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ABSTRACT

We are interested in the behavior of self-sustained musical
instruments, such as wind instruments and bowed string
instruments. Those dynamical systems can be modeled by
autonomous equations. The quasi-static analysis of those
equations is thoroughly represented in the literature. In
this framework, stationary solutions are calculated, along
with their local stability. However, those systems may be
multistable: multiple locally stable solutions coexist for
identical parameter values. Transient analysis notions are
then needed to predict the actual regime obtained. This
work aims at proposing analysis tools and graphical repre-
sentations to complement the quasi-static analysis. On the
one hand, we nuance the notion of stability using basins
of attraction (determined with Support Vector Machines).
On the other hand, we propose to enrich bifurcation dia-
grams with information about transient durations. Those
methods are applied to a fifth order Van der Pol oscillator,
which is an archetype of a self-sustained musical instru-
ment model.
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1. INTRODUCTION

Self-sustained musical instruments sometimes have mul-
tistable behavior, that is to say that multiple locally stable
solutions can coexist for a given set of parameters [1, 2].
As a result, it may be both hard to obtain the desired
sound for the musician and to predict the stationary
regime of the system for the scientist.

In this paper, we propose to quantify the stability of a
solution – related to its ease of production – by determin-
ing the size of its basin of attraction. This notion is known
in the non-linear dynamics community as the basin
stability [3]. To estimate the basin stability of a solution,
we propose a two-step method. First, we determine the
geometry of its basin of attraction using Explicit Design
Space Decomposition (EDSD). It is a method based on
Support Vector Machines (SVM) developed by [4]. Then,
we use a Monte-Carlo method relying on the trained SVM
as surrogate model, to compute the size of the basin of
attraction. In the end, this indicator can be used to classify
the regimes of a musical instrument by ease of production.

The playability of a regime also depends on the
duration of its transient regime [5]. Indeed, a stable
solution which takes too long to establish will hardly
be usable musically. An instrument with long transient
durations would be considered poorly made by experi-
enced musicians. Thus, we present preliminary ideas for
studying the transient regime.
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Those methods are illustrated on a fifth order Van der
Pol oscillator [6], which presents similarities with models
of self-sustained musical instruments. Its main advantage
is that its phase space is of dimension 2, which facilitates
the exploration of new analysis methods and concepts.

This paper is organized as follows. The system stud-
ied is presented in Sec.2. The notion of basin stability and
its computation are then described in Sec.3. Basin stabil-
ity and transient analysis are illustrated for this system in
Sec.4 and conclusions are given in Sec.5.

2. STUDY SYSTEM

2.1 Choice of the system

In order to better highlight the interest of our analysis
methods on self-sustained musical instruments, we study
a fifth order Van der Pol oscillator [6]. It is a normal
form of any system of ODE’s which starts oscillating
through the loss of stability of the equilibrium solution
(Hopf bifurcation) [7]. It means that even a model of
self-sustained musical instrument including many degrees
of freedom (for instance many resonance modes) can be
represented around the Hopf bifurcation by this Van der
Pol oscillator. Since we are interested in hysteresis and
bi-stability phenomenon at the oscillation threshold, this
normal form has to be order-five so that it can show for
adequate parameter values an inverse Hopf bifurcation
followed by a saddle-node bifurcation [6].

The authors precise that this system has been chosen
for its simplicity in this exploratory phase. In the long
term, the goal is to apply them on complete self-sustained
musical instrument models. Such models are presented
in [1,2] (reed instrument models with a modal description
of the resonator).

2.2 Equation of motion

The oscillator considered is driven by the following dif-
ferential equation

ẍ =
[
µ− σ(x2 + ẋ2)− ν(x2 + ẋ2)2

]
ẋ− x, (1)

where x and ẋ denote the position and the velocity of the
oscillator. σ and ν are two parameters which are fixed
σ = −1.5 and ν = 0.1 in order to reproduce the behavior
exhibited by musical instruments (bistability induced by
an inverse Hopf bifurcation and a fold). µ is the control

parameter in this study. In the context of wind musical
instruments, it can be interpreted as the blowing pressure
that causes sound emergence trough linear instability [1].

Analytical solutions of Eqn. (1) are given in [6]. They
write

x = X cos(t+ φ), (2)

with

X = 0 or X =

√
−σ ±

√
σ2 + 4µν

2ν
. (3)

The equilibrium is always defined. The periodic solution
of largest amplitude is defined above a saddle-node bifur-
cation and the periodic solution of smallest amplitude is
defined between the saddle-node bifurcation and an in-
verse Hopf bifurcation. The saddle-node bifurcation oc-
curs at µSN = −σ2

4ν and the Hopf bifurcation at µH = 0.

2.3 Bifurcation diagram

To study the behavior of such a system, it is possible
to plot its bifurcation diagram. A bifurcation diagram
depicts the different solutions in steady state, their
amplitude and their local stability, with respect to the
control parameter. For systems where no analytical
solution is known, the authors use the software Man-
lab [8] to compute equilibrium and periodic solutions.
This software combines the harmonic balance method
approximation with Taylor expansion over the curvilinear
abscissa. With this software, a great number of harmonics
can be used to represent periodic solutions, thus leading
to good approximations. More details can be found in [8].

For the system described by Eqn. (1), Manlab solu-
tions are identical to the analytical solutions (thus only
the first harmonic is not null). Its bifurcation diagram
is given in Fig.1. The amplitude of the oscillations are
represented by the L2 norm of the state vector ||X||L2

,
which also represents the mechanical energy of the
system. The local stability of the solutions is given by the
linestyle. It is computed with linear stability analysis for
the equilibrium [9], and with Floquet theory for periodic
solutions [10]. The two bifurcations can be observed:
an inverse Hopf bifurcation between stable equilibrium,
unstable equilibrium and unstable periodic solution, and
a saddle-node bifurcation between stable and unstable
periodic solutions. This behavior is typical of what can
be observed on the saxophone, for instance, especially for
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low frequency notes [1].

Between those two bifurcation points, the system
is multistable: the equilibrium and the largest periodic
solution are both locally stable (but none is globally
stable). This region could be interesting for a musician
because the periodic solution has a lower amplitude than
for greater values of µ. In order to play pianissimo, the
musician might thus target this region.

To produce sounds in this area, two strategies are
possible. The first one is to set µ > 0 until a sound
appears and then to reduce µ < 0 to its desired value. The
second one is to set µ < 0 to its desired value and then to
perturb the system by imposing specific initial conditions.
For a saxophone, initial position and velocity of the reed
(x, ẋ) could be imposed with a flick of the tongue. In
both cases, once the pianissimo regime is reached, a large
enough perturbation could set the system back to the
equilibrium.

This musical example illustrates the importance of
quantifying the stability of a solution. Such a quantifi-
cation would indicate how easy it is to produce and main-
tain the desired regime in a multistability situation. In the
following section, a basin stability approach will be intro-
duced to quantify the stability of a solution.

Figure 1. Bifurcation diagram of the system stud-
ied. In abscissa is the control parameter µ and in
ordinate is the 2-norm of the state vector ||X||L2 .
Solid lines represent locally stable solutions and dot-
ted lines represent unstable solutions.

3. BASIN STABILITY

3.1 Principle

The basin stability method was first introduced under
those terms by [3] and has widely been used since then
in the non-linear dynamics community [11–14]. It has
been developed to overcome the shortcomings of the
linear stability analysis regarding multistable situations
i.e. its incapacity to estimate the resilience of solutions to
a non-small perturbation. The idea is to characterize the
stability of a solution by the size of its basin of attraction.
The basin stability of a solution indicates the probability
to asymptotically return to this solution given a random
not necessarily small perturbation.

Considering Q a subset of the state space with a finite
volume, A the solution of interest (A ⊂ Q), B its basin of
attraction (B ⊂ Q) and ρ a probability density function,
the basin stability SB is defined as follows

SB =

∫
Q
IB(X)ρ(X)dX, (4)

where

IB(X) =

{
1, if X ∈ B
0, otherwise.

(5)

If there is knowledge on the expected perturbation,
the probability density function ρ can follow a specific
distribution. A uniform distribution should be used
otherwise. In any case

∫
Q ρ(X)dX = 1, so SB ∈ [0, 1].

To estimate SB numerically, which will be noted ŜB,
one can use a Monte-Carlo technique to sample randomly
the subset Q. The basin stability estimation ŜB is then
given by

ŜB = M/N, (6)

where M is the number of samples belonging to B and N
is the total number of samples.

As pointed out in [3, 13, 14], this experiment corre-
sponds to N independent Bernoulli trials with probability
of success SB, leading to the absolute standard error for
ŜB due to sampling

err(ŜB) =

√
SB(1− SB)

N
. (7)

Error due to misclassification of the samples should be
added to this. The classification method used in this study
is described in the remaining of this section.
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3.2 Classification of the initial conditions

In this paragraph, we present the criteria chosen to
classify the samples, that is to say to determine to which
basin of attraction belongs a sample. For the system of
this study, the basins of attraction are analytically known
and their boundary is the unstable periodic solution [6].
However, this method is meant to be applied on more
complex systems for which basins of attraction might be
unknown. Usually, a criteria based on a time integration
is used [15]. In that respect, we have chosen that type of
criteria to test our method.

For the scaled Van der Pol oscillator of Eqn. (1), the
time evolution of the L2 norm of the system is monotonic.
While the system get attracted by one stable solution or
another, its L2 norm tends toward a characteristic value of
the attractor. This behavior is visible on Fig.4. All the red
trajectories tend toward the stable periodic solution which
norm is approximately 3.5, and all the blue trajectories
tend toward the stable equilibrium which norm is equal to
0.

To classify a set of initial conditions, we compute
the evolution of the system with finite differences (we
use the Matlab function ode45). The integration time is
arbitrarily chosen to reach steady state. By the end of the
numerical integration, if the 2-norm is smaller than an
arbitrarily small value (ε = 0.1 in this study), then the
sample is classified as belonging to the basin of attraction
of the equilibrium. Otherwise, it is classified as belonging
to the basin of attraction of the stable periodic solution.

Depending on the dynamics of the system and on its
transient durations, the integration time needed to reach
the steady state might be long. Classifying a great num-
ber of samples would thus be costly. In order to increase
the number of samples without increasing the calculation
time, we propose to build a low-cost classification func-
tion with a method based on Support Vector Machines
(SVM). This classification function captures the geome-
try of the basins of attraction.

3.3 Computation of the basin geometry

The computation of the basin geometry is a classification
problem and Support Vector Machines (SVM) are very
adapted for that kind of problematic. Thus different
methods using SVM to determine basin boundaries can
be found in the literature [16, 17]. Here, we propose to

use the Explicit Design Space Decomposition (EDSD)
method [4].

This is an iterative method. At each iteration, the
boundary is first estimated out of few samples, using
SVM. New samples are then added on the estimated
boundary while being as far as possible from other
samples. This two steps are then repeated until the
estimated boundary has converged (see [4] for details on
the convergence criteria). In the end, one has a function
f : Q → R which is positive if the sample to evaluate
belongs to the basin of attraction of interest, and negative
otherwise. This evaluation has a very low computational
cost and a high number of samples can thus be used to
estimate the size of the basin. For this size estimation,
we use a Latin hypercube sampling (LHS). To train the
SVM, the more costly evaluation function presented in
the previous sub-section is used.

In general, there is no error measure available for the
boundary estimated with EDSD [4]. Later on, the error of
the estimated basin stability will only take into account the
error coming from sub-sampling. Its expression is given
in Eqn. (7).

4. ILLUSTRATION

4.1 Basin stability analysis

The basin stability of the equilibrium point of the system
has been undertaken using the methods presented in Sec.3
(namely, the EDSD to compute the basin geometry and a
LHS to compute its relative size). The results are given
in Fig.2, for different values of µ inside the bistability
area. The basin stability of the periodic solution is the
complamentary of the basin stability of the equilibrium
because they are the only two stable solutions. The region
of interest is x ∈ [−5, 5] and ẋ ∈ [−5, 5] because the
basin of attraction of the equilibrium point is included
in it for all considered values of µ. Standard error bars
due to down-sampling are represented above result bars
(reminder: error coming from EDSD is not taken into
account). This error remains low because N = 105

samples have been used to calculate the size of the basin
of attraction. That is the point of having a two-step
method (EDSD first and LHS with surrogate model then).

For this system, the size of the basin of attraction
of the equilibrium point can be analytically calculated
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because its boundary coincides with the unstable periodic
solution. This unstable solution is a circle in the phase
space. Its radius is given in Eqn. (3) (smallest non zero
value of X). The actual basin stability SB is superim-
posed over the estimated one ŜB.

One can observe that the estimation method is correct
in this situation. This means that the error due to EDSD
remains small here. Moreover, one notices that the equi-
librium point is less stable when µ increases. Eventually,
SB reaches 0 at the Hopf bifurcation (for µH = 0),
because the equilibrium point becomes unstable. Simi-
larly, SB would jump to 1 at the saddle-node bifurcation
because the equilibrium point becomes the only stable
solution. Its basin of attraction suddenly transforms
from a circle included into the region of interest to the
whole region. This explains the discontinuity of SB at the
saddle-node bifurcation (which is not represented to keep
a readable figure size in the bistability region).

To give a little bit of context, this SB curve shape
means that musicians would need to disturb greatly their
instrument (with a powerful tongue strike for instance)
to produce a sound when they blow softly (µ ≈ −5
for instance). On the contrary, only a small disturbance
would be needed if their mouth pressure is high (µ ≈ 0).
One speculative interpretation is to conclude that it is
harder to attack a note pianissimo than mezo-piano on this
”instrument”. This conclusion must be treated with care,
as we do not know which gesture – and therefore which
initial conditions – is easy for a musician to execute.

With this metric, the stable solutions of a musical in-
strument can be classified from the easiest to produce to
the hardest. Moreover, its value can be interpreted as the
probability to produce one regime or another, without spe-
cific control from the musician in terms of initial condi-
tions.

4.2 Transient analysis

This section presents preliminary ideas to study the
transient regime.

Now that the likelihood of appearance of stationary
solutions has been estimated, one can wonder how the
system will behave during its transient regime and how
long it will last. To study the global features of the
transient behavior of the system, we propose to observe

Figure 2. Basin stability estimation of the equilib-
rium (bars) from Eqn. (6) versus actual basin stability
(dotted line) from Eqn. (4). For the estimation, basin
geometry is computed with EDSD and basin size is
computed with a latin hypercube (105 samples).

its state evolution starting from initial states close to the
boundary of the two basins of attraction.

In Fig.3, we plot in the phase space the three station-
ary solutions along with multiple trajectories initialized
from one side and the other of the unstable limit cycle
(boundary of the basins of attraction). It appears that
some regions of the phase space are more likely visited
than others.

In Fig.4, the time evolution of the 2-norm of the state
vector ||X||L2 is given for all those trajectories. It high-
lights the influence of the initial phase conditions over the
transient duration. Indeed, for an identical mechanical en-
ergy given to the system (||X||L2

is the mechanical en-
ergy of the system), different initial phase conditions lead
to different transient durations.

5. CONCLUSION

In this paper, we quantified the stability of the solutions of
a multistable system, using the notion of basin stability.
This metric allows us to rank the solutions in order of
stability – i.e. in order of ease of production. Moreover,
its value has a meaning: it corresponds to the probability
of the solution to happen, given ordinary initial condi-
tions. From the authors perspective, this notion seems
particularly promising for describing musical instrument
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Figure 3. Phase portrait of the system studied. The
thick black lines and the black dot in the center cor-
respond to the solutions. Stability is given by the
linestyle (straight if stable and dotted if unstable).
The thin lines are trajectories initialized from one
side (red) and the other (blue) of the unstable peri-
odic solution.

Figure 4. Time evolution of the 2-norm of the state
vector ||X||L2 for trajectories depicted in Fig.3. The
unstable periodic solution is represented by the dot-
ted line and the two stable solutions correspond to
the upper and lower boundaries of the graph.

behaviors.

To compute basin stability, we combined SVM meth-
ods – for basin geometry calculation – with Monte-Carlo
techniques – for basin size calculation. Furthermore,

knowledge on basin boundary geometry helped us to have
an overview of the transient regime by initializing time in-
tegrations along those boundaries. Main tendencies such
as most likely transient durations and regions of the phase
space have thus been highlighted.
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