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Abstract
Hydroelectric power, or hydropower, harnesses the potential energy
of water descending from higher to lower elevations to generate
electricity. As a well-established and cost-effective renewable en-
ergy technology, it not only produces power but also supports
significant water management services. The integration of Internet
of Things (IoT) technologies in hydropower plants has shown sig-
nificant potential in enhancing monitoring, efficiency, and control
capabilities. However, current implementations often lack a holistic
and standardized approach to contextual modeling. To address this
gap, this paper presents a comprehensive approach to modeling
the structural and operational components of hydropower plants
(HPPs) using NGSI-LD data models. We propose detailed NGSI-LD
data models that incorporate both static properties (e.g., location,
structural attributes), relationships (e.g., component interactions,
hierarchical dependencies) and dynamic properties (e.g., real-time
sensor data, operational status). These models are designed to facil-
itate efficient data integration, support decision-making processes,
and enable the development of interoperable and replicable IoT ap-
plications for smart hydropower plants. We validate our approach
through deployment and testing on a federated context broker
architecture using real-world data from HPPs.

CCS Concepts
•Computingmethodologies→Modelingmethodologies; • In-
formation systems → World Wide Web; • Computer systems
organization→ Embedded and cyber-physical systems.
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1 Introduction
Energy is one of the major factors driving the world economy.
Renewable energy sources have seen particular traction recently
due to their low environmental impact, with hydropower often
regarded as particularly advantageous [18]. Hydroelectric power
or simply hydropower, is a renewable energy source where electri-
cal energy is derived from the potential energy of water moving
from higher to lower elevations. It is a proven, mature, predictable,
and price-competitive technology. Beyond energy production, hy-
dropower infrastructure features significant water management
services, and supports other variable renewable energy sources,
such as wind and solar, by providing essential storage and load
balancing services [25].

In recent years, the integration of IoT technologies in hydropower
plants has showcased that it might revolutionise the industry, en-
hancing monitoring, efficiency, and control capabilities [8, 19]. IoT-
enabled systems enable real-time data collection and analysis, facil-
itating more efficient and responsive management of hydropower
operations. Various studies have demonstrated the potential of IoT
in optimizing different aspects of hydropower management, from
micro-hydropower plants to large-scale installations [3, 23] These
innovations underscore the transformative impact of IoT on the
hydropower sector.

Despite these advancements, current IoT implementations in
hydropower often focus narrowly on specific plants or applications,
lacking a comprehensive approach to modeling contextual infor-
mation. This gap highlights the need for standardized data models
that can capture the diverse structural and operational components
of hydropower plants in a holistic manner. Building Information
Modelling (BIM) ontology-based and other linked data approaches
have been explored in the smart energy industry [5, 11, 17, 21, 24].
However, there remains a need for a standard’s based, domain-
specific information model, with sufficient substance to capture the
intricacies of hydropower infrastructure, to support interoperable
and replicable smart solutions in the hydropower sector.

This work contributes to the state-of-the-art by defining and
providing a novel set of data models for smart hydropower plants
based on the NGSI-LD standard [2]. These models offer a detailed
and semantically enriched representation of hydropower plant com-
ponents, incorporating both static properties and dynamic obser-
vations. The proposed models are designed to enhance data in-
tegration, support decision-making processes, and facilitate the
deployment of IoT applications in hydropower plants. By adopt-
ing a comprehensive and standardized approach to data modeling,
this work aims to contribute to the development of more efficient,
reliable, and sustainable hydropower systems.

https://doi.org/10.1145/3703790.3703803
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The remainder of this paper is organized as follows: Section 2
reviews related work on IoT technologies in hydropower plants,
highlighting current implementations and existing data models,
and identifying their limitations. Section 3 outlines the motivation
for developing new data models, emphasizing the need for compre-
hensive and standardized approaches, and provides an overview
of the key components of hydropower plants. Section 4 presents
the proposed NGSI-LD data models, detailing their structure, re-
lationships, and properties, and explaining the reasoning behind
the design choices. Section 5 describes the deployment and testing
of these models in a real-world context, showcasing the practical
application and validation of the models in enhancing data integra-
tion and decision-making. Finally, Section 6 concludes the paper
by summarizing the findings, discussing the implications of the
proposed models, and outlining future research directions.

2 Related Work
The integration of IoT technologies in hydropower plants is trans-
forming the industry by enhancing monitoring, efficiency, and
control capabilities. Numerous studies have explored this poten-
tial, demonstrating significant advancements in various aspects of
hydropower management.

Ginting et al. [8] developed an IoT-based monitoring system for
micro-hydropower plants (micro-HPPs) that records real-time data
on voltage, current, and water volume. This system has shown con-
siderable promise for future applications inmonitoringmicro-hydro
output power. Similarly, Sumarna et al. [19] implemented an IoT-
based monitoring system for a micro-HPP utilizing an Archimedes
screw turbine, providing valuable insights into voltage, current, and
power generation. The floating structured hydropower plant de-
signed byAfridi et al. [3] integrates IoT for real-timemonitoring and
visualization of electrical parameters via mobile apps, demonstrat-
ing its effectiveness in remote areas. Vandana et al. [23] introduced
a hybrid pump hydro-photovoltaic system utilizing IoT for agri-
cultural applications, combining solar energy and hydropower for
efficient water pumping and electricity generation. Despite these
advancements, current IoT implementations often focus narrowly
on specific hydropower plants or applications without considering
the broader context. They lack a standardized approach to modeling
contextual information comprehensively.

To address the structural characteristics of hydropower plants,
BIM has emerged as a transformative tool in the construction in-
dustry and is gaining traction within the hydropower sector [24].
BIM has been applied to various aspects of hydropower, including
design, collaboration, monitoring, scheduling, cost analysis, sus-
tainability assessment, and geotechnical investigation. However,
even for the structural components of hydropower plants, there is
a clear lack of specific standards and guidelines that allow for IoT
capabilities. The availability of widely adopted (de-facto standard)
information models is key for creating a global digital single market
of interoperable and replicable (portable) IoT-enabled smart solu-
tions in multiple domains, not only for smart hydropower plants
but also for smart cities, smart agrifood, smart utilities, and smart
industry. Data models play a crucial role because they define the
harmonized representation formats and semantics that will be used
by applications to both consume and publish data.

There have been efforts to try to model and use hydropower
plants semantics beyond simple BIM applications. With the focus
on enhancing cyber-security in power plants, Tabak et al. [21]
emphasize the importance of coupling data from diverse sources
within a hydropower plant with a data model that retains the origi-
nal semantic information, facilitating structured data interpretation
without compromising system performance. For a similar cyber-
security oriented focus, Guo et al. [9] present a novel fault diagnosis
method for hydropower systems that employs a knowledge graph
to store structured and unstructured data, allowing for intelligent
fault diagnosis through a Bi-LSTM model with an attention scheme.

As regards standard data models for representing the whole scale
of HPP operations and their components in detail, a clear vision
is currently lacking. The IEC 61968/61970 CIM Common Informa-
tion Model [17] is a series of standards under development that
aims to standardize the information exchange between electrical
distribution systems. Ontology-based approaches have also been
explored for modeling relevant information. Booshehri et al. [5]
propose the Open Energy Ontology (OEO), a collaborative effort to
represent the context of energy system analysis based on standard
terminologies used by human experts in this field. It is designed to
improve transparency and facilitate comparability and transferabil-
ity of energy system modeling and scenario analysis. In Kofler et
al. [11], the authors discuss a system that must be aware of vari-
ous energy parameters and facilities, as well as providers, to make
energy-efficient decisions for the eco-friendly operation of smart
homes. They create a smart home knowledge base following the
Web Ontology Language (OWL) standard and model an example
energy provider generating electricity through hydropower. How-
ever, all these ontologies are designed to represent a broader variety
of energy providers and consumers and lack detailed components
present in hydropower plants. On a penstock [12] of an HPP for
example, there is no way to represent an IoT device placed on a
specific part of this component

The FIWARE Foundation has introduced SmartDataModels1 as
a means to enable data portability in applications for Smart Cities,
Smart Environment, Smart Energy, among others. These models
focus on providing data models following the NGSI-LD standard.
This is an ongoing project, providing data models related to the
Energy Domain, including models for Batteries, Energy Metering,
and Green Energy. The adaptation of IEC standards (CIM) is one of
the goals of this effort.

Most of the discussed work include comprehensive data mod-
els dealing with the most common functionalities performed by
energy management systems. Nevertheless, there are concepts of
particular applications and components (such as in our case with
the hydropower plants) that are not included in the standard data
models. For this reason, it is necessary to extend the existing data
models into something more domain-specific, targeting the smart
Hydro Power Plant domain rather than the broader energy domain.

3 Motivation
Before delving into the need for modeling the context of the com-
ponents of a smart hydroPower plant, we discuss its basic structure.
Hydropower plants and their classification can vary widely [10,

1www.smartdatamodels.com

www.smartdatamodels.com


Enabling IoT-enhanced Data Models for Context-aware Hydropower Plants IoT 2024, November 19–22, 2024, Oulu, Finland

22]. Hydropower facilities are mainly categorized based on type
and capacity2. Facility types include storage or reservoir, Run-of-
River (RoR), pumped storage hydropower plants, and in-stream
hydropower schemes. Capacity types range from Pico, Micro, Mini,
Small, Medium, to Large. Despite variations in components across
different types of HPPs, the main components remain largely con-
sistent [20]. For instance, storage and pumped-storage HPPs differ
mainly in their dam structures to ensure storage capacity, with
pumped storage plants having additional mechanisms for pumping
water back to the top reservoir.

Typically, the components of an HPP include a dam, intake with
trash rack and gates, pipeline or tunnel (Penstock), main valve,
turbine and generator, transformer, tailrace pipe, and grid connector,
as illustrated in Fig. 1. Additionally, a comprehensive description
of an HPP must include the surrounding environment, such as
properties of the water, reservoirs, or rivers that the plant interacts
with.

Figure 1: Diagram of a typical "reservoir" hydropower plant,
illustrating key components

We next explore the significance of context awareness in optimiz-
ing IoT applications for HPPs. Indeed, context awareness is crucial
for the optimal operation of any IoT application as it involves under-
standing the situation in which an IoT system operates to provide
relevant information and services [15]. Sanchez et al. [16] differen-
tiate between raw data and context information. Raw (sensor) data
is unprocessed data retrieved directly from sources such as sensors,
while context information is data processed from raw sensor data,
checked for consistency, and enriched with metadata. For exam-
ple, GPS sensor readings are raw data, which, when organized to
represent geographical locations, become context information.

In the context of smart IoT-enhanced HPPs, context awareness
plays a pivotal role. It determines what information and services
should be presented to the user. For example, when an operator
accesses the control system, they need real-time data on water
flow, turbine performance, and energy output. Context-aware IoT
applications connect to various sensors—measuring water levels,
weather conditions, and equipment status—to retrieve and present
this data to the operator. This context includes location, time, envi-
ronmental conditions, and the specific operator’s access rights.

Automatic execution of services is another critical feature in the
IoT paradigm. In a smart HPP, if sensors detect increased water
2https://www.hydropower.org/iha/discover-types-of-hydropower

flow due to heavy rainfall upstream, the IoT application should au-
tomatically adjust turbine settings to optimize energy production
and prevent overflow. These actions should be taken automatically
based on the context. Numerous sensors attached to various parts
of the hydropower plant —such as water inflow rates, turbine ef-
ficiency metrics, and environmental conditions— produce large
volumes of data that must be collected, analyzed, fused, and inter-
preted. This process requires collecting and tagging context with
sensor data for accurate processing and understanding.

Context is especially important when different organizations col-
laborate. Consider a visualization dashboard application for HPPs
spanning two organizations. An application depends heavily on the
exact context of each provider’s data. For instance, querying the
dashboard for “all water flow measurements of small capacity hy-
dropower plants from the last month” sounds straightforward but
is highly context-dependent. There is no global agreement on classi-
fying hydro systems by installed power, leading to wide variations
in the definition of "small-scale hydro", see Table 1. For example,
’small hydro’ is defined as below 1.5 MW in Sweden but below 50
MW in China.

Table 1: Small-scale hydropower by installed capacity (MW)
as defined by different countries [7]

Country "Small-scale hydro" hydropower plant
capacity (MW)

Brazil ≤ 30
Canada < 50
China ≤ 50

European Union ≤ 20
India ≤ 25

Norway ≤ 10
Sweden ≤ 1.5

United States 5-100

Understanding these nuances is critical for developing effective
IoT applications for HPPs. Thus, we find that to enable IoT-enhanced
HPP operations, it is essential to model both the dynamic and static
properties of these spaces. This involves understanding not only the
components of the power plant but also the devices, observations,
and actuations. By comprehensively modeling these aspects, we
can ensure optimal performance, efficient data integration, and
effective decision-making processes.

4 Data Models for Smart HydroPower Plants
This section presents our approach to creating comprehensive data
models for smart hydropower plants using the NGSI-LD standard.
We start by discussing existing NGSI-LD data models and their
limitations. Next, we introduce our proposed novel NGSI-LD data
models tailored for the hydropower domain. We provide detailed
descriptions of these models, including their structure, relation-
ships, and properties, while also providing the reasoning behind
our design choices.
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4.1 Existing NGSI-LD Data Models
To create our models, we have chosen to use the NGSI-LD stan-
dard [2]. The NGSI-LD specification has been proposed by the ETSI
Industry Specification Group for Cross-Cutting Context Informa-
tion Management (ISG CIM). It comprises an information model
with semantic characteristics connected to Linked Data and ontolo-
gies. In short, it is an API and data model for publishing, querying,
and subscribing to context data, aiming to facilitate the open ex-
change and sharing of structured data among various parties.

As mentioned in the related work, there has already been an
effort to create an NGSI-LD CIM-based data model for the energy
sector. However, the existing models fall short in several areas. To
illustrate the current limitations and the necessity for more domain-
specific extensions, we examine the existing models for the smart
hydropower plant domain.

For hydropower plants, four different kinds of entities have al-
ready been defined, as shown in Fig. 2. These include the "Hy-
droPowerPlant" entity, the "HydroPump" entity, the "HydroGen-
eratingUnit" entity, and various governors for different kinds of
turbines. A governor [1] in a hydropower plant is a feedback con-
trol system designed to regulate the speed and power output of a
hydroelectric turbine. According to the descriptions adapted from
CIM data models3 , a "HydroPowerPlant" entity is a hydro power
station that can generate power or pump water. When generating
power, the generator turbines receive water from an upper reservoir.
When pumping water, the pumps receive their water from a lower
reservoir. The "HydroGeneratingUnit" is a generating unit whose
prime mover is a hydraulic turbine (e.g., Francis, Pelton, Kaplan),
essentially the generator component. A "HydroPump" entity is con-
sidered a synchronous motor-driven pump, typically associated
with a pumped storage plant.

Governor Models
Governor Models

HydroPowerPlant HydroGeneratingUnit

HydroPump
Governor Models

HydroGeneratingUnits

HydroPowerPlant

HydroPumps

HydroPowerPlant

Figure 2: Relationships among hydropower plant related
entities in the Fiware "SmartEnergy" data models.

Most of the effort in existing modeling appears to be focused
on the NGSI-LD entity types related to different governors. The
governor maintains stable turbine operation by adjusting the flow
of water to the turbine based on a setpoint signal and feedback
from the turbine’s speed and other relevant parameters. Essentially,
a governor ensures the turbine operates at a desired speed and
power output, using feedback mechanisms to continuously adjust
the water flow to maintain stability and efficiency in power gener-
ation. Governors can be either electrohydraulic, using electronic
3github.com/smart-data-models/dataModel.EnergyCIM/tree/master/HydroPowerPlant

signals and hydraulic mechanisms, or mechanical-hydraulic, using
mechanical components for speed regulation.

In the github repository where the various "Energy CIM" mod-
els have been published4, we can see that there are many entities
defined for different governors, such as ’GovHydro1-4’, ’GovHy-
droDD’, ’GovHydroFrancis’, ’GovHydroIEEE0’, ’GovHydroIEEE2’,
’GovHydroPID’, ’GovHydroPID2’, ’GovHydroPelton’, ’GovHydroR’,
’GovHydroWEH’, and ’GovHydroWPID’. However, there are no
relationships connecting the governors to the other entities. There
is no way to determine, for example, which specific governor entity
via ID is used at which hydropower plant, which turbine it specif-
ically controls, and which generator is connected to that turbine.
All these relationships, which are context information useful for
IoT hydropower plant applications, do not currently exist.

4.2 Di-Hydro NGSI-LD Data Models
Considering all the above, there are numerous additions we can
make to the existing entity types. Firstly, it is important to model all
the structural and operational components of an HPP, as described
in Section 3. This requires adding specific attributes and properties
to describe the contextual information of these structural compo-
nents. For example, as illustrated in the snippet in Listing 1 (in Key
Values Format), a dam component can have various static properties
such as its type (Earthfill, Rockfill, Concrete Gravity, etc.), the dam
volume/height/length, and others. Since we leverage NGSI-LD, the
specific semantics behind these properties, such as “Measurement
unit for length is in meters,” can be traced by checking the context.
With linked data, any changes to the context will be reflected across
the entire model.

1 "id": "urn:ngsi -ld:Dam:001",
2 "type": "Dam",
3 "name": "Main Dam",
4 "damType ": "Earthfill",
5 "damVolume ": {
6 "value": 8,
7 "unitCode ": "MCM"
8 },
9 "damHeight ": {
10 "value": 130,
11 "unitCode ": "MTR"
12 },
13 "damLength ": {
14 "value": 540,
15 "unitCode ": "MTR"
16 },
17 "context ": "https ://raw.githubusercontent.com/satrai -lab/di-

hydro -data -models/main/context.jsonld"

Listing 1: Snippet of a dam entity with only some static
properties.

Similarly, a turbine component can have various static properties
such as its supplier, type, rated power, rotation speed, maximum
head, and minimum head. An example is shown in Listing 2.

1 "id": "urn:ngsi -ld:Turbine:001",
2 "type": "Turbine",
3 "name": "Turbine T2",
4 "supplier ": "Andino",
5 "turbineType ": "Kaplan",
6 "ratedPower ": {
7 "value": 3.4,
8 "unitCode ": "MW"
9 },

4https://github.com/smart-data-models/dataModel.EnergyCIM
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10 "rotationSpeed ": {
11 "value": 375,
12 "unitCode ": "RPM"
13 },
14 "maxHead ": {
15 "value": 21.6,
16 "unitCode ": "MTR"
17 },
18 "minHead ": {
19 "value": 20.5,
20 "unitCode ": "MTR"
21 },
22 "context ": "https ://raw.githubusercontent.com/satrai -lab/di-

hydro -data -models/main/context.jsonld",

Listing 2: Snippet of a turbine entity with only some static
properties.

Likewise, a generator component can have various static prop-
erties such as its supplier, type, rated power, active power, power
factor, voltage regulation range, and winding insulation class. An
example is shown in listing 3.

1 "id": "urn:ngsi -ld:Generator:001",
2 "type": "Generator",
3 "name": "IM Generator",
4 "supplier ": "ATB Sever",
5 "generatorType ": "IM 8421",
6 "ratedPower ": {
7 "value": 4.0,
8 "unitCode ": "MVA"
9 },
10 "activePower ": {
11 "value": 3.4,
12 "unitCode ": "MW"
13 },
14 "ratedPowerFactor ": 0.862,
15 "voltageRegulationRange ": {
16 "value": "+-5",
17 "unitCode ": "%"
18 },
19 "windingInsulationClass ": "F",
20 "context ": "https ://raw.githubusercontent.com/satrai -lab/di-

hydro -data -models/main/context.jsonld"

Listing 3: Snippet of a generator entity with only some static
properties.

Beyond the specific properties of various entities, we include a
"RelativePosition" property, inspired by the Transportation model
described by Bouloukakis et al. [6], which detailed a bus vehicle
model with spatial properties in 2D and 3D space. This is essen-
tial for visualizing the exact placement of devices within plant
components and enhancing context for applications. For example,
knowing the exact placement of water flow sensors in the pen-
stock can help identify potential blockages within the penstock, as
showcased in the example of Fig. 3.

However, having only static properties to represent the entities is
insufficient. The digital depiction of hydropower plant components
in our data model needs to contain various logical relationships
between different entities. These relationships should facilitate
querying of important and distinct information. For example, con-
sider entities such as "HydroPowerPlant" and "Dam." If only the
relationship "HydroPowerPlant has Dams" exists, searching for
which hydropower plant a dam belongs to, would require searching
all the hydropower plants present in a data management system
and checking the "HydroPowerPlant has Dams" relationship. By
establishing bidirectional relationships wherever logical and pos-
sible, such as "Dam is part of HydroPowerPlant," we can avoid
unnecessary processing. This enhances the efficiency of our data

Figure 3: Illustration of water flow sensors inside a penstock.
The spatial information provided by the relative position
attribute is crucial for identifying potential blockages and en-
hancing the contextual understanding of sensor data within
the HPP components.

model, facilitating straightforward and efficient querying of the
HPP components.

In Fig. 4, we illustrate a small subset of the relationships in the
NGSI-LD property graph of our data model for the static com-
ponents of a smart hydropower plant. This figure showcases key
bidirectional relationships, such as "HydroPowerPlant has Dams"
and "Dam is part of HydroPowerPlant," "HydroPowerPlant contains
Turbines" and "Turbine is part of HydroPowerPlant" These relation-
ships allow for efficient navigation and querying within the data
model, ensuring that each component can be easily located and its
connections to other components clearly understood.

Figure 4: Subset of the relationships in the NGSI-LD property
graph of our data model, static components of a smart HPP

In the context of IoT-enhanced HPPs, it is crucial to consider
another aspect of context information: the dynamic properties of
the system, including various IoT devices, their observations, and
actuations. For this, we adopt a modeling approach similar to Pa-
padakis et al. [13], inspired by existing ontologies. This approach
recognizes the need to separate physical devices from the entities
they measure or control in NGSI-LD-based models. By treating an
observation of a device as an independent object, developers can
create portable applications utilizing high-level observations rather
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than specific device properties. This model allows multiple observa-
tions to be associated with current or future IoT devices, separating
physical device properties from their observations or actuations.
Consequently, the observation/actuation attribute is promoted to a
full-blown entity, establishing appropriate relationships with the
device it originates from and the smart space it belongs to.

We also highlight that no generic device model can cover every
device; instead, a refined model is needed for each type of device.
For example, having a water flow rate attribute might be relevant
for a turbine sensor in an HPP, but redundant for a temperature
sensor. Additionally, not every device functions solely as a sensor;
some can be used as actuators. As an example of actuation in a
smart HPP, a control panel might adjust the flow of water based
on sensor readings. The observations made by the device and any
applications utilizing these measurements will remain unaffected
by changes to the physical device, which may lead to new device
attributes. An example of a water flow device for an HPP is shown
below. This device has various static properties and relationships,
as well as an associated observation entity, which holds the actual
value that is ’observed’ (water flow rate):

1 { "id": "urn:ngsi -ld:WaterFlowSensor:001",
2 "type": "WaterFlowSensor",
3 "name": "Main Penstock Water Flow Sensor",
4 "relativePosition ": {
5 "type": "Point",
6 "measurementUnit ": "m",
7 "Dimensions ": "3D",
8 "coordinates ": [45.0,9.0,3.0]
9 },
10 "OnObject ": "urn:ngsi -ld:Penstock:001",
11 "observations ": "urn:ngsi -ld:Observation:WaterFlow:001",
12 "context ": "https ://raw.githubusercontent.com/satrai -lab/di-

hydro -data -models/main/context.jsonld"
13 },
14 { "id": "urn:ngsi -ld:Observation:WaterFlow:001",
15 "type": "Observation",
16 "name": "Water flow rate measurement in Penstock Section 1",
17 "category ": "PhysicalObservation",
18 "dateModified ": "2024-07-17T13:20:30Z",
19 "measurement ": {
20 "waterFlowRate ": {
21 "value": 120,
22 "measurementUnit ": "m^3/s"
23 }
24 },
25 "measurementType ": "waterFlow",
26 "context ": "https ://raw.githubusercontent.com/satrai -lab/di-

hydro -data -models/main/context.jsonld "}

Listing 4: Example of a water flow device and its observation
entity for a HydropowerPlant.

In summary, in our data model, each hydropower plant compo-
nent can reference both the specific device responsible for measure-
ments (to clarify the underlying hardware) and the corresponding
high-level observation or actuation data. A simplified relationship
diagram illustrating this is shown in Fig. 5.

Thus, using this separation of device properties from their ob-
servations or actuations ensures flexibility and scalability in smart
HPP operations, facilitating efficient data management and applica-
tion development. All our data-models presented in this section are
available as open source at: https://github.com/satrai-lab/di-hydro-
data-models

Figure 5: Simplified diagram of dynamic device data relation-
ships in hydropower plant components

5 Deployment and Use Case Scenario
In the scope of the "Di-Hydro" project (https://dihydro-project.eu),
we tested our NGSI-LD data models on a federated context broker
architecture using data from real HPPs distributed across different
countries. One of the primary goals of this project was to create
comprehensive NGSI-LD data models that accurately represent
the physical spaces of HPPs and their properties, both static (such
as location) and dynamic (such as temperature, water conditions,
warnings etc.).

With this deployment we wanted to make sure that with our data
models we can match the following key objectives of the project:

• Supporting Decision-Making Processes: Ensuring that
the data models support decision-making processes by allow-
ing software components to generate semantically enriched
entities. These enriched entities help in interpreting and
contextualizing data, leading to more informed and timely
decisions. The models were designed to facilitate the integra-
tion of real-time data with historical data, enabling predictive
analytics and proactive maintenance strategies.

• Designing Relationships for Easy Querying: Designing
relationships within the HPP data model to facilitate easy
querying of important information. This includes establish-
ing bidirectional relationships carefully crafted to reflect the
hierarchical and functional dependencies among the various
components of the HPPs, enhancing the efficiency of data
retrieval and ensuring that critical information is readily
accessible with intuitive and efficient queries.

• Establishing Instances and Integration: Establishing in-
stances of HPPs following the NGSI-LD data model and
integrating them into a federated system. This federated
system supports data exchange within and across HPP clus-
ters, which refer to groups of hydropower plants that are
geographically or operationally related. This enables a col-
laborative data environment, allowing data from multiple
HPPs to be aggregated, analyzed, and utilized effectively.
The integration process ensures data integrity and privacy
via the setup of secure and reliable communication channels
between the context brokers.

We deployed the NGSI-LD data models on a federated context
broker architecture, as depicted in Fig. 6. This architecture facili-
tates the integration of data from various HPPs, enabling seamless
data exchange and interoperability. The design allows HPP entities

https://github.com/satrai-lab/di-hydro-data-models
https://github.com/satrai-lab/di-hydro-data-models


Enabling IoT-enhanced Data Models for Context-aware Hydropower Plants IoT 2024, November 19–22, 2024, Oulu, Finland

to share context entities across different operational layers, sup-
porting data exchange within and across the "Di-Hydro" project’s
HPPs using a fully federated layered model. This model orches-
trates the interaction between physical and digital components,
spanning from the bottom layer, with tangible assets such as sen-
sors, actuators, and associated machinery, to the higher operational
"managerial" digital layers.

The federated data exchange design offers several benefits. By di-
viding brokers into administrative, network, geographic, contextual,
or load-based domains [4], it reduces administrative and communi-
cation overheads as context providers and context consumers can
communicate with the nearest and most relevant brokers. It also
enhances data security by keeping sensitive information within
the original data sources, minimizing the risk of exposure during
data transfers. Additionally, this decentralized approach supports
scalability, allowing the system to grow and adapt to increasing
data volumes and complexity without significant reconfiguration.

Figure 6: Federated Architecture used in Testing Di-Hydro
Data Models.

Each of the HPPs has at least one federated node. For testing
purposes, we chose to use the Scorpio NGSI-LD context broker5.
According to the official NGSI-LD Excel file6 detailing the cur-
rent compatibility of the development version of the main under
development context brokers Orion-LD7, Stellio8, and Scorpio5
against the features (up to v1.8.1) of the NGSI-LD API specification,
only Scorpio supports fully a federated deployment. It achieves
this by implementing the NGSI-LD context registry component.
The NGSI-LD context registry is a software functional element
where NGSI-LD context source (sources of context information that
implement NGSI-LD consumption and subscription) register the in-
formation they can provide. Scorpio brokers use this registry to find
the appropriate NGSI-LD context sources capable of supplying the
information required to serve an NGSI-LD request. The presented
federated architecture is thus implemented using Scorpio nodes
combined with appropriate NGSI-LD context source registrations.
There have been efforts to develop federated NGSI-LD solutions,
such as ComDeX [14], but these are still in a more nascent stage

5https://github.com/ScorpioBroker/ScorpioBroker
6https://docs.google.com/spreadsheets/d/18tq0_PZFl5WCfYUElcdI6M3Vlin4hP-M
7https://github.com/FIWARE/context.Orion-LD
8https://github.com/stellio-hub/stellio-context-broker

and do not yet provide the full capabilities required for large-scale
federated operations.

We use a unified architectural deployment for each federated
node, as shown in Fig. 7.

Figure 7: Unified Architectural Implementation Details for
Each Federated Node.

Table 2: An example of the technical description for hy-
dropower plants.

HPP A HPP B HPP C
Installed Capacity 160MW 380MW 310MW
Turbine type Francis Kaplan Pelton
Num. of Turbines 2x80MW 4x95MW 3x103MW
Yearly production 340GWh 460GWh 250GWh
Net Head 105m 152m 85m
Dam Type Rockfill Rockfill Arch Dam
Dam Volume 8.3m.c.m. 13.1m.c.m. 8.8m.c.m.
Dam Height 128m 168m 92m
Dam Length 550m 490m 570m
Reservoir Volume 408m.c.m. 683m.c.m. 712m.c.m.
Reservoir Useful Volume 315m.c.m. 570m.c.m. 299m.c.m.
Avg Yearly Water Intake 1027m.c.m 962m.c.m 1467m.c.m
Reservoir Min Op Lvl 367m 322m 101m
Reservoir Max Op Lvl 397.5m 378m 122m
Reservoir Max lvl 401m 384.8m 127m

At the center of each federated node is our selected context
broker, which is a middleware software component that manages
context information, providing NGSI-LD endpoints for both con-
sumption and provision. The context broker stores, retrieves, and
updates context data, ensuring that it is accessible and up-to-date
for various applications and services. For the storage component,
a PostgreSQL database is deployed alongside the Scorpio broker.
The ‘@context‘ of our NGSI-LD models are hosted on a webserver
accessible by all brokers (a change in the context is reflected across
all brokers). All NGSI-LD-based context brokers such as Scorpio,
Stellio, and Orion exclusively use the well-defined NGSI-LD inter-
face; this interface is also used when receiving instructions from
third-parties and again when communicating with NGSI-LD aware
components around the context broker itself. It is unrealistic to ex-
pect devices, both existing and newly deployed, to use the NGSI-LD

https://github.com/ScorpioBroker/ScorpioBroker
https://docs.google.com/spreadsheets/d/18tq0_PZFl5WCfYUElcdI6M3Vlin4hP-M
https://github.com/FIWARE/context.Orion-LD
https://github.com/stellio-hub/stellio-context-broker
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API directly. Thus, for the deployed devices in the HPP to be able
to publish to the context broker, we need to use IoT Agents , based
on each device. An IoT Agent is a component that lets a group of
devices send their data to and be managed from a Context Broker
using their own native protocols. This brings a standard interface
to all IoT interactions at the context information management level.

Having this deployment, we can start testing our data models.
First, we provision information about the static properties of hy-
dropower plants, provided mostly in paper format converted to
digitized tables. A snippet of example of how static information
provided looks like can be seen in Table 2. After, information is
converted it to NGSI-LD (JSON-LD) files and uploaded via POST
to each relevant context broker. To test the dynamic properties as-
pects, we create virtual sensors that generate dummy information
about measurements (biodiversity measurements, water flow) based
on the actual sensors that are created for the "Di-Hydro" project
requirements. After adding this information to the brokers and
connecting the virtual sensors, we test various NGSI-LD queries
using dummy applications.

To demonstrate the capabilities of our data models, we develop
an application that allows users to query and visualize the data. This
application provides a user-friendly interface for making complex
NGSI-LD queries and retrieving relevant information. The proposed
data models enable these queries by providing a structured and
semantically rich representation of HPP components. Below are
some examples of the queries used to test the data models.

The following query retrieves all dam entities and their asso-
ciated properties within a specific hydropower plant. By using
our data model, each dam’s static attributes, such as type, volume,
height, and length, can be efficiently queried and retrieved. This ca-
pability, for example, is crucial for infrastructure management and
planning, as it allows for a detailed overview of dam characteristics
within the plant.

Query: Retrieve all dams and their properties within a specific hy-

dropower plant:

curl -X GET 'serveraddr/ngsi -ld/v1/entities /?type=Dam&q=

isPartOfHydroPowerPlant ==urn:ngsi -ld:HPP :001'

In the next example, we first retrieve the observation IDs associ-
ated with a specific penstock. Using these IDs, we then query for
real-time and historical water flow rate measurements, filtering by
a specified date range. This showcases how dynamic properties and
historical data can be accessed and analyzed using our data models,
which, in this example, is essential for monitoring and optimizing
water flow management over time.

Query: Get Real-Time and Historical Water Flow Rate Measurements

for a Specific Penstock. Filtering by Date Range:

curl -X GET 'serveraddr/ngsi -ld/v1/entities/urn:ngsi -ld:

Penstock :001? attrs=observations '

curl -X GET 'serveraddr/ngsi -ld/v1/entities /?type=Observation

&id=urn:ngsi -ld:Observation:WaterFlow :001,urn:ngsi -ld:

Observation:WaterFlow :002& attrs=measurement.

waterFlowRate&options=temporalValues&timerel=between&

time =2024 -07 -01 T00 :00:00Z&endTime =2024 -07 -31 T23 :59:59Z'

The following query retrieves all turbines within a specific pow-
erhouse along with their efficiency metrics and the governors con-
trolling them. By establishing multiple context relationships, such
as the ones between turbines and governors, our data models enable
detailed queries that support operational insights.

Query: Find all turbines and their efficiency metrics within a specific

powerhouse, showing which governors control them:

curl -X GET 'serveraddr/ngsi -ld/v1/entities /?type=Turbine&q=

isPartOfPowerHouse ==urn:ngsi -ld:PowerHouse :001& attrs=

efficiency ,controlledByGovernor '

By deploying these data models in a real-world environment, we
confirmed the practicality and applicability of our NGSI-LD data
models. The federated context broker architecture proved to be a
robust platform for integrating and managing diverse datasets, ulti-
mately contributing to the overall goal of creating a comprehensive
and interoperable data environment for hydropower plants.

6 Conclusions and future work
This paper presents a comprehensive approach to modeling the
structural and operational components of hydropower plants using
NGSI-LD data models. Our work focused on creating detailed and
semantically enriched entities that represent both static properties
(e.g., location, structural attributes) and dynamic properties (e.g.,
real-time sensor data, operational status). The deployment and test-
ing of these data models on a federated context broker architecture,
using real-world data from hydropower plants, demonstrated their
effectiveness in enhancing data management and decision-making
processes. The models allowed for more accurate data integration,
improved contextual understanding, and enabled timely responses
to operational changes. This is achieved through the ability to query,
visualize, and analyze integrated data from multiple hydropower
plants in a coherent and interoperable manner. The results indi-
cate a promising direction for future developments in smart energy
management systems, paving the way for more efficient, reliable,
and sustainable hydropower plant operations.

Future work will focus on refining our data models based on feed-
back from hydropower plant operators and further testing. We aim
to explore the integration of additional data sources, such asweather
forecasts, market data, and environmental monitoring systems, to
further enrich the data environment and enhance decision-making
capabilities. Promoting the broader adoption of our NGSI-LD data
models within the energy sector and collaborating with industry
stakeholders to drive standardization efforts is another important
area of focus. Additionally, developing user-friendly interfaces and
visualization tools will help operators and decision-makers interact
with the data models more effectively and intuitively.
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