

1 ±(1 − 2ǫ) + ǫ′

sym 1

]

E

and G−1A′G−T =
[

1 ±
√

ǫ + ǫ′

2
√

ǫ

sym 1 ± ǫ′
2ǫ

]

E .

(26)

Comparing Eq. (26) to Eq. (24), it appears that ǫ′
2ǫ

<< 1

needs to be satisfied. Noticing that ǫ′ is about 10−15 in dou-

ble precision, this condition is not satisfied for ǫ < 10−14.

The evaluation of A generates a loss of precision of

about 1
ǫ

on A′ that propagates on the orthogonalized matrix.

A solution to this last difficulty is to estimate local matrices

in triple precision before applying the orthogonalization. The

orthogonalized matrix is then kept in double precision so that

ǫ′ is now about 10−23. In practice we only used triple preci-

sion to evaluate the terms corresponding to the line and the

column of the nodes where the orthogonalization criterion is

triggered. The results, plotted in Figs. 24 and 25, show that

the idea works. Orthogonalization is done with the criterion

δo = 5 and elimination is not needed anymore.
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Fig. 25 Energy error (top) and ratio of nodes where a d.o.f. is elimi-

nated in comparison to the total number of nodes (bottom)

6 Examples

6.1 Test of a frictionless block with a junction under

compression

A 2D plane stress test is proposed to compare the 3 versions

of the interpolation of the contact reaction in the elements

containing a junction presented in Sect. 4.2. The domain is a

square plate of 1m2 area. Two discrete models are built with

or without a junction and frictionless interfaces, see the right

part of Fig. 26. Integration of the contact terms which come

from the linearization of Eqs. (6) and (7) is performed with

a 2 points Gauss quadrature.

Imposed boundary conditions are described in the left part

of Fig. 26. The bottom surface is clamped. A parabolic pro-

file of vertical pressure py(X) = pmax (0.5 + 2X − 2X2) is

imposed on the top surface with pmax set to 1 MPa. Because

the branching interfaces are frictionless, we choose to impose

a horizontal profile of pressure on the lateral surfaces so that

no bulk shear deformation is generated. Hence, this lateral

pressure satisfies px (Y ) = 2pmax Y 2. The modulus of elas-

ticity is set to 10 GPa and for the sake of simplicity Poisson’s

ratio is set to zero. The resulting stress and strain tensors can

be written in closed form expressions:

Fig. 26 Boundary value problem (left), deformation (×1000) with-

out discontinuities and with two branched discontinuities and P0–P1

interpolation into the junction (right)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σσ re f =
(

−pX (Y ) 0

0 −pY (X)

)

ǫǫre f =
(

− pX (Y )
E

0

0 − pY (X)
E

)

(27)

In Fig. 26, the right top part represents the deformation for

the case without branching interfaces. The right bottom rep-

resents the deformation for the case with two branching inter-

faces and the P0–P1 interpolation of the contact reaction in

the junction. The two solutions are qualitatively similar. We

are now going to compare the convergence of the solutions

when refining the mesh. In the following, an h superscript

means that the quantity is computed with a mesh of charac-

teristic size h. A re f superscript means that the quantity is

computed for the reference closed form solution. The relative

error in energy W (uh) is defined as:

W (uh)=

√

√

√

√

√

√

∫

Ω

σ(∇(uh −ure f )) : ∇(uh −ure f )dΩ

∫

Ω

σσ(∇ure f ) : ∇ure f dΩ
. (28)

Figure 27 shows the convergence of W (uh) for differ-

ent configurations. The curve labels with f em correspond

to the FEM solutions without the branching discontinuities.

The other curves correspond to X-FEM solutions with the

branching discontinuities for which the interpolation of the

contact reaction in the junction element (see Sect. 4.2) is

either nothing–P0, P0–P0 or P0–P1. As expected, the

convergence is better for the q4 elements than for the t3

elements. Also, taking into account the contact reaction on

the horizontal interface improves the convergence. A more

remarkable result is that the convergence curves of all the

studied cases have a unitary slope.
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To complete the comparison, we introduce the L2 norm

of the error in the contact reaction as:

L(λh) =

√

√

√

√

√

√

∫

Γc

(λh − n ·σ re f · n)2dΓ

∫

Γc

(n ·σ re f · n)2dΓ
. (29)
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Fig. 28 Convergence error in the L2(Γc) norm for the contact pressure

approximately 50,000 quadrangles and 5,000 triangles and

the minimum mesh size value is h = 0.015625 m. A zoom

on the crack area is given in the right part of Fig. 29.

We consider a homogeneous and isotropic material with

Young’s modulus E = 105 MPa and Poisson’s ratio ν = 0.3.

Plane strain condition is assumed. A bitraction and shear load

is applied by setting the following Neumann conditions on

the plate boundary:

P = σσ · n and σσ =
(

1 1

1 1

)

(30)

with n the outward normal to the boundary. Cracks are

introduced into the structure using X-FEM (see Sect. 3).

A topological enrichment is used for the crack fronts and

the multi-Heaviside enrichment is used where junctions are

activated. To compare the results with those given by [41] and

[28], where traction-free condition on interior crack faces is

assumed, we first perform a simulation without contact. The

differences with a situation in which contact conditions are

taken into account are then analyzed with a second simula-

tion. The results are given in Fig. 30. An interpenetration area

over the branched crack containing point C without contact

is corrected with contact.

Computation of SIF has motivated many research works

since the pioneering approach of [32] which proposed a path

independent integral to compute the energy release rate. Tak-

ing advantage of the Maxwell–Betti reciprocal work theo-

rem, the identification of mixed-mode singularities was then

facilitated thanks to the interaction energy integral between

the equilibrium solution and an auxiliary field [34]. More

recently, FEM computation was simplified by replacing the

contour integral by a domain formulation and the geometry

were generalized to 3D cases [15]. In this paper, the SIF are

computed with the theta method of [9], which stems from

a Lagrangian derivation of the potential energy with respect

where n is the inward unit normal vector to the master inter-

face. Figure 28 shows the convergence of L(λh), for  the X-

FEM cases with frictionless interfaces. The absolute value of 
the convergence slope observed for the P0–P0 and P0–P1 
cases in between 1 and 2 correspond to a theoretical super-

linear convergence [38]. A striking difference with Fig. 27 is 
that the convergence rate for the nothing–P0 case is three 
times less than for the P0–P0 and P0–P1 cases. The error 
is also larger. This can be explained by the error completely 
taken into consideration in the junction region and underlines 
the importance of taking into account the contact contribu-

tions on all interfaces.

6.2 Stress intensity factors of closely interacting cracks

In this example we analyze the contact influence on a finite 
plate with multiple cracks. This example comes from a semi-

analytic solution given by [41], and is also studied with X-

FEM and harmonic enrichment in [28]. We consider the case 
where the plate size is 20 m × 20 m (see Fig. 29). Start-

ing from an element size h = 0.5 m, we introduce cracks 
defined by points A to I and A′ to I ′. Coordinates are the 
same as those given in [41] or [28]. Then, the mesh is locally 
refined over the crack area and the crack front with five steps 
of adaptive mesh refinement according to a criterion func-

tion based on the distance to crack fronts. This function is 
computed by using level sets. The final mesh is composed 
of
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Fig. 29 Initial mesh and boundary condition (left), zoom on the crack area after five adaptive refinement steps (right)

Fig. 30 Deformation with offset ×1000 (top), zoom without and with

contact (bottom). (Color figure online)

to the crack length when it reduces to zero and which leads

to equivalent expressions than that of [15]. The results are

presented in Table 3 for points A to I and Table 4 for points

A′ to I ′. K ∗ corresponds to the reference given by [41]. K H

is the result obtained by [28] with the harmonic enrichment

computed for quadratic elements with a subgrid 6×6 per ele-

ment and a cartesian mesh composed of 84,375 quadrangles.

K and K c correspond to our results without and with con-

tact respectively. Without contact, the calculated relative or

absolute errors show that we recover the results given by the

reference and that we reduce the errors with respect to [28]

for a similar number of elements. With contact, the results

for points A′ to I ′ are unchanged because these cracks are

in opening mode and the contact is not activated. For points

A to I , we can notice two things. First, some negative K I

(for points C and G) are corrected when contact is added.

Second, at the other points the values are strongly influenced

by the global change of deformation when contact is taken

into account.

To study the influence of this error in fatigue, we compute

the propagation velocity at the crack tips with Paris’s law.

The direction of propagation is then given by the maximum

hoop stress criterion [14] but similar results can be obtained

with a criterion based on the minimum J local energy den-

sity [36] or on the energy release rate [30] for short cracks

with small deviation angles. The norm of the velocity and the

propagation angle are then given by:

‖V‖ = κ.Gm

β = 2 arctan 1
4

(

K I

K I I
− sign(K I I )

√

(

K I

K I I

)2
+ 8

)

,
(31)

where (κ, m) are parameters which depend on the material

behavior, usually determined experimentally and where G is

the energy release rate. G is computed according to the theta

method. We set m = 3, which corresponds to steel material.

Eq. (31) depends linearly on κ . We are then free to set this
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Table 3 SIF results in Pa
√

m for points A to I

Points A B C F G H I

K ∗
I 1.7943 1.9932 −1.692 0.051 −0.5317 −0.0517 −0.1933

| K H
I −K ∗

I

K ∗
I

| (%) – 1.1 0.8 – 2.6 – –

| K I −K ∗
I

K ∗
I

| (%) 0.15 0.07 0.06 6.6 0.32 5.02 0.88

| K c
I −K ∗

I

K ∗
I

| (%) 2.2 38.17 84.31 227.23 65.32 113.74 5.06

|K I − K ∗
I | 0.0027 0.0014 0.001 0.0034 0.0017 0.0026 0.0017

|K c
I − K ∗

I | 0.0395 0.7609 1.4265 0.1159 0.3473 0.0588 0.0098

K ∗
I I 2.8522 2.4042 −0.1337 0.2894 0.1885 −0.1979 0.0213

| K H
I I −K ∗

I I

K ∗
I I

| (%) – 2.4 3.2 – 0.2 – –

| K I I −K ∗
I I

K ∗
I I

| (%) 0.24 0.07 0.77 0.74 0.17 0.14 4.87

| K c
I I −K ∗

I I

K ∗
I I

| (%) 2.65 32.45 431.32 3.22 17.06 78.75 1086.23

|K I I − K ∗
I I | 0.0069 0.0016 0.001 0.0021 0.0003 0.0003 0.001

|K c
I I − K ∗

I I | 0.0756 0.7802 0.5767 0.0093 0.0322 0.1558 0.2314

Table 4 SIF results in Pa
√

m for points A
′

to I
′

Points A
′

B
′

C
′

F
′

G
′

H
′

I
′

K ∗
I 3.7215 2.67 5.3966 4.3255 3.6812 0.4157 1.0043

| K I −K ∗
I

K ∗
I

| (%) 0.46 0.5 0.18 0.08 0.07 0.07 0.04

| K c
I −K ∗

I

K ∗
I

|(%) 0.21 0.04 0.5 0.05 0.1 5.05 3.18

|K I − K ∗
I | 0.0172 0.0133 0.0096 0.0035 0.0026 0.0003 0.0004

|K c
I − K ∗

I | 0.0077 0.0012 0.027 0.002 0.0038 0.021 0.0319

K ∗
I I 2.3379 1.0248 –0.1143 –0.1661 0.9279 –0.3947 0.0648

| K I I −K ∗
I I

K ∗
I I

| (%) 0.3 0.06 1.94 1.93 0.33 0.61 6.47

| K I I −K ∗
I I

K ∗
I I

| (%) 1.6 0.03 12.0 2.26 0.74 9.14 52.11

|K I I − K ∗
I I | 0.007 0.0006 0.0022 0.0032 0.003 0.0024 0.0042

|K I I − K ∗
I I | 0.0373 0.0003 0.0137 0.0038 0.0069 0.0361 0.0338

Fig. 31 Propagation directions with contact (blue) and without contact

(red) for which the added segment lengths are linearly proportional to

the norm of the velocity

value since we are just interested in the deviation angle of 
propagation in this example.

Velocities are plotted in Fig. 31 with and without contact. 
We set velocities to zero when K I < 0 to avoid non physi-

cal results for the angle β. Velocities for points A′ to I ′ and 
point A are similar because the contact does not affect the 
SIF at these points. The relatively large deviations observed 
in Table 3 for points C, F, G, H, I is not visible in Fig. 31 
because of the low SIF values for these points compared to 
the other points. Only the velocity at point B shows a sig-

nificant difference when contact is taken into account. We 
notice that it is the only point in opening mode for which K I 
and K I I  values are modified if contact is taken into account, 
due to the corrected interpenetration over the branched crack 
containing point C (see Fig. 30).
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Fig. 32 Initial mesh of the basin with its three faults

Fig. 33 Hierarchial tree of faults branching

6.3 A 3D geological graben with branching faults

6.3.1 Problem settings

This final example illustrates the possibility of the presented

X-FEM modeling of branched discontinuities to simulate a

sedimentary basin deformation which is used in hydrocar-

bon exploration. Indeed, the design of a computational mesh

which conforms to the fault surfaces remains difficult and

generally requires a strong user interaction, see for exam-

ples [21] and [12]. The difficulty is mainly coming from the

complexity of the branching patterns in 3D. X-FEM there-

fore provides an appealing alternative because it simplifies

the design of geological models suitable to model the history

of deformation of a basin.

The boundary value problem is shown in Fig. 32. At the

initial stage, the basin is defined by a block of dimensions

6 km × 6 km × 1.1 km with a mesh composed of 4608 lin-

ear hexahedra. The block is cut by three faults F1, F2 and

F3 which are represented by triangulated surfaces in Fig. 32.

The F1 fault cuts the whole block and flattens in depth. The

F2 fault branches on F1, and the F3 fault branches on F2 and

F1. The hierarchical tree of the fault junctions which is used

to build the junction enrichment, see Sect. 3.3, is shown in

Fig. 33.

Boundary conditions are given in Fig. 34. The extension
∆u
L

applied on the right border is set to 10 %. To eliminate

any rigid body movement, the displacements perpendicular

to the right wall and to the back and front walls are prohibited.

For the sake of simplicity, this example is aimed at cap-

turing only the first order kinematics resulting from the large

Fig. 34 Boundary conditions of the graben extension

Fig. 35 Final state of the graben model. Isocontours represent the

deformation

sliding along the fault surfaces and the associated folding of

bulk material. Gravity is not accounted for and, as a conse-

quence, a zero initial stress state is assumed. Also, assuming

finite rotations but small strains, the material is represented

by a Kirchhoff–St. Venant hyperelasticity with Young’s mod-

ulus set to 2.5 GPa and Poisson’s ratio set to 0.3. Note that

because the model is not scaled with respect to gravity, the

arbitrary choice of the value of Young’s modulus has no con-

sequence. Finally, to ensure material continuity, frictionless

bilateral contact is enforced on the fault surfaces, so that

contact is satisfied independently of the sign of the contact

reaction. This assumption is useful to model the absence of

gravity, that normally sets automatically the surfaces under

compression.

6.3.2 Results

Figure 35 shows the final state of the simulation. The exten-

sion imposed on the right border of the model is first accom-

modated by a large sliding on F1 which induces the folding

of the upper material due to F1 curvature. This folding is

responsible for an extension in the outer-arc. In a real sedi-

mentary basin, such an extension is susceptible to trigger the

formation of opening fractures which facilitates the hydro-

carbon flow. We will not develop further this interpretation

because it should obviously require the model to be scaled

with respect to gravity. However, this model shows that the

branching of faults in 3D is adequately captured by the X-

FEM approach, as can be noticed by the separation of the

outer-arc in two domains, with a small stair step associated

to sliding along the F2 fault.
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7 Conclusion and prospects

An extension of the X-FEM approach has been presented in

order to take into account branched discontinuities with pos-

sible large sliding contact conditions. The enrichment defi-

nition generalizes the one of [8] to the case of an arbitrary

hierarchy of junctions between the discontinuities. An exten-

sion of the vital edge approach of [17] and [4] satisfying the

LBB condition has been proposed for the junction zones.

A simple example demonstrates a linear convergence of the

relative error in the strain energy with the mesh refinement,

and a superlinear convergence of the relative error in the

contact pressure. The robustness of the method is ensured

by means of an adequate conditioning strategy. A stiffness

criterion has been proposed and a way is given to apply the

orthogonalization proposed by [3] for the Heaviside enrich-

ment. A 2D example shows the ability of branching with

X-FEM to compute correct stress intensity factor prediction

when compared to the semi-analytical approach of [41]. The

present method improves earlier results of [28] and complete

the results by adding the possibility of contact. Finally, a 3D

example of the formation of a geological graben illustrates

the capability of the method to capture complex kinematics

with large sliding along branching discontinuities.

This work should open new perspectives for problems

with X-FEM. It could also be completed by taking into

account the frictional non linearity together with the bulk

material non linearity and gravity effects.
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