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ABSTRACT
In the fast-growing realm of smart cities, integrating Inter-
net of Things (IoT) devices into transportation systems is es-
sential for improving efficiency and safety. Deploying these
systems in real-world settings demands access to contextual
data, and middleware systems to facilitate the exchange of
both contextual and IoT data. Existing IoT-based data ex-
change systems such as Orion-LD, Stellio and Scorpio in the
FIWARE space, support the modeling and representation of
both context and IoT systems. This paper introduces a com-
prehensive testbed and a benchmarking platform designed
to evaluate the performance of FIWARE context-aware bro-
kers. The testbed incorporates real data from a real Bus
Transportation Service in the city of Ioannina, Greece, as
well as synthetic data enabling a realistic assessment of
query and ingestion performance.

The results show that microservices-based architectures
like Stellio and Scorpio scale better than traditional designs
like Orion-LD under high loads, but all brokers perform sim-
ilarly at low loads. Furthermore, temporal queries present
challenges for IoT applications due to their high cost across
all evaluated brokers. However, write-optimized data stores
offer an advantage by improving ingestion speed. The paper
emphasizes the importance of understanding and address-
ing the operational inefficiencies of context-aware brokers
to improve IoT system performance. Overall, this work in-
troduces a novel benchmarking platform for smart trans-
portation systems, featuring a realistic testbed with both
real and synthetic IoT datasets, as well as detailed experi-
mental results that identify key performance bottlenecks
and offer potential optimization strategies.

CCS CONCEPTS
• Computing methodologies → Modeling methodolo-
gies; • Information systems → World Wide Web; •
Computer systems organization→ Embedded and cyber-
physical systems.
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1 INTRODUCTION
In today’s fast-evolving technological landscape, smart envi-
ronments are enriched with Internet of Things (IoT) devices
and applications that aim to enhance various aspects of
our lives. These IoT-enhanced systems are key to develop-
ing sustainable, efficient cities by optimizing energy use,
resource management, transportation, and more. The de-
mand for smart transportation is particularly high due to
the complexity of traffic systems and the risks posed by au-
tonomous driving [32]. IoT plays a crucial role in this field
by enabling real-time data collection, analysis, and decision-
making across devices, vehicles, and infrastructure [31, 38].
However, managing the large volume, high velocity, and
diverse nature of IoT data presents a significant challenge
for traditional data management approaches due to the real-
time processing requirements, as well as the dynamic nature
of smart transportation systems [26].

Context-aware message brokers are state-of-the-art solu-
tions for enabling dynamic and adaptive decision-making in
smart city applications, including traffic management sys-
tems [25]. Such brokers serve as intermediate components
between IoT devices and applications to collect, manage,
and disseminate data along with context information via
a standardized mechanism (APIs and protocols). Leverag-
ing contextual information allows for the delivery of more
relevant services to end-users, improving their overall ex-
perience. Context-aware brokers widely used in our study
include Scorpio [13], Stellio [14], and Orion-LD [12]. All
facilitate seamless integration and interoperability between
IoT devices and applications by utilizing the Next Genera-
tion Service Interface - Linked Data (NGSI-LD) [10] protocol.

When designing and implementing an IoT system with
context brokers, it is essential to account for various over-
heads, including database execution, architectural complex-
ity, protocol communication, and scalability needs. Under-
standing such operational inefficiencies requires addressing
various challenges in IoT-enhanced transportation systems.
In particular, the frequent querying and updating of con-
text information can lead to performance bottlenecks and
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increased latency, which is even more pronounced when ex-
ecuting temporal queries. In addition, applications for trans-
portation systems may require near real-time data, which
can be difficult to deliver due to the inherent limitations of
the underlying data storage and processing mechanisms.

Existing benchmarking solutions [5, 15, 22, 28] typically
focus on limited aspects of IoT workloads, such as ingestion
rates, streaming data processing, or time-series data perfor-
mance. Moreover, existing FIWARE-based benchmarks [4,
20, 24] rely on synthetic data, they lack a focus on smart
transportation systems and, they do not fully utilize the
range of NGSI-LD queries.

This paper introduces a testbed that incorporates: (i) real-
time data from the Bus Service of the city of Ioannina;
(ii) real data from existing datasets one having traffic re-
lated data in Aarhus, Denmark, over six months [35]; and
(iii) a dataset that is collected from 54 sensors deployed at
the Intel Berkeley Research Lab [34]. We then present a
benchmarking platform with a comprehensive set of stan-
dard spatial and temporal queries that represent all the
functionalities related to fetching and storing data in IoT-
enhanced transportation systems. This benchmark assesses
the diverse functionalities associated with data retrieval and
management. Given that context brokers leverage different
databases for various purposes, the benchmark provides
thorough comparative analysis and evaluation for the full
range of context broker capabilities.

The key contributions of this work include:
– A Smart City Bus Benchmark (SCBenchmark) for

transportation systems that enables the execution of
test queries in diverse database systems.

– A testbed for a real Bus Transportation Service in
the city of Ioannina, Greece, that leverages multiple
context-aware message brokers for IoT data collec-
tion and querying.

– A comparative analysis and evaluation of FIWARE-
based context brokers using the proposed SCBench-
mark and a wide range of test queries.

Experimental results show that inmost cases, the predom-
inant source of overhead comes from Time-Series databases.

The remainder of this paper is organized as follows: Sec-
tion 2 presents background information onNGSI-LD context-
aware brokers discussing their architectures and types of
underlying databases used. In Section 3, we introduce a
Smart City Bus Benchmark (SCBenchmark) used to evalu-
ate three open-source FIWARE context brokers using bus-
transportation data collected from the city of Ioannina. Fi-
nally, Section 4 discusses related work, and Section 5 con-
cludes the paper and describes future work.

2 BACKGROUND
This section provides an overview of the NGSI-LD protocol
utilized in context-aware message brokers and a summary
of the underlying database technologies of these brokers.
NSGI-LD Protocol. NGSI-LD [10] serves as the standard
protocol for developing context-aware applications, particu-
larly tailored for handling context information within smart
cities initiatives, encompassing sectors such as healthcare
and transportation. A key feature of NGSI-LD is its ability

to support linked data and semantic interoperability, facili-
tating seamless information sharing and utilization across
systems and organizations. End-users or applications can
submit queries using HTTP REST requests compliant with
the NGSI-LD standard. This work focuses on the optimiza-
tion of temporal query execution in context-aware message
brokers, and thus describes the steps necessary to execute a
query in underlying NGSI-LD-based database systems.

Fig. 1 depicts an NGSI-LD request sent to the context
broker in step 1. NGSI-LD queries are next translated into
database queries (step 2), and then executed to retrieve the
necessary information. Following the retrieval of data from
the context-aware brokers (step 3), it undergoes transforma-
tion back into NGSI-LD format (step 4) before being deliv-
ered as contextual information to the user or application.

Figure 1: Query execution in NGSI-LD context brokers.

Context-aware Brokers. The selection of the underlying
databases as well as the architectural design of context bro-
kers can impact the performance of queries. State-of-the-art
brokers rely on one or more databases to enhance perfor-
mance. When a Context Broker receives a client request, it
determines the most suitable underlying database to handle
the query. For example, Orion-LD supports integration with
Mintaka [11], a component from the FIWARE ecosystem
which gives the ability to retrieve and store temporal data.
Mintaka exploits the TimescaleDB [1], a relational data-
base optimized to handle time-series workloads. Orion-LD
utilizes MongoDB as its underlying database. Scorpio uses
PostGIS [30], an extention of PostgreSQL that is optimized
for geospatial data and queries. Stellio uses TimescaleDB
to store temporal data, and PostGIS to store data related
with geospatial data. Both Sellio and Scorpio use Apache
Kafka [27] in their architecture for fault tolerance support.
On the other hand, Orion-LD lacks of fault tolerance.

To ensure fault tolerance in Orion-LD, it is essential to in-
troduce a scheduler, as well as a cluster of Orion-LD context
brokers and MongoDB databases. Such a setup increases po-
tential “writes” to disk and thus the performance overheads.
Some brokers do not directly store the NGSI-LD entities in
the underlying databases. Instead, they perform transfor-
mations to maintain backward compatibility with the rest
of the system (e.g Orion-LD NGSI-v2). Therefore Step 4 of
Fig. 1 is taking place in Orion-LD to transform an entity
fetched from the database to NGSI-LD. Context brokers are
in this way akin to simple polystore middleware [9].
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3 THE SCBENCHMARK
This section introduces the Smart City Bus Benchmark
(SCBenchmark), which includes: (i) a realistic testbed with
context brokers for collecting real-time data of buses op-
erating in the city of Ioannina; (ii) representative smart
city bus queries to be used as test queries in SCBenchmark;
and (iii) the SCBenchmark experimental evaluation. The
SCBenchmark is available as open source at https://github.
com/satrai-lab/scbenchmark

3.1 The SCB Testbed
To evaluate the feasibility of building IoT-enhanced applica-
tions for transportation systems, it is essential to realistically
evaluate current context-aware message brokers. For this
purpose, we design and implement the Smart City Bus (SCB)
testbed. SCB leverages NGSI-LD for modeling static (e.g.,
bus stations) and dynamic IoT data (e.g., temperature over
time), as well as its associated API [2] to provide a compre-
hensive experimental platform. Our goal is to examine the
performance of context brokers using data querying and
ingestion over three main NGSI-based context-brokers.

Smart transportation systems typically rely on the GTFS
Standard [16], which facilitates the sharing of transporta-
tion schedules and related geographic data among tran-
sit agencies. However, GTFS has limited support for IoT-
enhanced transportation systems. To demonstrate an IoT-
enhanced transportation system realistically, we convert
GTFS to NGSI-LD models and implement them using the
Bus Service of Ioannina [7]. NGSI-LD enables us to create
a data representation enriched with context and semantic
information, facilitating deeper analysis and seamless inte-
gration with IoT devices and applications. Based on [6, 7],
NGSI-LD modelling incorporates the Bus Entity that models
information about the available areas within the bus, the
IoT devices deployed on the bus, and the observations these
devices monitor. Each IoT device is associated with every
observation it tracks. Similarly, Bus Station Entities include
context information about the areas within the bus station,
the IoT devices deployed at the station, and the observations
monitored by each IoT device.

This work utilizes all entities presented in [7] and asso-
ciate them with specific IoT devices in areas shown in Fig. 2
for the bus service of Ioannina, ensuring that our testbed
provides a realistic bus service environment. In particular,
the bus service of Ioannina operates a fleet of 60 active buses.
Fig. 2 shows a visualization of the bus Mercedes Citaro G (C
628.233-13), showcasing its bus areas and the corresponding
sensor placements relative to the bus. For each bus, we track
its GPS position along with 24 other IoT observations using
various sensors. These include 8 seat sensors for occupancy
and 1 sensor each for measuring pollution, humidity, tem-
perature, fuel consumption, vibration, voltage, and current.
This sensor distribution enables visualization that maps out
and color-codes the areas where these sensors are located
across buses, as depicted in Fig. 2.

The Bus Service of Ioannina operates with 428 active bus
stations, each equipped with 5 sensors for data collection.
These sensors include 3 Time Of Flight (ToF) sensors, 1
temperature sensor, and 1 humidity sensor. Fig. 3 presents a

Table 1: Sensor Observation Sources.

Sensor Observation Source
Temperature Replayed from Sensor [34]
Humidity Replayed from Sensor [34]
Voltage Replayed from Sensor [34]
Tire Pressure Synthetic
Occupancy Seat Synthetic
Fuel Consumption Synthetic
Engine Temperature Synthetic
Engine Vibrations Synthetic
Time of Flight (ToF) Synthetic
Real-Time Bus Locations Ioannina city bus API

2D visualization of a bus station, illustrating its layout and
the placement of sensors relative to the station. In terms of
data collection, we utilize a combination of real-world IoT
data derived from real datasets and synthetic data.

In particular, we utilize publicly available real-world traf-
fic data from Aarhus, Denmark [35], which includes 21GB of
detailed traffic information collected over six months, and
150MB sensor data (temperature, humidity, and voltage)
from the Intel Berkeley Research Lab [34]. We integrate this
publicly available real-world data into our testbed by com-
bining them with synthetic data. For this, we introduce a
generator that simulates dynamic traffic conditions and real-
istic sensor behavior. We use real-time traffic data, including
average travel time, speed, and vehicle counts, derived from
an existing dataset [35] within the CityPulse project [8]. En-
vironmental data related to air pollution and geographic
coordinates across urban areas is sourced from another
dataset [29] from the same project. Meteorological measure-
ments—humidity, pressure, temperature, wind direction, and
speed—are obtained from yet another dataset [37], also part
of the CityPulse project. To model bus operating conditions,
we use parameters such as temperature, humidity, light,
and voltage, as described in [34]. For the rest of the sensors
shown in Figs. 2 and 3, we generate synthetic observations
for buses and bus stations, including tire pressure, occu-
pancy, fuel consumption, engine temperature/vibrations,
and Time of Flight sensor data from the bus stations. These
synthetic observations are designed to replicate realistic
sensor behavior and safety guidelines. Finally, we obtain
real-time bus location data through Restful APIs from the
bus service of Ioannina.

The main objective of modeling bus context-aware en-
tities and integrating IoT devices within Ioanninas’s bus
service for our testbed is to conduct a realistic evaluation
of three distinct NGSI-LD context brokers: Stellio, Scorpio,
and Orion-LD. The testbed assesses the effectiveness of each
context broker in managing, querying, and utilizing data
from the bus service ecosystem in three key aspects: query
performance, data ingestion and scalability. This eval-
uation enables us to provide enhanced services and accu-
rate analyses through a variety of general, temporal, and
geospatial queries applicable in smart transportation sys-
tems. Fig. 4 illustrates our testbed, showcasing the Orion-
LD, Scorpio, and Stellio context brokers along with their
underlying databases. Mintaka is employed separately to
facilitate temporal queries on Orion-LD, while a synthetic
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Figure 2: 2D representation of a Mercedes Citaro G (C 628.233-13).

Figure 3: 2D representation of a Bus Station.

Figure 4: SCB Testbed Overview.

data generator generates observation values for buses and
bus stations.

3.2 SCB Test Queries
To define representative test queries for the SCBenchmark
and SCB testbed, we define the following smart city bus re-
lated applications: Predictive Maintenance, Route Optimiza-
tion, and Client Mobile Application. Predictive Maintenance
leverages IoT technology to monitor key components of
the bus fleet in real-time. In particular. data of mechanical
performance (Fuel Consumption, Engine Vibrations, Engine
Temperature, Tire Pressure, Current meter) are collected to

avoid unplanned downtime and minimize the repair costs.
Route Optimizations utilizes IoT data to dynamically adjust
bus routes based on real-time bus positions, passenger de-
mand, and Occupancy sensors. The goal of this application
is to improve the operational efficiency and reduce fuel con-
sumption. Finally, the Client Mobile Application provides
the ability to passengers to access bus schedules, routes and
interactive features.

The above applications are responsible for enabling e-
ticketing, real-time updates of bus locations, and interaction
with the system (e.g the ability for disabled passengers to
reserve a seat in advance, if available, ensuring they can
travel with safety). In addition. they issue data requests to
the context broker, which execute queries to the underlying
databases based on data workloads.

Queries are categorized into 3 representative groups for
SCBenchmark:

General Queries: Applications may request data related
to the current state of entities via a context broker. When
applications seek general data on the bus system such as bus
locations, schedules, bus information, the following queries
can be exploited:
Query 1: Bus Location Retrieval. It retrieves the current loca-
tion of a specific bus identified by its unique resource name
(URN) 𝑏𝑢 .
Query 2: Temperature Threshold Analysis. It identifies buses
where the engine temperature exceeds a predefined thresh-
old 𝑇 .
Query 3: Fuel Efficiency Ranking. It determines the top 10
buses with the highest fuel consumption.

Temporal Queries: Certain applications such as predic-
tive maintenance and demand forecasting, rely on Machine
Learning algorithms access to temporal data. These algo-
rithms typically require access to observations that change
over time periods. To access temporal data from applications,
the following queries can be used:
Query 4: Aggregate Air Pollution Assessment. It calculates the
average air pollution of all buses over a 12-hour period.
Query 5: Daily Bus Occupancy Analysis. It assesses the aver-
age occupancy rate of each bus for a specific day.
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Table 2: Context Brokers and Underlying Databases.

Context Broker or Extension Version Underlying DB DB Version
Orion-LD 1.3.0 MongoDB 3.6

Mintaka 0.5.4 TimescaleDB
TimescaleDB 1.7.5
PostgreSQL 12

Stellio 2.5.2
TimescaleDB
PostGIS

PostgreSQL 14
TimescaleDB 2.11
PostGIS 3.3

Scorpio 4.1.0 PostGIS
PostgreSQL 15
PostGIS 3.3

Geospatial Queries: Applications can perform geospa-
tial queries through context brokers by leveraging geograph-
ical information such as longitude and latitude coordinates.
By using these queries, applications can search for data
within specific geographical regions, enabling functional-
ities such as distance calculations to points or polygon in-
tersection checks. Examples of representative geospatial
queries are defined as follows:
Query 6: Proximity-Based Bus Search. It finds all buses lo-
cated within a 5-kilometer radius of a given geographical
point.
Query 7: Bus Stop Proximity Search. It locates all bus stops
within a certain radius of a specified point.

For certain queries, such as Q3, Q5, and Q6, some con-
text brokers (e.g., Orion-LD) do not support aggregation
functionalities. Consequently, aggregation computations
are conducted at the client side when data arrives for all
context brokers.

3.3 SCBenchmark Setup
We now present our benchmark setup, utilizing the SCB
testbed, aimed at assessing the capabilities of existing NGSI-
LD based context brokers. This evaluation focuses on their
efficiency in handling generic, temporal, and geospatial
queries as well as their proficiency in data ingestion.
SCBenchmark setup enables a comprehensive analysis of
each context broker’s performance, facilitating an informed
selection of the most suitable platform for enhancing opera-
tional efficacy and data management within IoT domains.

In our evaluation, we distinguish between two types of
hosts: the context broker host, where the context broker of
interest is deployed and evaluated, and the SCBenchmark
host, where we execute our benchmarking processes. Both
the context broker and the SCBenchmark hosts are equipped
with an Intel Xeon Bronze 3206R processor clocked at 1.90GHz
with 32GB DDR4 memory, a Dell Micron 480GB SSD, and
a Toshiba 2TB 7200RPM hard disk. Versions of underlying
databases are shown in Table 2, and the cache size of each
database is set to 2 GB. Despite cache size, default settings
were used for all databases.

For this setup, the NGSI-LD and Mintaka API endpoints
are utilized to retrieve data, as depicted in Fig. 4. Our goal
is to evaluate the performance of each query described in
Section 3.2 in a real-world scenario. Each query is executed
1000 times, with the execution time recorded on the client
side for every instance. The average execution times are then
calculated based on these 1000 runs. Before executing the
queries described in Section 3.1, we conducted a preliminary
data collection phase to process realistic IoT data from the

utilized datasets, as well as to gather synthetic data using
the tool described in Section 3.1.

This dataset is collected at a 10-second interval, focusing
on two main aspects: (i) the active fleet of buses; and (ii) the
bus stations of Ioannina. Data were collected over a week
from more than 60 buses and 420 bus stations, resulting
in approximately 204 GB for about 240 million records in
temporal databases, and approximately 5.97MBwith around
6,121 records in the context databases. Queries are executed
on different databases based on the context broker and the
clients’ request. For the Orion-LD context broker, general
queries and geospatial queries run in MongoDB (Q1, Q2,
Q3, Q6, Q7), while temporal queries run on TimescaleDB
(Q4, Q5). Temporal queries run through Mintaka for Orion-
LD as described in Section 2. For the Stellio context broker,
general queries and geospatial queries run in PostGIS (Q1,
Q2, Q3, Q6, Q7), while temporal queries run in TimescaleDB
(Q4, Q5). For the Scorpio context broker, all queries run in
PostGIS. We use Apache JMeter to generate the required
parameters for each of the queries and the time ranges (for
temporal queries) by following the Zipfian distribution.

3.4 SCBenchmark Results
We now assess the efficiency and scalability of various con-
text brokers using the SCB benchmark and CSB testbed. We
break up our evaluation into three categories:Context-Broker
Query, Ingestion Time and Scalability evaluation. These per-
formance metrics are important for understanding how dif-
ferent context brokers handle typical demands of real-world
IoT applications, where rapid processing and management
of context-aware data is crucial.

Note that the SCBenchamak results can be reproduced by
following the instructions provided at https://github.com/
satrai-lab/scbenchmark.

3.4.1 Context-Broker Queries. Fig. 5 presents a detailed
analysis of the execution time for queries Q1 to Q7. This in-
cludes the time spent querying the database (DB time) and
the time associated with additional processing overheads
(processing time). Processing time for Scorpio and Stellio
includes Apache Kafka processing delays and query pro-
cessing delays on the client side. For Orion-LD, it includes
of NGSI-LD transformations and query processing delays
on the client side. The X-axis depicts labeled queries from
Q1 to Q7 while the Y-axis shows the average execution time
in milliseconds (ms) for each query on a logarithmic scale.
In all queries, the processing time is under 50 ms, with data-
base access being the dominant component of execution
time. Because of the logarithmic scale, the processing time
for Q4 and Q5 is not visible.

The analysis of query execution time reveals that all con-
text brokers perform comparably with small differences:
For generic queries (Q1-Q3), Orion-LD outperforms other
context brokers, thanks to its efficient handling of NGSI-LD
transformations and minimal additional processing require-
ments. Scorpio and Stellio exhibit slightly longer execution
times, primarily due to the overhead introduced by their
integration with Apache Kafka (flushing to disk) which adds
processing delay.
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Figure 5: Execution time for queries Q1 to Q7 for Orion-LD, Scorpio, and Stellio, in log scale. Orion-LD uses
MongoDB for all queries except for the temporal queries, Q4 and Q5, which are handled by Mintaka.

For temporal queries (Q4, Q5), context brokers often en-
counter significant delays primarily due to the increased
processing load and complexities associated with the high
volume of data being queried and analyzed. Temporal data,
which have a time-series form with continuous and append-
only growth, requires accessing large sequential data blocks,
making these queries more demanding than point queries.
Despite special handling provided by time-series databases
like TimescaleDB, queries take significant time in all cases
due to the extensive data processing required. The delays
measured in these queries can be squarely attributed to the
heavy time-series processing required here.

For geospatial queries (Q6, Q7), we observe that Scorpio
and Stellio, which use PostgreSQL and PostGIS respectively,
demonstrate faster query execution compared to MongoDB.
The primary reasons for this performance difference are the
indexing and query optimization capabilities of Scorpio and
Stellio’s underlying databases, particularly PostGIS, which
is specifically designed for efficient handling of complex
geospatial data through advanced indexing [23].

An interesting question given the cost of temporal queries
is whether database caching may be used to speed them up.
Our extensive empirical investigation shows that this is chal-
lenging to achieve, as temporal queries often have complex,
time-varying access patterns, making it difficult in the gen-
eral case to accurately predict and cache the relevant data.
In addition, the dynamic and real-time nature of IoT data
necessitates continuous updates, resulting in frequent cache
invalidation and refreshing, which can drastically reduce
cache efficiency [21]. Consequently, even if large amounts of
memorywere available for caching, the unpredictable access
patterns and continuous data updates characteristic of IoT
scenarios would limit the effectiveness of conventional data-
base caching strategies. One exception is caching temporal
data from IoT transportation systems near the application,
utilizing knowledge of the application’s data access patterns
to implement intelligent caching or prefetching strategies
tailored to its needs.

For instance, if an observation from the Engine Tempera-
ture sensor is requested for a specific time range, the cache
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Figure 6: Context broker ingestion time.

may proactively fetch all the observations from the engine-
related sensors, as it is likely that the Engine Vibrations
Sensor observations and Fuel Consumption Sensor observa-
tions will also be required for the same time range, for pre-
dictive maintenance purposes. Such an application-specific
caching and prefetching mechanism could be implemented
in a case-by-case basis for different IoT application domains.

In summary, we observe all evaluated context brokers
to perform comparably with small differences. For generic
queries, Orion-LD outperforms Scorpio and Stellio due to
its more integrated architectural design and lower compu-
tational overhead. For temporal queries, Stellio and Scorpio
exhibit similar execution times and outperform Orion-LD
thanks to their more efficient underlying PostGIS database
indexing compared to MongoDB’s indexing. Regarding tem-
poral queries, all of the evaluated context brokers face chal-
lenges due to the high data volumes associated with such
queries, resulting in substantial performance bottlenecks
across systems. The higher overheads observed for Scorpio
and Stellio are primarily driven by the additional process-
ing delays introduced by the use of Apache Kafka, which
also persists data to disk for durability purposes. In con-
trast, Orion-LD’s overheads are largely attributable to the
transformations required for NGSI-LD compliance and the
handling of large datasets.

3.4.2 Ingestion Time. We now evaluate how efficiently con-
text brokers handle the ingestion of context-aware data. The
effectiveness of data ingestion directly impacts the respon-
siveness of context brokers and the speed at which new
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Figure 7: Latency vs. throughput comparison for queries Q1 and Q5.

data becomes available to consumers, thus influencing their
overall performance.

Context brokers have the capability to ingest entities in
batches. To assess their performance with different batch
sizes and number of entities in each batch, we design an
ingestion workload (referred to as the batching workload),
which helps us understand the processing cost for each batch
size for a specific broker. For this workload, we generate
batch sizes ranging from 100 entities to 16,000 entities, with
each NGSI-LD entity consisting of 1KB of information. Due
to limitations of Orion-LD related to message size, we have
increased the payload using the option outReqMsgMaxSize
from 5MB to 15MB. We then measure the average time for
the brokers to ingest batches of 100, 500, 1000, 2000, 4000,
8000, and 16,000 NGSI-LD entities.

Fig. 6 compares the batch ingestion performance of Orion-
LD, Stellio, and Scorpio as the batch size and number of
entities increase. The x-axis depicts batch size and the y-
axis execution time in seconds. Our results show that the
execution time increases for all context brokers as the batch
size grows, which is anticipated as bigger batches carry
more entities to be processed. Orion-LD ingests faster per
batch compared to the other brokers. This occurs due to its
underlying database technology, MongoDB, which employs
Log-StructuredMerge (LSM) Trees. LSMTrees are optimized
for write-heavy applications, as they initially write data to a
fast in-memory structure before periodically merging these
writes to disk, reducing write amplification and enhancing
write performance. Additionally, MongoDB’s high write
throughput and efficient batch write handling contribute to
Orion-LD’s strong ingestion capabilities. In contrast, Stel-
lio and Scorpio leverage PostGIS for context data storage,
which relies on B+ Trees. While B+ Trees are efficient for a
range of database operations, particularly read-heavy and
mixed read/write workloads, they may lack the ingestion
speed of LSM Trees under high write-load conditions. This
is due to the additional overhead involved in maintaining
the balanced structure of B+ Trees during write operations,
leading to increased write latency under heavy write loads.

3.4.3 Scalability. To assess the scalability of the context bro-
kers, we create a high-throughput SCBenchmark host run-
ning JMeter to generate queries Q1 and Q5 asynchronously.
These queries where chosen as the least and most resource-
intensive queries in our set. We measure several key metrics,

including the total duration of the experiment, the total num-
ber of requests served, and the latency of each request, from
initiation by the SCBenchmark host to completion and re-
turn to the client. Starting with a baseline load of 5 queries
per second, we incrementally increase the load to determine
the saturation point at which the performance of the context
brokers began to degrade. This allows us to evaluate how
each context broker handles increasing workloads and iden-
tify their respective performance thresholds. To evaluate
the scalability, we measure the total time, total number of
requests and the latency of each query. From these values,
we calculate queries/sec and average latency for requests.

To use optimal settings for concurrency where possible,
we change the Orion-LD default setting of the reqMutex-
Policy option from "all", which means that only one query
can be processed at a time, to "none", which allows for con-
current processing of queries. Our evaluation shows that
Scorpio and Stellio are already capable of processing multi-
ple queries simultaneously, thus we are confident that we
established a fair baseline for comparison.

Fig. 7 shows the throughput and latency for queries Q1
and Q5. The x-axis depicts the throughput as queries per
second (qps) and the y-axis the average latency (ms). For
query Q1, Orion-LD exhibits a latency of 19 ms at 5 qps,
which increases to 43 ms at 10 qps, 79 ms at 20 qps, 191 ms
at 40 qps and 424 ms at 80 qps. This significant increase in
latency at 20 qps, indicates a struggle with higher through-
put due to its architecture using threads and blocking I/O.
Stellio showed a latency of 18 ms at 5 qps, increasing to
21 ms at 10 qps, 28 ms at 20 qps, 34 ms at 40 qps and 87 ms
at 80 qps. Scorpio had a similar response to Stellio to in-
creasing load, both performing better than Orion-LD. Stellio
differentiates exhibiting more robust performance vs. Scor-
pio (with a similar architecture) particularly in the costlier
Q5 query, highlighting a somewhat more efficient data pro-
cessing pipeline.

For Q5, Orion-LD’s latency is 125 ms at 5 qps, spiking to
401 ms at 10 qps. For 20-80 qps, queries execute for more
than 5 ∗ 105 ms (8.33 mins), indicating a significant bottle-
neck. We consider this delay unreasonably long, especially
compared to other systems and thus consider it as a timeout
period (also for visualization purposes). The bottleneck is
due to the limited parallelism available in Orion-LD towards
the temporal database TimescaleDB. Scorpio’s latency is
129 ms at 5 qps, 161 ms at 10 qps, 210 ms at 20 qps, 380 ms at



IoT 2024, November 19–22, 2024, Oulu, Finland Ntallaris et al.

40 qps, and 480 ms at 80 qps, showing a more controlled in-
crease compared to Orion-LD. Stellio maintained relatively
lower latency indicating better scalability.

Overall, Stellio and Scorpio exhibit better scalability com-
pared to Orion-LD, owing to their microservice-based archi-
tecture featuring asynchronous execution of queries.

4 RELATEDWORK
This section reviews related work on the evaluation of IoT-
enhanced transportation systems and FIWARE-based con-
text brokers.
IoT Benchmarks. Benchmarks have been proposed to test
a variety of IoT-related queries. IoTABench [5] utilizes syn-
thetic smart-meter data generated by a Markov-chain data
generator trained using real data. The benchmark issues six
query types, including selection, aggregation, and projec-
tion, ordered by operations. TPCx-IoT [28] is based on elec-
tric power stations encompassing a variety of sensor types.
It features workloads with concurrent reads and query oper-
ations executing 5 query operations per 10,000 sensor read-
ings, employed to evaluate the ingestion and processing of
streaming data from sensors. Smartbench [17] is specifically
designed to evaluate the capabilities of multiple relational
database management systems (RDBMSes) within IoT smart
spaces, particularly focusing on real-time applications.

IoTDB-Benchmark [22] evaluates time-series databases
by focusing on data retrieval queries, ingestion rate, and
resource usage. It generates synthetic data within a given
range and encompasses 10 types of queries, ranging from a
single entity return to time range queries with value filters.
CityBench [3] is developed to evaluate the performance
of RDF stream processing engines within smart city ap-
plications, focusing on handling smart city data streams
effectively. BigBench [15] extends the TCP-DS benchmark
by incorporating semi-structured data from user clicks and
unstructured data from online product reviews. OpenBench-
mark [36] is a cloud-based service that facilitates repeatable
and reproducible experimentation on supported testbeds,
instrumenting firmware according to industry-relevant test
scenarios, and collecting and processing experiment data.

While these benchmarks assess aspects of IoT systems
with underlying databases, they do not specifically address
smart transportation systems. Unlike previous works, our
platform evaluates 3 context brokers across diverse query
types, providing a comprehensive performance assessment.
FIWARE-based Benchmarks. The existing literature ex-
plores various benchmarking approaches for evaluating the
performance and feasibility of FIWARE middlewares. Mar-
tinez et al. [24] examines the viability of using FIWARE
context brokers for precision agriculture applications. This
testbed uses simulated data to assess Orion’s throughput
and latency. Araujo et al. [4] presents a comprehensive per-
formance evaluation of Orion-LD. Their evaluation focuses
on horizontal and vertical scalability, identifying bottlenecks
and proposing cost-efficient deployment strategies of smart
city applications using CoAP and MQTT for data exchange
through Orion-LD.

In contrast, our evaluation focuses on querying and batch
ingestion of context/temporal NGSI-LD entities across three

context brokers serving smart-transportation applications,
incorporating synthetic data and real data from a city bus
service.
Testbeds. TheMartin Luther King (MLK) Smart Corridor [18]
addresses the challenges posed by urbanization and explores
how IoT and communication technologies can provide quan-
tifiable insights into a city’s infrastructure state. It empha-
sizes the complexity of data generated by smart cities and
highlights the need for advanced data integration platforms
that can support data collection, analysis, and storage.

Similarly, SmartSantander [33] presents a city-scale ex-
perimental facility for IoT research and experimentation,
offering insights into the architecture and implementation
of large-scale IoT testbeds within the context of a smart city.
Datta et al. [19] address the lack of comprehensive testing
environments for connected car services by proposing a
novel testbed utilizing IoT and microservices to facilitate
a full-stack, cloud-based platform for experimentation and
development in the burgeoning field of connected vehicles.

Although the above works cover various IoT domains,
none specifically target context-awareness in smart city
applications. Our SCB testbed is designed to scale up for
multiple buses, bus stations, observations, and devices, while
utilizing context-aware semantics to enhance system effi-
ciency.

5 CONCLUSION AND FUTUREWORK
This paper introduces SCBenchmark, a platform for eval-
uating the performance of context-aware brokers in IoT-
enhanced smart transportation systems. SCBenchmark uti-
lizes three widely used context-aware brokers: Orion-LD,
Stellio, and Scorpio. The evaluation is carried out on the re-
alistic SCB testbed, which integrates both real and synthetic
data. The findings show that brokers perform similarly un-
der low loads, with Orion-LD slightly outperforming the
others in generic and geospatial queries. However, all bro-
kers face significant challenges with temporal queries due
to the complexity and high load of managing large volumes
of time-series data. In terms of scalability, Stellio and Scor-
pio perform best, while Orion-LD struggles, especially with
concurrent temporal queries. Additionally, write-optimized
data stores offer a notable advantage in ingestion speed, as
observed with Orion-LD.

Future research involves exploring strategies to optimize
temporal query processing capabilities of context-aware
brokers. The incorporation of a dedicated temporal cache,
such as TSCache [21], as well as application-specific caching
and prefetching policies on a case-by-case basis, represent
promising approaches to enhancing performance. By ad-
dressing the performance bottlenecks associated with tem-
poral queries and by continuing to build upon scalable archi-
tectural (such as asynchronous, microservices-based) styles,
researchers can unlock the full potential of context-aware
brokers in time-sensitive applications, ultimately enhancing
the overall efficiency and reliability of IoT systems in smart
transportation contexts.
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