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André F. P. Ribeiro, Thomas Leweke, Aliza Abraham, Jens N. Sørensen,
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• Simulations of a three-bladed rotor in wind turbine configuration are
done in a blade-resolved manner, with excellent agreement to experi-
ments.

• The actuator line method is used for the same configuration and several
limitations are highlighted.

• Preset actuator line simulations, with forces extracted from the blade-
resolved case and an analytical model are performed and are shown to
agree well with experiments.

• An asymmetric rotor is tested and the different methods are able to
capture the earlier leapfrogging introduced by the asymmetry.
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Abstract

This work concerns high-fidelity numerical simulations of a rotor wake, with
focus on the tip vortices and their stability. Blade-resolved and actuator line
lattice-Boltzmann simulations are performed on a symmetric baseline rotor,
as well as on a rotor with asymmetries. The asymmetry has the purpose of
destabilizing the tip vortices to enhance wake recovery and hence the per-
formance of potential downstream turbines. Limitations in the actuator line
method are highlighted, and we show the potential of addressing these limi-
tations with a so-called “preset” actuator line, where the forces are extracted
from blade-resolved simulations, or an analytical load model, which as input
only requires the thrust and power coefficients. Simulations agree well with
experimental results and leapfrogging is captured, even with a coarse actua-
tor line simulation. The asymmetric rotor is shown to improve power in the
far-wake by 12%.

Keywords: Instability, wind turbine wake, leapfrogging

1. Introduction

The near wake of a wind turbine is formed by helical vortices shed from
the tips and roots of the rotor blades [1]. These coherent vortices can cause
increased fatigue loading on downstream turbines within a wind farm and
delay wake recovery by blocking mixing between the low-speed flow inside
the wake and the free-stream flow outside [2]. This delayed wake recovery
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limits the minimum allowable spacing between turbines within a wind farm,
reducing the amount of power available for a given area. In existing wind
farms, wakes can lead to power losses of up to 40% [3]. Inducing early
tip vortex breakdown could help mitigate these detrimental wake effects by
enhancing mixing between wake and free-stream and by reducing the amount
of coherent vortical structures in the flow.

Tip vortices are subject to various instabilities due to their helical geom-
etry, which can cause them to break down. Since the work of Widnall [4]
and Gupta & Loewy [5], it is known that helical vortex systems are inher-
ently unstable. Certain types of deformations are naturally amplified by a
mechanism of pairing between successive loops of the helical vortices. These
instabilities have been identified as one of the first steps in the deconstruction
of the wake of a rotor and its return to equilibrium with the external flow.
The instabilities fall into two categories: short-wave and long-wave instabil-
ities [6]. Short-wave instabilities are characterized by perturbations within
the vortex core, whereas long-wave instabilities involve displacement of the
entire vortex. Long-wave instabilities, which are the focus of the current in-
vestigation, lead to pairing between adjacent vortex loops and leapfrogging,
where the upstream loop rolls up around and passes in front of the down-
stream loop. This pairing has been shown to play a significant role in tip
vortex breakdown [1, 7].

Recent laboratory experiments and numerical simulations by the authors
have shown that tip vortex instabilities can be excited, and hereby acceler-
ate their destruction, by adding particular disturbances (Sarmast et al. [8],
Sørensen et al. [9], Quaranta et al. [10], Ramos-Garćıa et al. [11], Abraham
& Leweke [12]). Among these unstable disturbances are those that can be
generated by an asymmetry of the rotor. An intentional asymmetry can be
created on the rotors of wind turbines, and in particular those of the first row
facing the wind in a wind farm, in order to accelerate the development of the
natural instabilities of the vortex system of the wake. This asymmetry may
be in the form of an extension or a different pitch setting of one of the blades,
or the addition of a flap at the end of a blade, or different flaps on each of the
three blades. These devices can be passive or active, oscillating at a suitably
chosen frequency to excite the unstable deformations of the vortices.

This work focuses on simulating configurations of a symmetric and an
asymmetric rotor by means of high-fidelity numerical simulations. A compu-
tational fluid dynamics (CFD) lattice-Boltzmann method (LBM) [13] code is
used to perform blade-resolved and actuator line [14] simulations of a rotor,
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which are validated with experimental data. The LBM has been successfully
coupled with the actuator line method by various groups to simulate wind
turbines [15, 16, 17, 18] and tidal turbines [19, 20]. Blade-resolved simula-
tions are expected to be very accurate, but unfeasible for simulation of full
wind farms, which is where the less costly actuator line simulations can con-
tribute, as they are typically orders of magnitude faster than blade-resolved
simulations. Both methods are validated with experiments, with an empha-
sis on highlighting the limitations of the actuator line method for our test
case.

2. Experimental Setup and Flow Conditions

The experiments used for model validation in the current study were
conducted in a recirculating free-surface water channel with a test section of
dimensions 150 cm × 38 cm × 50 cm. A three-bladed rotor was mounted on a
shaft with a 1.5 cm diameter, which extends 96 cm downstream to a gearbox
connecting the shaft to a stepper motor outside of the water. The rotor has
a radius of R = 9 cm and the blade cross-sections are NACA2414 airfoils.
The tip chord is ctip = 2.3 cm, yielding a tip chord-based Reynolds number
of Re=2πfRctip/ν ≈ 40, 000, where f =3 Hz is the rotation frequency and
ν is the fluid kinematic viscosity. Each blade can be detached from the hub
individually, enabling the replacement of one or two blades with a slightly
modified version to introduce rotor asymmetry. A sketch of the experiment
is shown in Fig. 1. The chord c and twist θ distributions of the rotor blade
over the radius r are shown in Fig. 2.

The rotor was operated at a tip speed ratio of λ=2πfR/U∞=ΩR/U∞=3,
with a free-stream flow speed of U∞ = 56 cm/s and where Ω is the rotor
angular velocity. Blade deformation was not deemed substantial and all
simulations in this work assume undeformed blades. To visualize the helical
tip vortices, fluorescent dye was applied to the blade tips before the rotor was
lowered into the water. Once the rotor was submerged and spinning, LED
panels were used to illuminate the test section, causing the dye entrained in
the tip vortices to fluoresce. Particle image velocimetry was also conducted
at two resolutions, 0.88 mm and 0.16 mm, to capture the whole wake and tip
vortex velocity fields, respectively. Additional details about the experiment
are provided in [12] and the rotor geometry is provided as a supplement to
this work.
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Figure 2: Description of the blade geometry.

3. Numerical Methods

3.1. The Lattice-Boltzmann Method

In the last two decades, the LBM [13] has been growing in popularity as an
alternative to traditional Navier-Stokes solvers. The objective is the same:
to have a description of the velocity and pressure fields over time, based
on a certain mesh and time steps. However, instead of using continuum
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mechanics as the foundation for describing fluid flow, statistical mechanics
are used, considering the fluid as particles that interact with each other and
the boundary conditions. A thorough description of the LBM can be found
in [21]. Using the Chapman-Enskog expansion [22], the Euler and Navier-
Stokes equations can be obtained from the LBM [23].

We first need to consider that a particle can be in a certain spatial coor-
dinate x⃗. Then, we consider that the particle has a certain velocity c⃗. These
quantities change as a function of time t. As dealing with individual par-
ticles quickly becomes too expensive, we instead work with the distribution
function f(x⃗, c⃗, t), which represents the probability that particles at posi-
tion x⃗ and time t have the velocity c⃗. This can also be interpreted as the
number of particles in a certain location and time that are travelling with a
certain velocity. Fluid properties can be extracted from the moments of the
distribution function. The distribution of f is governed by the Boltzmann
equation:

d

dt
f(x⃗, c⃗, t) =

∂

∂t
f(x⃗, c⃗, t) + c⃗∇f(x⃗, c⃗, t) = C (1)

where C is the collision operator, which defines how particles interact. As
the Navier-Stokes equations, this can be discretized in time and space, but
additionally, the velocity space must also be finite, so that the Boltzmann
equation can be solved numerically. These assumptions lead to the Lattice-
Boltzmann equation, which, including a body force F , takes the form:

fi(x⃗+ c⃗i∆t, t+∆t) = fi(x⃗, t) + Ci(x⃗, t) + ∆tFi(x⃗, t) (2)

where the subscript i denotes one of the velocity components that particles
are assumed to be able to travel in and ∆t is the timestep. As in the Navier-
Stokes equations, body forces are added in order to simulate the effect of
gravity, Coriolis forces, or other fields that affect the flow. Equation 2 can
be interpreted as such: the particle density function for discrete x⃗, c⃗, t is
computed based on two processes, the advection and the collision steps. In
the advection step, a particle is streamed from one cell to another by c⃗∆t.
One key factor of this step is that no interpolation is needed to compute
fluxes, as in the advection of the Navier-Stokes equations. This makes this
step very inexpensive, computationally, while also making it have little nu-
merical dissipation. The physical duration of a timestep in isothermal LBM
is given by:
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∆t =
∆√
3c0

(3)

where ∆ is the mesh size and c0 is the speed of sound. Therefore, decreasing
the speed of sound allows the simulations to be conducted at larger physical
timesteps, which is advantageous for performance and can be done as long
as compressibility effects are not important.

The collision step accounts for the interaction between particles with
different velocities in the same cell. This is usually computed with the
Bhatnagar-Gross-Krook (BGK) model [24], given by:

Ci(x⃗, t) = −1

τ
[fi(x⃗, t)− f eq

i (x⃗, t)] (4)

where τ is the relaxation time and f eq
i is the equilibrium particle distribution

function. We can compute τ based on the kinematic viscosity ν, the speed
of sound, and ∆t as:

τ =
ν

c20
+

∆t

2
(5)

and f eq
i is:

f eq
i = ρwie

c⃗i·u⃗/T−u⃗·u⃗/(2T ) (6)

where ρ is the fluid density, wi are the weighting factors for each velocity
direction, and T is the temperature. We can approximate f eq

i by a third
order expansion [25] as:

f eq
i ≈ ρwi

[
1 +

c⃗i · u⃗
T

+
1

2

(
c⃗i · u⃗
T

)2

+
1

6

(
c⃗i · u⃗
T

)3

− u⃗ · u⃗
2T

(
1 +

c⃗i · u⃗
T

)]
(7)

Finally, with fi computed, the fluid density and momentum can be calculated
by:

ρ =
∑

fi (8)

ρu⃗ =
∑

c⃗ifi (9)

And pressure can be computed from the ideal gas law:
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p = ρRT (10)

where R is the specific gas constant. Note that pressure is not needed during
the computations and is calculated only as a post-processing step. This is
advantageous when working with compressible air flow, where the large num-
ber of digits in the fluid pressure often require double precision in numerical
computations.

Advantages of the LBM over traditional Navier-Stokes simulations are
mostly related to the simple and computationally inexpensive mathematics of
the method. Collision operators are fully local, which is highly advantageous
for simulations using large computer clusters and GPUs. The advection step
does require neighbor information, but only adjacent cells are used, while
the low dissipation in the method is similar to high-order traditional schemes
[26], which require several neighbors of given cells. With these advantages,
the LBM can be orders of magnitude faster than high-fidelity Navier-Stokes
solvers, while the explicit time marching scheme allows for the capturing
of high-frequency flow phenomena [27]. Additionally, the Cartesian meshes
typically associated with the LBM allow for very complex geometries to be
included in simulations [28] with little user effort.

3.2. Flow Solver Specifics

In this work, the commercial LBM code PowerFLOW® is used. This
tool has been used extensively for aerodynamics of attached and separated
flows [29, 30, 31, 32] rotor aerodynamics [33, 34, 35, 36, 37], and vortical
flows [38, 39]. Turbulence modelling is achieved with a k − ϵ RNG model
[40], with the eddy viscosity being reduced depending on local flow properties
[41], which is referred to as very large eddy simulation (VLES). The eddy
viscosity is added to the fluid viscosity in the BGK model [41], analogous
to what is done in Navier-Stokes turbulence modelling with the Boussinesq
approximation. This is done by replacing the relaxation time τ in Eq. 4 with
an effective relaxation time τeff [42]:

τeff = τ + Cµ
k2/ϵ

T
√

(1 + η̃2)
(11)

where Cµ is a constant of the turbulence model, k is the turbulence kinetic
energy, ϵ is the turbulence dissipation rate, and η̃ is a proprietary combina-
tion of local strain and local vorticity. Hence, VLES works by reducing the
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eddy viscosity in the presence of resolved turbulence, switching from a k− ϵ
RNG formulation to a large eddy simulation approach based on local flow
properties.

The choice of the discretization of the velocity space is a critical part of
the LBM. In general, the fewer directions particles can travel into, the less
physics are captured by the method. However, the more directions, the higher
the computational cost. For isothermal, quasi-incompressible cases, particles
only need to travel to adjacent cells for mass and momentum conservation
to be achieved. A cost-effective option is to use the D3Q19 formulation, i.e.,
a 3D 19-states model. This means that particles can travel to 18 adjacent
cells, or stay in their current cell (stop state). This is shown in Fig. 3, where
the circles denote the directions particles can travel in, for a lattice of cubic
cells. With this formulation, the weights ωi become 1/3 for the stop state,
1/12 for the Cartesian directions, and 1/36 for the diagonals.

Figure 3: Discretization of the velocity space into 19 vectors.

Body forces are generally simple to apply in Navier-Stokes solvers, but
LBM requires some corrections. In PowerFLOW, the formulation of Guo et
al. [43] is used, where the body force components Fi in Eq. 2 are computed

from a general body force per cell volume F⃗ using:

Fi =

(
1− 1

2τ

)
ωi

(
c⃗i − u⃗

c20
+

c⃗i · u⃗
c40

c⃗i

)
· F⃗ (12)

This formulation also requires a correction to Eq. 9:

ρu⃗ =
∑

c⃗ifi +
∆t

2
F⃗ (13)

At solid walls, LBM traditionally has two simple boundary conditions:
specular reflection and bounce-back. Specular reflection is equivalent to a
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free-slip boundary condition, where the wall tangential component of the
particles are preserved, whereas bounce-back is equivalent to no-slip, with
the tangential components being reflected back. For both cases, particle
components normal to the wall are reflected back into the cells. The normal
momentum exchange between particles and solids corresponds to pressure,
while the tangential exchange corresponds to friction. This means velocity
gradients do not need to be computed in LBM for friction calculation.

A combination of specular reflection and bounce-back can be used to
achieve a fluid velocity near the wall that is larger than zero, but smaller than
the equivalent inviscid velocity. This is needed for the use of wall models,
which are typically needed for Cartesian grids. PowerFLOW uses the log-
law as a wall model [44]. Let us define u+=u/uτ and y+=yuτ/ρ, where u+

is a non-dimensional velocity, u is the wall tangential velocity, uτ =
√

τ/ρ
is the friction velocity, τ is the shear stress, y+ is the non-dimensional wall
distance, and y is the wall-normal distance, usually measured half a cell
from the wall. Hence, the velocity can be computed for the sub-laminar and
turbulent regions as:

u+ =

{
y+, if y+ < 5
1
κ
ln(y+) + C, if y+ > 35

where κ≈0.41 is the von Kármán constant and C is an empirical constant,
typically equal to 5.5, but here also includes proprietary pressure gradient
corrections. Between these well defined regions, where 5 < y+ < 35, u+ is
not well defined and different codes use different methods. In PowerFLOW,
an additional logarithmic equation is fitted between the sub-laminar and
turbulent regions. The wall treatment has been recently improved to capture
resolved turbulence in sufficiently resolved boundary layers, which allows for
laminar separation bubbles to be captured [45, 46].

For velocity inlet and pressure outlet boundary conditions, the formula-
tion of Zou and He [47] is used. This formulation is used to define fi that
point from the inlet and outlet faces into the fluid domain. This is achieved
by imposing a certain velocity or density (derived from a user-imposed pres-
sure by using the ideal gas law) at the cells adjacent to the boundaries in
Eqs. 8 or 9, respectively. Then, we assume that the non-equilibrium part of
the particle distributions (the term in square brackets in Eq. 4) performs a
bounce-back at the boundaries. This gives us a closed system of equations,
allowing the values of fi entering the domain to be computed.
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All the boundary conditions described so far assume the domain bound-
aries are flat surfaces adjacent to cell faces. For complex geometries, Pow-
erFLOW uses surface elements with second order accuracy, dubbed surfels
[48]. Surfels are flat elements generated by the intersection between the fluid
mesh and surface facets. Figure 4 shows a 2D representation of how sur-
fels are formed. Note that some cells have more than one surfel. During the
discretization of the domain, surfels and their associated Pgrams (simple par-
allelograms in 2D) are created. The Pgrams define which cells interact with
a given surfel, both sending and receiving particles to and from that surfel.
They are formed by extruding the surfel along the velocity space directions
i.

(a) Solid geometry (blue) with a highlighted surfel
(bold black line) interacting with the highlighted
cell (bold grey box).

(b) Pgrams associated with the highlighted surfel.
Grey and blue Pgrams interact with two cells each,
orange Pgram interacts with four cells.

Figure 4: Two-dimensional representation of surfels (black lines split by black circles) and
their interaction with the particle velocity space (grey arrows) of a lattice (dotted grey
lines).

The computations start with the gathering step, where the volume frac-
tion of each cell covered by Pgram i defines the fraction of fi∗ that will
interact with the surfel, where ∗ denotes the direction opposite of the Pgram
extrusion. In Fig. 4, that means that for the orange Pgram, around 60% of
fi traveling towards the bottom left diagonal of the grey cell is advected to
the highlighted surfel, and 40% of the same fi is advected to the cell where
the surfel is. The second step is surfel collision, where all the particles that
reach the surfel interact and the outgoing values of fi become:
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fi = f eq
i +

(
1− 1

τ

)
(fi∗ − f eq

i∗ ) (14)

where again ∗ denotes the incoming particle distribution functions, τ is com-
puted with Eq. 5 with ν = 0, effectively making this a specular reflection
(which will be corrected), and f eq

i is computed with Eq. 7, by using the
Pgram weighted volume averaged surfel density and tangential velocity as ρ
and u⃗ respectively. Finally, the scattering step is performed, with the parti-
cles being redistributed to nearby cells based on the fraction of the volume of
the Pgram that they occupy. This step needs a few corrections. The first is
a mass flux correction, to ensure the method is conservative and the number
of particles coming in match the number of particles coming out. Then, a
friction correction can be added to avoid a full specular reflection, allowing
for wall functions to be used. Finally, a velocity gradient correction is added
to make the scheme second order, avoiding the first order piece-wise constant
assumption of the method described so far. The method is thus conservative
and lacks the lattice alignment issues of first order methods. A thorough
explanation of surfels and all the corrections is provided in the thesis of Li
[49].

For rotations, PowerFLOW uses a sliding mesh approach [50]. This is
achieved by rotating the geometry inside an axisymmetric region of the mesh,
which is separated from the inertial domain by an interface made of surfels.
Inside the sliding mesh, effects of inertial forces due to rotations are accounted
for by a second order method, using Eq. 12. The velocities in the sliding
mesh are shifted based on Eq. 13.

At the interface between the rotating (internal) and inertial (external or
fixed) domains, surfels are used on both sides. They coincide in the first time
step and, after that, one external surfel will overlap with one or two internal
surfels. This is shown in Fig. 5. The way particles are advected across
the sliding mesh interface is very similar to the wall treatment described
in the previous paragraphs. The gathering step is performed on all surfels,
both internal and external. Then a modified surfel collision step is done, but
here Eq. 7 uses the velocity vector and not the tangential velocity vector,
preserving the momentum normal to the interface. In the internal domain,
the velocity is computed in the rotating reference frame. The information
that needs to cross the interface is interpolated by a projected area weight ξ.
This is also shown in Fig. 5, where the particles from the top external surfel
are split between the two surfels that overlap with it using ξ on the left side
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and 1− ξ on the right, which is conservative. Finally, the streaming step is
performed in the internal and external domains.

(a) Starting position

ξ 1− ξ

(b) Rotated position (rotating reference frame in
blue), with the dashed orange lines representing
how the particles that reach the top surfel of the
external mesh are split between the two internal
mesh surfels that overlap with it

Figure 5: Sliding mesh approach, with the background lattice (dotted grey lines) and
reference frame interface surfels (solid lines).

3.3. Actuator Line

The actuator line (AL) method [14] was created to allow for high-fidelity
simulations of rotors with reduced cost. This is achieved by replacing the
blades with body forces in a CFD simulation, allowing for much coarser
meshes to be used. AL was recently implemented in the LBM software
PowerFLOW [18] using a sliding mesh. This method is referred to as AL-
LBM.

A sketch of the vectors involved in blade element theory is shown in Fig. 6.
The relative flow velocity (U⃗r) is sampled on points along the fictitious blade

in the CFD simulation using trilinear interpolation, based on the axial (U⃗a)

and tangential (U⃗t) velocities in the reference frame of the blade, the latter
including blade rotation. With the known blade twist (θ), the angle of attack
(α) can be computed and 2D airfoil data is then used to compute the local

lift (L⃗) and drag (D⃗) forces. These forces can then be projected on the axial

(F⃗a) and tangential (F⃗t) directions and imposed as body forces in the CFD
simulation.
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Figure 6: Vectors and angles involved in 2D flow around the cross-section of a rotor blade.

In order to impose a smooth force distribution, smearing functions are
used, distributing the original 2D airfoil force F⃗2D acting on the airfoil
quarter-chord x⃗0 into the CFD simulation as F⃗CFD(x⃗), where x⃗ is the spatial
position. The most common smearing function used in AL is a Gaussian
with a single smearing factor ϵ, as per Eq. 15.

F⃗CFD(x⃗) = −F⃗2D
1

ϵ3π3/2
e−

∥x⃗−x⃗0∥
2

ϵ2 (15)

3.4. Tip Corrections

AL simulations without any special tip treatments tend to have non-
physical force distributions near blade tips. Because of this, tip corrections
used in blade element momentum theory are often employed in AL, even if
these tip corrections were originally designed to compensate for the infinite-
number-of-blades assumption in the momentum theory, which is not an as-
sumption of the AL method. A common tip correction is the Glauert one
[51], where G, a function of the radial position r, normalized as χ=r/R, and
the flow angle ϕ, is defined as:

G =
2

π
cos−1

(
e−

B(1−χ)
2χsin(ϕ)

)
(16)

where B is the number of blades. The root region can use the same correction
(replacing (R− r) with (r− δ), where δ is the radius where the blade lifting
surface starts), but alternative formulations for the root correction g have
also been proposed [52]:

g = 1− e−a(χR/δ)b (17)
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where a and b are empirical constants. Using these methods, G and g are
multiplied by the forces along the blades, giving the force distributions a
more physical behavior.

A more physically meaningful justification for the issues near blade tips
in AL is related to the smearing factor [53]. This smearing of the forces
causes the trailing vortices from the blades to effectively have a core, instead
of following the inviscid behavior of idealized vortices. This causes the in-
duction on nearby blade sections to be reduced, leading to inaccuracies, in
particular near the blade tips. In recent years, smearing corrections derived
from attempting to make AL into a method consistent with lifting line were
achieved. In this work, AL simulations are performed using the smearing
correction of Meyer Forsting et al. [54], instead of Eqs. 16 and 17. This
correction compensates for the smearing of the forces from the vortices pro-
duced by the actuator line by combining a near-wake model of the trailed
vorticity with the Lamb–Oseen viscous core model and coupling it with the
AL model.

4. Case Setup

Simulations are conducted in a domain representing the water tunnel
used in the experiments. This allows for potential blockage or wall proximity
effects to be accounted for. However, the boundary layer on the tunnel walls
is assumed to be small and is neglected, by means of free-slip walls in the
simulations. A velocity boundary condition is used on the upstream face
of the simulation domain and a pressure boundary condition is used on the
downstream face, both with constant values in space and time, meaning
freestream turbulence is neglected. The experiments were conducted in a
water tunnel at low velocities, meaning the flow is incompressible, and hence,
Reynolds number matching is important, while the Mach number is less
critical. Hence, we simulate the flow assuming air as the fluid, meaning the
ideal gas law is used, with the fluid density of air ρ= 1.23 kg/m3, ambient
pressure of one atmosphere, and specific gas constant R = 287 J/(kgK).
However, the viscosity needs to be modified to match the Reynolds number
of the experiments, thus ensuring the same physics are being resolved. Hence,
we use a fluid viscosity of ν=2πfRctip/Re = 9.75 × 10−7. We then modify
the speed of sound so that the freestream Mach number is 0.02, instead of
the experimental 3.7×10−4. This is still well within the incompressible range,
while providing a timestep that is over 50 times larger than the experimental
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Mach number would provide (see Eq. 3), greatly reducing the simulation
cost. Thus, the fluid properties used in the simulation do not correspond to
an existing fluid, but ensure Reynolds and Mach numbers that are compatible
with reproducing the physics in the experiments.

The blade-resolved simulations are done with the first cell size chosen so
that the dimensionless distance of the first cell center to the wall y+ < 5,
avoiding the use of wall functions, which is possible with the Cartesian mesh
due to the low Reynolds number of this case. The tip vortex region is resolved
with cubic cells of side R/45. A sliding mesh is placed around the blades
at a distance of R/9. The shaft and hub are included in both the blade-
resolved and AL simulations. Cases are initialized with free-stream pressure
and velocity. All cases are run for 10 full rotor revolutions.

A radial plane showing the volume mesh used in the blade-resolved simu-
lations is shown in Fig. 7. The sliding mesh interface is sketched as the thick
black line. Adjacent resolution levels always change cell size by a factor of
two. Besides refinement near the blade surface, to achieve the aforementioned
y+ values, the mesh is refined in the wake of the rotor in regions where the tip
vortices are expected to be present, i.e. in a cylinder behind the blade roots
and in a hollow cone section behind the blade tips. In these regions, the cell
size is R/225. The baseline mesh for the AL simulations is nearly identical
to the one shown in Fig. 7, but without the small refinement regions near
the blades and coarsened by a factor of two.

When mean results are presented, simulations are time-averaged over one
rotor rotation and spatially averaged over the azimuth, by taking planes every
5◦ around the circumference of the domain. Instantaneous results are phase-
averaged with 20 samples, by taking planes in the blade reference system over
one third of a rotation period. These time and phase-averaging approaches
are done to achieve the smoothness seen in the experimental results, which
were time or phase-averaged over many turbine rotations.

The smearing factor ϵ is a user-defined aspect of AL, with different authors
using a wide range of values. Shives and Crawford [55] found the requirements
ϵ/c≈ 0.25 and ϵ/∆> 4 to be necessary, where c is the airfoil chord and ∆
the local mesh size. Churchfield et al. [56] found ϵ/D = 0.035 to be an
adequate ratio, where D is the rotor diameter. Dağ & Sørensen [53] tested
ϵ/∆ equal to 3 and 5 and found both to be adequate when using a smearing
correction. Kleine et al. [57] found that, for non-planar wings, ϵ/∆ = 7
produced substantially lower errors than ϵ/∆=3.5.

As previously mentioned, the baseline AL simulations have a cell size

15



Figure 7: Slice of the mesh used in the blade-resolved simulations. Every second line
shown. Blue region shows the inertial reference frame, green region is inside the sliding
mesh interface.

around the blades and tip vortex of ∆=R/112.5. We set ϵ/∆=7, meaning
for the baseline AL simulations, ϵ/c≈0.24 and ϵ/D≈0.031. Therefore, based
on the recommendations outlined in the previous paragraph, the smearing
factor should be adequate for our baseline simulations. In cases where we
run a coarse AL simulation, ∆=R/56.25 and in the cases where we match
the resolution of the blade-resolved simulations, ∆ = R/225. In the latter
cases, ϵ is approximately equal to the blade thickness. All AL cases use 43
actuator points along each blade and they all use ϵ/∆=7, regardless of the
resolution.

5. Results for the Baseline Rotor

5.1. Validation of Blade-Resolved Simulation

We begin by performing a validation of the blade-resolved simulations.
We do this because we will use the axial force along the blades to validate the
AL simulations, and these forces are not available in the experiments. Hence,
we must first make sure the blade-resolved simulations are capturing the
same thrust distribution as the experiments, then we can use these numerical
results as a reference. This comparison is done by examining the mean axial
velocity ū in the wake of the rotor, which by momentum theory, is directly
related to the thrust distribution.
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Figure 8 shows a comparison of ū along radial (r) lines at several differ-
ent axial positions (z). The lines are shifted along the horizontal axis for
clarity, but the values all start at zero on the bottom of the plots. Excellent
agreement between simulations and experiments is achieved for this quantity,
giving us confidence that the axial loading on the blades is well captured in
the blade-resolved simulations. Further results of the blade-resolved simula-
tions are shown in Section 5.3.

Exp.

LBM

Figure 8: Time and azimuthal-averaged axial velocity at different radial lines. Dotted
black lines are experimental data, blue lines are blade-resolved simulations.

5.2. Validation of the Actuator Line Simulations

We now focus on the AL simulations and attempt to match the axial
force distribution on the blades from the blade-resolved case. We start by
comparing the blade-resolved axial force distribution with AL simulations
with different tip mesh resolutions. The AL simulations are performed on
a mesh that is two times coarser than the blade-resolved case, which is still
quite fine for AL (∆=R/112.5), and a coarse mesh, coarsened by a factor of
two (∆=R/56.25). Force distributions are shown in Fig. 9 and the thrust
coefficients (CT =T/(0.5ρU2

∞), where T is the integrated thrust) are shown
in Table 1. The baseline AL results show substantially less thrust than the
reference blade-resolved simulations. As indicated by the coarse mesh results,
the thrust slightly improves by coarsening the mesh. This is consistent with
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the findings of Nathan et al. [58] and Meyer Forsting and Troldborg [59],
who demonstrated that as the grid resolution increases, AL tends to produce
lower torque for the same ϵ/∆. In order to increase the forces acting on the
blades, either the mesh needs to be coarsened or ϵ needs to be larger. Neither
of these options is adequate for our purposes, as both would lead to thicker
tip vortices.

0 0.2 0.4 0.6 0.8 1
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0.005

0.01

0.015
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0.025

0.03

Blade-Resolved

AL Coarse

AL

Figure 9: Axial forces along the blades. Blade-resolved simulations compared to different
actuator line resolutions.

CT Error
Blade-resolved 0.96

Actuator line coarse 0.83 14%
Actuator line 0.78 19%

Table 1: Thrust coefficient for each case, along with relative error compared to blade-
resolved case.

There are several possible reasons for the discrepancy of AL and blade-
resolved simulations. The AL simulations use 2D airfoil data for the NACA2414
airfoil at a Reynolds number (Re) of 30,000, which were obtained using
XFOIL [60]. This is a popular airfoil for scaled models, as it is known for
having good aerodynamic behavior at low Re. However, this behavior was
originally studied for Re starting at 60, 000 [61] and the tip Re for this tur-
bine is 40, 000, which leads to large flow separations according to XFOIL.
The very low Re encountered throughout the blade radius led to massive
separations in the blade-resolved simulations. Hence, some inaccuracies are
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to be expected from the use of the airfoil data. Besides this, the AL tech-
nique is based on a blade-element approach, which essentially only is valid
for large aspect ratio rotors. In the present case, the aspect ratio is less
that four, which is much smaller than what is employed for the conventional
wind turbine rotors, where the AL method traditionally has been employed.
Corrections for low aspect-ratio blades have been proposed [62], but are not
used here.

Figure 10 shows instantaneous surface streamlines from the blade-resolved
simulation, demonstrating the 3D flow features. On the pressure side, there
is some curvature towards the blade root or tip throughout most of the
blade, while on the suction side a large flow separation is present and the
streamlines are mostly pointing towards the tip. The images are colored by
the pressure coefficient Cp = (p − p∞)/q∞, where p is the static pressure, q
the dynamic pressure, and ∞ denotes a free-stream quantity. This massively
separated flow makes the AL simulations unreliable for two reasons: first,
obtaining polars for separated flows is difficult and depends on Re, meaning
highly accurate data would be needed for many angles of attack and Re to
represent the entire blade properly. Second, blade element theory, which AL
relies on, assumes that the flow around the blades is locally 2D.

(a) Pressure side (b) Suction side

Figure 10: Line integral convolution showing instantaneous surface streamlines colored by
pressure coefficient on a blade.

The issues highlighted in this section put into question the capabilities of
AL for our test case and we investigate the potential for AL accuracy further
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in the next section.

5.3. Preset Actuator Line Simulations

As discussed in the previous section, AL has limitations linked to low
aspect ratio rotors and separated flows. Additionally, likely because of the
velocity sampling in the simulation, results can be sensitive to the mesh and
the smearing factor sizes [55]. In this section, we verify what the best possible
result out of an AL simulation can be for our test case in order to remove
the limitations highlighted in the previous section.

Hence, we employ what we refer to as “preset AL”. The blades are still
modelled as lines composed of Gaussian blobs applying body forces to the
CFD simulations. We use the same mesh as the blade-resolved simulations
and ϵ = 2.8 mm, which is roughly equal to the blade thickness. However,
instead of computing the forces based on sampling the local velocity and
using blade element theory, we simply extract the forces on the blades of
a blade-resolved simulation and apply them on the preset AL case, with
no feedback or table look-ups. No tip or smearing corrections are needed,
removing another source of uncertainty. With this method, no assumption
of attached 2D flow is made and the only simplification of the rotor in the
simulation is that the blades are modelled as actuators instead of walls. The
forces are extracted from the blade-resolved simulations by integrating the
pressure and friction on the blade surface within rings of constant radii,
centered on the locations where the AL body forces are applied.

A second preset AL, which we refer to as “analytical preset AL” only
employs thrust and power coefficients as input, whereas the force distribution
along the blades is obtained from an analytical model [52]. This model
assumes a constant circulation Γ along the blade, with normalized form γ:

γ =
Γ

4πRU∞
(18)

From momentum theory, the thrust coefficient is:

CT = 2a1γ
2 + 4λa2γ (19)

where a1 and a2 are defined as:

a1 =

∫ 1

0

g2G2

χ
dχ (20)
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a2 =

∫ 1

0

gGχdχ (21)

where G and g are defined in Eqs. 16 and 17. For g we use a= 1.256 and
b=2 [63] and for G we assume the tangential induction is negligible, hence
Ut=Ωr and we can compute the sine term in Eq. 16 as:

1

sin(ϕ)
=

√
1 +

λ2r2U2
∞

R2U2
a

(22)

Solving Eq. 19 for γ we obtain:

γ =
−4λa2 +

√
16λ2a22 + 8a1CT

4a1
(23)

The average axial flow velocity at the rotor disk Ua is calculated using
momentum theory as:

Ua =
U∞CP

4λa2γ
(24)

where CP =QΩ/(0.5ρπR2U3
∞) is the power coefficient, with Q as the rotor

torque. With an initial value of Ua, one can compute Eq. 16, update the
value of γ, recompute Eq. 24, and after a few iterations converge on a value
for Ua and γ. Finally, the axial force distribution Fa and tangential force
distribution Ft can be computed as:

Fa =
πRρU2

∞gG

B
γ

(
2λr

R
+

γRgG

r

)
(25)

Ft =
πRρU2

∞gG

B

(
CP

2λa2

)
(26)

Hence, Fa is a function of γ, which depends on CT , and Ft is a function of
CP .

This analytical approach is more general-purpose than the preset AL,
as the amount of information required before conducting the simulation is
greatly reduced from full force distributions to CT and CP . The drawback
is that the force distribution along the blade is not fully correct, but as is
shown in Fig 11, it is very close to the blade-resolved results.
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Figure 11: Forces along the blades. Blade-resolved simulations compared to analytical
model.

Both preset AL approaches used here assume a fixed force on each blade
section over time, meaning these approaches are limited to cases where the
flow around the blades does not change over time. Hence, in cases with
atmospheric boundary layers, rotor yaw, rotor tilt, or freestream turbulence,
the use of the preset AL approaches as they are used here would lead to
severe accuracy concerns.

The resulting velocity fields are shown in Fig. 12, where we can see the
preset AL and blade-resolved results match each other and experimental data
very well, with minor difference in the wake of the blade root. The analytical
AL results are also in good agreement with the experiments, with differences
mostly confined to the wake of the blade root (r/R< 0.5). The standard AL
results (here using the coarse mesh) show much weaker tip vortices, barely
visible using the same color range as the other cases. The lower thrust seen
in Fig. 9 is also noticeable here, with the deceleration behind the rotor being
less pronounced in the AL case. The blade-resolved case shows a deceleration
of the flow near r/R=0.1 and z/R=3 due to the root vortex bursting, which
either does not occur in the other case or occurs at a later point. This
explains the differences in Fig. 8 near the root of the most downstream line.

Similar results can be seen in Fig. 13, where the radial component of the
velocity is shown for each case. The experiments, blade-resolved simulations,
and preset AL simulations once again show excellent agreement. The blade-
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(a) Experiment

(b) Blade-resolved simulation

(c) Preset actuator line simulation

(d) Preset analytical actuator line simulation

(e) Coarse standard actuator line simulation

Figure 12: Phase-averaged axial velocity on a z−r plane.
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resolved simulations seems to capture the root vortex more accurately than
the preset AL, as evidenced by the contours in 1<z/R<2 and 0<r/R<0.5.
The analytical AL results are again very close to the reference cases, with
differences mostly in the blade root wake. The coarse AL case clearly has
much weaker tip vortices than the other cases.

A notable feature of the experiments and blade-resolved case is that the
tip vortex starts becoming misaligned around z/R = 3. This is the begin-
ning of the long-wave instability that leads to leapfrogging. For a perfectly
symmetric rotor, this should not happen. In the experiments, the presence
of very small asymmetries introduced during rotor assembly (∼ 0.001R) can
lead to these instabilities, while in the simulations the asymmetry due to
having a Cartesian mesh (instead of an axisymmetric mesh) could be the
main trigger for leapfrogging. Flow separation around the blades and the
chaotic nature of the associated turbulence could also be the source of the
instabilities. The AL cases, with their very smooth velocity distributions and
more simple wake structure do not exhibit any long-wave instabilities.

While the velocity fields for the blade-resolved and preset AL cases look
almost identical in the wake of the rotor, the flow around the real blades
has strong separations, which lead to some differences. Figure 14 shows
the phase-averaged azimuthal velocity, which shows that the wake from the
blades is much more visible in the preset AL case. This quantity is not
available in the experimental data set. Note the vertical green lines in the
blue region of the near wake (0.2<z/R<1.5). The wakes of the AL blades
behave in a steady fashion, while the turbulence in the blade-resolved case
causes diffusion, making the wake more difficult to visualize. Overall, using
AL leads to higher swirl in the wake.

Finally, we examine the tip vortex itself. Figure 15 shows the phase-
averaged rotation velocity vθ around the tip vortex center, measured in a
plane rotated 60◦ in the azimuthal direction, downstream of one of the blades.
We only focus on the experiments, blade-resolved simulations, and preset
AL, as the standard AL simulations produced tip vortices that were clearly
too weak, as the thrust distributions indicate, and the analytical preset AL
results are very similar to the preset AL. Experimental results are available
in low resolution (0.88 mm), which is the resolution used in the PIV shown in
the previous sections, and high resolution (0.16 mm), where the field of view
was reduced to a small area around the tip vortex location. The difference
between the two experimental curves indicates how difficult it is to capture
the vortex core accurately. The preset AL and blade-resolved simulations
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(a) Experiment

(b) Blade-resolved simulation

(c) Preset actuator line simulation

(d) Preset analytical actuator line simulation

(e) Coarse standard actuator line simulation

Figure 13: Phase-averaged radial velocity on a z−r plane.
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(a) Blade-resolved simulation

(b) Preset actuator line simulation

Figure 14: Phase-averaged azimuthal velocity on a z−r plane.

agree very well with each other, even in terms of the vortex radius (i.e., the
value of r corresponding to the maximum value of vθ), indicating the choice
of ϵ is adequate. Both simulations match the velocities induced by the vortex
outside of the laminar core for r > 8 mm. This agreement means that the
vortex circulation is well captured by the simulations, which is consistent with
the axial and radial velocity agreement shown in Figs. 12 and 13. The cell
size in the simulations is 0.4 mm, which is too large to capture the core size
measured in the experiments (about 1.5 mm). For short-wave instabilities,
matching the vortex core is important, whereas for long-wave instabilities,
matching the circulation should be enough.

6. Asymmetric Rotor Simulations

6.1. Validation with Experiments

Here, we simulate cases where one of the blades of the rotor is modified,
in order to promote wake instability and earlier recovery. We focus on a
case from previous work [12]: extending the radius of one blade by 4.1%
(R=9.37 cm). The extended blade geometry is provided as a supplement to
this work. The helical vortex system from the experiments, blade-resolved
simulation, preset AL simulation, and coarse AL simulation are shown in
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Figure 15: Tangential velocity around the tip vortex core.

Fig. 16. The blade-resolved simulations show strong short-wave instabilities
in the tip vortex, while also capturing secondary flow structures around the
tip vortex, which begin near the blade, where massive flow separation occurs.
These secondary structures, or turbulent worms [64], are not visible in the
experiments, which may be due to the dye being entrained only in the primary
tip vortex. They have been shown to occur in reality, but are only numerically
captured via blade-resolved, scale-resolved simulations [65]. The coarse AL
results have a much thicker tip vortex, due to the low resolution and high ϵ.
All cases capture the leapfrogging that occurs in the helical wake due to the
asymmetric rotor.

The distance zL from the rotor plane where leapfrogging, or the swapping
of axial positions between two adjacent vortex loops, occurs was measured
for each case. It is compared to experimental data [12] in Table 2. In both
simulation and experiment the leapfrogging location was determined visually
as the point where two successive loops have the same axial coordinate.
As previously discussed, small imperfections in simulations and experiments
lead to leapfrogging in experiments and blade-resolved simulations of the
symmetric rotor. The AL simulations are much less turbulent than the blade-
resolved ones, with effectively steady flow around the fictitious blades. Hence,
in AL leapfrogging does not occur, whereas in blade-resolved simulations
and in experiments it occurs at similar locations for reasons that could be
coincidental.

When one blade is extended, the asymmetry introduces a disturbance
in the helical vortex system that leads to leapfrogging. The blade-resolved
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(a) Experimental results, dye visualization [12]

(b) Blade-resolved simulation, isosurface of λ2=−300R2/U2
∞

(c) Preset actuator line simulation, isosurface of λ2=−300R2/U2
∞

(d) Coarse standard actuator line simulation, isosurface of λ2=−5R2/U2
∞

Figure 16: Visualization of tip vortex for extended blade case.
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Baseline Extended
Experiment [12] 4.09 2.73
Blade-resolved 4.1 2.9

Preset actuator line No 3.1
Actuator line No 3.7

Table 2: Streamwise position zL/R where leapfrogging occurs for each case.

simulations capture leapfrogging within 6% of experimental values, whereas
the AL simulations overshoot the leapfrogging location by 14% for the preset
case and 36% for the coarse AL case. The steady nature of the vortex system
in AL is likely responsible for stabilizing the helical vortex system. Hence,
AL is not suitable for predicting the exact location of tip vortex instability
for laminar inflows, but can likely still be used for turbulent inflow and wind
farm studies, where the exact instability location is less relevant than the
far-wake mixing.

6.2. Far-Wake Analysis

We now go beyond the experiments, which were limited to the near-wake,
and move on to simulating the far-wake, in order to investigate the potential
wake-recovery benefits of the asymmetric rotor. We extend the simulation
domain downstream, in order to examine the wake up to a distance of 14R of
the rotor. Simulations are conducted with the preset AL method, in order to
save computational time, and the shaft is removed. The tip vortices for the
baseline and symmetric rotor are shown in Fig. 17. In spite of the smooth
vortices of AL, the asymmetric case eventually develops instabilities, near
z/R = 6.5. This is likely due to small asymmetries in the flow introduced
by the Cartesian mesh and potential short-wave instabilities, which are not
axisymmetric. The asymmetric rotor still leads to leapfrogging in under half
the distance (zL/R = 3.1), meaning it is still likely to lead to better wake
recovery.

The power available for a wind turbine is proportional to u3. This allows
us to estimate the available power for wind turbines downstream of our rotor,
normalized by the power available to our rotor:

Available Power =

∫
u3dA∫
U3
∞dA

(27)
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(a) Symmetric rotor

(b) Asymmetric rotor

Figure 17: Visualization of tip vortex for extended domain cases. Preset AL, isosurface of
λ2=−200R2/U2

∞.

where A refers to the area of a disk of radius R perpendicular to, and centered
on, the rotor axis, at several z/R locations. The results of this analysis are
shown in Fig. 18. At a distance of 14R, the asymmetric rotor allows for 12%
more power to reach a potential wind turbine, in spite of the longer blade
leading to slightly more thrust than the symmetric rotor. This demonstrates
the potential of the tip extension for far-wake recovery in a wind farm.
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Figure 18: Available power in the wake of the rotor.
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7. Conclusions and Outlook

Blade-resolved and actuator line lattice-Boltzmann simulations of a small
three-bladed rotor, operating as a wind turbine, were shown in this work.
Simulations were validated with experimental data, showing a remarkable
agreement for the blade-resolved simulations. The actuator line was shown
to have moderate dependence on the mesh resolution. Coarsening the mesh
improves the actuator line thrust generation, but also necessarily makes the
tip vortices thicker.

Preset actuator line simulations, where the body forces are copied from
the blade-resolved simulations, with no feedback from the flow velocity or
look-up tables, are conducted. These preset simulations show excellent agree-
ment with blade-resolved simulations and experiments, which leads to the
conclusion that it is possible to model this case with actuator line, but the
lack of correct airfoil data, and the combination of a 2D blade-element ap-
proach with a very low aspect ratio rotor introduce substantial errors. The
preset actuator line simulations, using the same tip vortex resolution as the
blade-resolved case, used one fifth of the computational resources. It was
shown that having the thrust and power of the turbine is sufficient to pro-
duce accurate preset actuator line simulations, by using an analytical model
to compute the force distributions along the blades.

Tip vortex instability was examined and we found short-wave instabilities
in the blade-resolved simulations, which were not visible in the experiments.
Long-wave instabilities leading to leapfrogging were found when the rotor was
made asymmetric by extending one blade radially. All simulations were able
to capture the leapfrogging caused by the asymmetric rotor, with the preset
and standard actuator line cases predicting the location of leapfrogging less
accurately than the blade-resolved simulations.

Finally, the effects of rotor asymmetry on the far-wake were investigated
by using preset actuator line simulations with a longer domain than was avail-
able in the experiments. The wake recovery introduced by early leapfrogging
led to an increase of 12% in the available power for a downstream turbine
perfectly aligned with the rotor, at a distance of 7 rotor diameters.

Future work will focus on simulating different asymmetric rotor config-
urations, focusing on the effects of vortex instability on wake recovery over
long distances. The effect of free-stream turbulence will also be investigated.
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