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Abstract 
 
The application of AI to analytical and separative sciences is a recent challenge that offers new perspectives in 
terms of data prediction. In this work, we report an AI-based software, named Chrompredict 1.0, which based 
on chromatographic data of a novel mesogenic crown ether stationary phase (CESP). Its molecular design 
represents a significant advancement due to the unique combination of properties and binding capabilities, 
including the formation of a cavity, mesogenic behavior via mobile chains, and a range of polar and non-polar 
interactions (aromatic rings, N=N and C=O double bonds, alkyl chains, π–π interactions, and hydrogen 
bonding). The mesogenic phase is effective in both normal and reversed-phase chromatography, enhancing the 
software's adaptability across diverse datasets. Here we introduce for the first time an unprecedented scientific 
approach, integrating deep learning techniques with the novel CESP, which demonstrates exceptional thermal 
and analytical performance in both liquid chromatography modes, especially in the separation of complex 
hydrocarbon isomers. This ability enables the results obtained with CESP to extend across various types of 
stationary phases. Leveraging these insights, a comprehensive chromatographic dataset on a series of aromatic 
and polyaromatic molecules interacting with our CESP was used to train a Deep Learning Model (DLM). This 
model is embedded within a user-friendly software, Chrompredict 1.0, designed for predicting chromatographic 
parameters (MAE = 0.042, R² = 0.95) by selecting chemical descriptors directly from SMILES notation. It offers 
a deeper understanding of molecular structure and interactions through exploratory data analysis, identifying 
key factors affecting model accuracy and chromatographic behavior. Users can configure hyperparameters, 
choose from six machine learning models, and compare their performance with DLM. Chrompredict 1.0 excels 
in retention behavior prediction for compounds with known structures, and it accurately predicts 
chromatographic retention and thermal characteristics for different temperatures in HPLC and GC. The model 
has been successfully tested with METLIN database of 1,023 small molecules of diverse structures and 
polarities (R² > 0.75, error range ±7.8 s). Overall, the CESP, combined with Chrompredict 1.0, offers a robust 
tool for intelligent chromatographic analysis, encompassing chemo-informatics, statistical analysis, and 
graphical capabilities across a broad range of compounds and stationary phases. 

 
 
Keywords: Liquid and gas chromatography, Crown ether, Mesogenic stationary phase, Deep 
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1. Introduction 
 
Chromatography is a key separation technique in analytical chemistry, which is widely used 

to identify, quantify, and separate compounds in complex mixtures across a range of 

applications, such as drug discovery, environmental analysis [1], and quality control [2]. 

However, some traditional chromatographic methods face the challenges of low separation 

efficiency, low-speed analysis time, and high solvent consumption [3]. To address these 

issues, Quantitative Structure-Retention Relationship (QSRR) models using Machine 

Learning (ML) algorithms to predict retention behavior based on their molecular structure 

have been recently developed [4,5,6], This approach requires fewer experimental runs, 

leading to significant solvent savings. While QSRR models have been valuable in 

understanding the molecular properties contributing to retention, they struggle to capture 

complex nonlinear relationships between molecular structures and retention behavior [7]. 

Advanced Deep Learning (DL) techniques have become increasingly important in the 

physical sciences research toolkit [8], including fields such as physics [9,10,11], chemistry 

[12,13,14], and material sciences [15,16,17,18,19,20]. This proliferation of machine learning 

methods, coupled with the growing accessibility of extensive datasets, has been 

acknowledged as the "Fourth Paradigm of Science" [21] and the "Fourth Industrial 

Revolution" [22]. These advancements hold great promise for substantially increasing the 

impact of computational approaches in both applied and fundamental research [23]. In this 

context, proposing new DL-based tools in the frame of chromatographic analysis appear to 

be an exciting challenge that deserves attention. 

Traditional C18 columns, although widely used due to their reliable hydrophobic interactions, 

are often limited when it comes to separating complex mixtures, particularly those involving 

structurally similar compounds. These columns primarily rely on non-polar interactions, which 

can hinder their ability to achieve high-resolution separations in more intricate analyses [24]. 

This emphasizes the importance of thorough optimization in method development to enhance 

separation effectiveness. Incorporating liquid crystals into the stationary phase (SP) is known 

to improve the separation process by increasing resolution [3,25,26]. These materials exhibit 

unique physical and chemical properties, such as anisotropy and mesogenicity, and retain 

some ordered crystalline structure while flowing like liquids [27]. 

Due to their elongated molecular structure, liquid crystals enable for fine-tuning of 

separation selectivity and improved analytical efficiency [3]. They are particularly effective for 

separating narrow-boiling polycyclic aromatic hydrocarbons that are generally difficult to 

separate with conventional stationary phases [26,27]. Interestingly, liquid crystals are also 
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capable of molecular shape recognition, which is essential for the distinction between planar 

and non-planar solutes, thus improving chromatographic separation performance [28]. 

If the design of new stationary phase in chromatography is a noteworthy task, and necessary 

to extend the arsenal of chromatographic tools, it can be advantageously combined with DL 

techniques to robustly analyze and model series of experimental results from a collection of 

analytes. Indeed, during the last decade, the unprecedented growth of ML applications in 

analytical sciences has revolutionized the analysis of data [6], and several areas are taking 

full advantage of these computational approaches, including chromatography. These tools 

can be used, for example, to predict the retention time and retention factor for new chemical 

solutes. 

For this purpose, we have designed and developed a new DL-based software named 

Chrompredict 1.0 with a user-friendly interface. It addresses this gap by providing a 

powerful tool to model their experimental results for future predictions of retention time and 

retention factor for new chemical solutes. This software facilitates investigations related to 

thermal and separation performance of chromatography columns by offering a variety of 

useful options. They include, for instance, the injection temperatures, calculation of molecular 

descriptors, as well as providing other data analysis, graphical, and evaluation tools. The 

deep learning model implemented in this software was trained using experimental data (data 

collection), enabling accurate predictions of retention behavior for future experiments with the 

specified column. As we will see, this approach overcomes the limitations of traditional 

modeling techniques by capturing subtle patterns even when the datasets are relatively small 

and by understanding the thermal properties of chromatography columns. From practical 

point of view, the software's user-friendly interface ensures accessibility for researchers with 

diverse expertise levels in deep learning techniques, enabling them to leverage the 

methodology devised in this study and thereby enhances the quality of their chromatography 

experiments. 

In this study, a Crown-Ether based Liquid Crystal (CELC) was synthesized and grafted 

onto a silica gel and its performances in HPLC have been explored on a series of 33 

analytes. The experimental results obtained will be discussed in terms geometric parameters 

and chromatographic performances. In a second part, we will describe the integration of 

liquid crystal-based stationary phases with the aforementioned Graphical User Interface 

(GUI) based deep learning solution and the capability of this tool to predict retention and 

thermal behavior will be examined. This synergistic approach not only improves efficiency but 
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also expands the applicability of chromatography, rendering it a compelling choice for a wider 

range of applications. 

 
2. Description of the Chrompredict 1.0 software 
 
2.1. Deep learning software development tools 
 

In this work, an extensive set of tools and libraries were employed for data separation 

and deep learning tasks. The primary programming language utilized was Python 3.11 in the 

Scientific Development Environment (Spyder 5.4.3, https://spyder-ide.org/). Key libraries 

imported for data handling, manipulation, and creating visually appealing and informative 

statistical graphics encompassed pandas (2.0.3, https://pandas.pydata.org/), NumPy (1.5, 

https://numpy.org/), matplotlib (https://matplotlib.org/) and seaborn (0.12.2, 

https://seaborn.pydata.org/). These four libraries played a crucial role in facilitating efficient 

data processing, analysis, and visualization throughout the study. The scikit-learn library 

(1.3.0, https://scikit-learn.org/) incorporates an extensive array of algorithms and tools, 

including RandomForest Regressor, ExtraTrees Regressor, Support Vector, Ridge, and 

Lasso Regression. These algorithms offer robust solutions for regression and prediction 

purposes. In order to evaluate the performance and accuracy of the models, several 

evaluation metrics including Mean Squared Error (MSE), Mean Absolute Error (MAE), 

Median Absolute Error, Explained Variance Score (EVS), and R-squared were employed. 

Furthermore, TensorFlow 2.9.1 (https://tensorflow.org/) enables the implementation of neural 

networks and advanced deep learning techniques. TensorBoard, a valuable companion tool, 

facilitates the visualization, analysis, and monitoring of TensorFlow models. It facilitates the 

tracking of training progress and the exploration of model performance and behavior. RDKit 

(https://www.rdkit.org/) and Mordred (https://mordred-

descriptor.github.io/documentation/master/descriptors.html) libraries were harnessed for 

molecular descriptors calculation, while Qt designer and PyQt 5 frameworks were leveraged 

for creating the graphical user interface (GUI) of the application, along with custom classes 

such as TableModel, MplCanvas, and PandasModel. 

 
2.2. Interactive user interface 
 

The interactive user interface of the chromatographic prediction system is thoughtfully 

engineered to provide a seamless and user-friendly experience, enabling effortless access 

and utilization of advanced functionalities. Developed in Python, the graphical user interface 

is constructed on Qt-designer and PyQt5 framework, allowing smooth integration with the 

https://spyder-ide.org/
https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://scikit-learn.org/
https://tensorflow.org/
https://www.rdkit.org/
https://mordred-descriptor.github.io/documentation/master/descriptors.html
https://mordred-descriptor.github.io/documentation/master/descriptors.html
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TensorFlow 2.0 neural network framework. This combination ensures efficient neural network 

construction and interface realization, while also facilitating intuitive interaction with the 

software. The main menu of the software offers a dedicated network training interface tailored 

specifically for chromatographic prediction applications (see Figure 1). 

 
(a)  

 

(b) 
 

 
 

 
Figure 1. (a) Example of the main menu of a data preparation tab or widget. This image provides an 
overview of the options, guiding users through data loading, visualizing molecular structures and 
selecting the desired input features. (b) Description of the four successive steps involved in preparing 
data for model training and optimization. 

 
This interface enables users to manage training data, access existing data, create new 

deep neural networks, and save network configurations. By providing a comprehensive 

interface, the software simplifies the process of setting up and managing neural network 

models, thereby enhancing efficiency in predicting chromatographic properties. Validation 

serves as a pivotal phase in model construction, facilitating a rigorous assessment of the 

Artificial Neural Network's (ANN) efficiency. This involves deploying specific ANN 

performance measures to gauge the network architecture's superiority and its predictive 

capabilities concerning chromatographic behavior. The main interface of the chromatographic 

prediction software assumes paramount importance as it provides crucial insights into the 

neural network's characteristics. This encompasses comprehensive details concerning the 

network structure, error metrics, and accuracy measures that pertain specifically to 

chromatographic predictions. 
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2.3. Main functional structure 
 

The functional structure of Chrompredict 1.0 software was specifically designed to 

optimize the workflow for predicting retention time and retention factor in chromatography 

experiments. It offers a comprehensive set of tools that enable users to make accurate 

predictions and gain insights into the relationships between input and target variables. The 

main flowchart of the software is schematically described in Figure 2. 

 

 
 
Figure 2. Flowchart of the Chrompredict 1.0 software. This flowchart encapsulates the sequential 
steps executed by the program to predict outputs. Beginning with data input, it navigates through 
preprocessing, feature extraction, model training, and validation. The chart succinctly outlines the 
essential steps culminating in accurate predictions). 

 
The data preparation section allows the following functions: loading the experimental 

dataset, calculating molecular descriptors, data pre-processing, and data labeling. The goal is 

to prepare the dataset automatically and feed it into the deep neural network. Subsequently, 

a suite of analytical tools, including summary statistics and various plots, is offered. These 

features elucidate the relationships between input and target variables, improving the 

robustness and accuracy of predictive models. The model training section offers custom 

model creation, parameter adjustment, optimization algorithm selection, and model 

preservation, ensuring stable training and improved generalization. The software also 

incorporates a selection of six ML models as options, helping users with tasks of comparison 

and benchmarking. Model evaluation involves the trained model and regression algorithms, 
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using the test dataset. Various evaluation metrics were implemented to assess the model's 

accuracy and its predictive capability. Users can visualize the performance of the selected 

models using different regression functionalities plots, aiding in the interpretation and 

understanding of the predictive models. 

The prediction component encompasses: (i) model loading, (ii) displaying retention time 

and retention factor predictions, enabling users to compare and (iii) assess the performance 

of different prediction methods, including both deep learning and machine learning models. 

 
2.4. Data preparation function 
 
2.4.1. Calculation of descriptors. During the data preparation phase, a crucial step involves 

computing molecular descriptors, which are the result of a logical and mathematical process 

that transforms chemical information from a molecule's symbolic representation into a useful 

number or the outcome of a standardized experiment for the injected solutes (see Figure 3). 

This is achieved using the RDKit and Mordred libraries with the descriptors being calculated 

from SMILES representations of the molecules. These descriptors serve as input features for 

deep learning models and regression algorithms, offering a comprehensive representation of 

the molecular structures and their properties. Consequently, this enables an in-depth analysis 

of the molecule behavior and interactions with the stationary phase [29,30].  

 

 
Figure 3. Detailed flowchart of data preparation in the software workflow illustrating the systematic 
data preparation process, a pivotal step in the software workflow. The essential features of the 
model's input are shown here. 
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Over 1000 molecular descriptors were calculated, covering molecular topological, 

geometrical, and electronic properties. From a quantitative perspective, these numerical 

values depict the physical and chemical characteristics of the molecules, such as molecular 

weight, Log P, number of rings, and hydrophilic factor. 

 
2.4.2. Data pre-processing. In order to enhance the model's ability to automatically extract 

features, the data pre-processing part will perform automatic feature selection and 

transformation, ensuring that the deep learning model is trained on the most relevant and 

informative features (see Figure SI-1). This is a crucial stage in any ML or DL study, as it 

directly impacts the model's performance and generalization capabilities. 

During the pre-processing stage, several key steps are carried out to curate the dataset 

and retain only the most significant features. These steps include: (i) dropping columns with 

fewer than five unique values, as they may not provide sufficient information for the model to 

learn effectively, (ii) selecting columns with a standard deviation greater than 0.01 [30], as 

they are likely to have additional variation and further contribute to the model's learning 

process, (iii) filtering the Data Frame to only include highly correlated features and the target 

variable; users can choose the correlation threshold with the target variable during the 

filtration process, ensuring that the selected features have a strong relationship with the 

target variable, (iv) dropping correlated features with a correlation threshold of 0.96 [31,32], 

reducing multicollinearity and ensuring that the model is trained on independent features. 

By performing these automatic pre-processing steps, the resulting Data Frame contains 

only the most relevant and informative features. This allows the deep learning model to focus 

on learning the underlying patterns and relationships in the data more effectively, ultimately 

improving its performance and ability to generalize to new data. 

 
2.5. Data analysis 
 
The chromatographic prediction software presents an extensive collection of data analysis 

instruments, enabling users to visualize and comprehend the underlying patterns and 

features of their data effortlessly. By offering different types of graphical representations, the 

software allows users to delve into data skewness, pair plots, box plots, heat maps, 

histograms, and data types, rendering the data analysis process highly efficient and user-

friendly. Additionally, users can register their files, make any relevant changes manually, and 

re-upload them if necessary, ensuring flexibility and control over their data analysis workflow 

(see Figure SI-2). 
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2.6. Data training 
 

After processing, input data undergoes normalization with the Min-Max Scaler. The split 

function is implemented to diyvide the dataset into training and testing subsets based on the 

user-defined split percentage. 

 

2.6.1. Adaptive deep neural network architecture. The Deep Neural Network (DNN) model 

consists of an input layer, user-defined hidden layers with varying neuron counts, and an 

output layer with one or two neurons for dual output predictions. The activation function for 

the hidden layers is also user-defined (see Figure SI-3). The model is compiled using the 

user-selected loss function and optimizer algorithm, with early stopping implemented to 

prevent overfitting. The training progress is logged using the TensorBoard callback. The 

model is trained on the training data for the user-defined number of epochs and batch size, 

which can better meet the scope of application of the system to rotating machinery. 

Howevery, the percentage for splitting the data is specified by the user, with the tested 

dataset selected randomly to ensure variability. After training, the user can save the model for 

future use in predictions (see Figure 4). 

 
 
Figure 4. Model set up and training. (a) A screenshot, (b) Flowchart serving as a visual guide and 
displaying the software's capabilities in model setup and training. By providing specialized tools and 
features, the software streamlines the process of model configuration and training, enhancing user 
experience and facilitating accurate predictions. 
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2.6.2. Machine learning algorithms. This section aims to compare the performance of 

various regression algorithms (see Figure 5), such as Linear Regression (LR), Random 

Forest Regression (RFR), and Support Vector Regression (SVR), with the performance of 

DNN models. Users can choose from these algorithms and define their parameters. The 

selected algorithm with high evaluation metrics can be saved for future use. The goal is to 

assess the potential for achieving higher evaluation metrics using these algorithms and to 

determine their scalability for use in predicting small molecule behavior in chromatography. 

 
 

Figure 5. Machine learning regression algorithms training. (a) A screenshot capturing the Machine 
Learning Algorithms window in the software, featuring a flowchart that serves as a guide. (b) 
Flowchart elucidating the sequential steps leading to the development and saving of the final model, 
offering valuable insights into the algorithmic processes. 

 
2.7. Model performance insights 
 
The user interface provides an extensive selection of evaluation visualization tools, 

streamlining the assessment of the model's performance and allowing users to identify 

potential issues related to overfitting or underfitting. Feedback on the model's outputs is 

displayed through TensorBoard, evaluation regression plots, or alternative performance 

metrics,enabling users to closely monitor the training progress and make well-informed 

adjustments as necessary. By offering such transparency, the software ensures optimal 

model performance and heightens the precision of chromatographic predictions (see Figure 

6).  
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Figure 6. Screen shot of the evaluation tab Widget main menu. Users can access crucial information 
pertaining to model evaluation and performance metrics, enabling informed decision-making and 
refinement of predictive models. This figure serves as a key reference point, highlighting the 
significance of the software interface in evaluating and optimizing chromatographic predictions. 

 
2.8. Prediction process 
 
The software displays predicted outputs for both DNN and ML saved models, providing a 

comprehensive comparison of their respective performances. In the prediction phase, users 

have the ability to specify the injection temperature, allowing for greater control over the 

analysis process (see Figure 7). Additionally, this model can be further enhanced to predict 

retention times based on the composition of the mobile phase and other parameters 

influencing separation. Notably, it also supports simultaneous predictions for multiple 

molecules, thereby offering a more comprehensive understanding of chromatographic 

behavior across diverse analyte mixtures. 

 

3. Experimental section 
 
3.1. Chemicals and reagents 
 
All reagents used in the different syntheses were purchased from across without any further 

purification. The totally porous silica particles (specific surface area: 425 m2.g−1), particle 

diameter: 5 µm, pore diameter: 100 Å were obtained from Merck (Darmstadt, Germany). All 

solvents were chromatography grade and purchased from Fluka (Buchs, Switzerland). 
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Figure 7. (a) Prediction function process involved in Chrompredict 1.0. (b) Associated menu in the 
user interface. 

 
3.2. Experimental apparatus 
 
A Waters ALC/GPC 244 chromatograph with a 6000 A pump, a 7125 Rheodyne syringe with 

a 20 µl sample loop, and a Waters UV240 detector operating at 254 nm for detection and 

analysis purposes. A 15 × 0.4 cm column was packed with CELC using the slurry technique 

[33]. Differential Scanning Calorimetry (DSC) was carried out using a Mettler FP85 device 

while elemental analyses were performed at the Microanalysis Lab (Service de microanalyse) 

of the French National Center for Scientific Research (Gif-sur-Yvette, France). CESP specific 

surface area was determined using the nitrogen BET method on a Micromeritics Accusorb 

200 instrument. 1H NMR analysis was performed on a 250 MHz (5.8 T) Bruker NMR 

spectrometer. 

 
3.3. HPLC experiments 
 
To investigate the thermal and chromatographic properties of CESP, a controlled temperature 

water bath with a thermocouple was set up to regulate the column temperature. Both the 

column and the mobile phase tank were immersed in the water bath throughout the 

experiment. Normal phase chromatography was performed using 100 % hexane as the 

mobile phase, followed by 100 % isooctane at higher temperatures (above 69 °C). While 

reversed phase chromatography utilized a 35/65 (v/v) mixture of acetonitrile and water. The 



- 13 - 

 

high-performance liquid chromatography (HPLC) analysis was conducted under isocratic 

conditions with a flow rate of 1 mL/min. To switch from normal mode to reversed mode, the 

column was rinsed sequentially with isopropanol and isopropanol-acetonitrile at a low flow 

rate for 2 h, followed by rinsing with HPLC grade acetonitrile for 1 h. Finally, the acetonitrile-

water mobile phase was introduced until the chromatographic system reached equilibrium. 

 
3.4. Synthesis and NMR characterization of the mesogenic material 
 
The synthesis of intermediate products, noted (1), (2) and, (3) is given in Figure 8. The final 

product CELC is synthesized through series of reactions that involve assembling these 

intermediates in a specific manner (see Figure 9). The process is complex and requires 

careful control of reaction conditions and purification steps to ensure high product yield and 

purity. The resulting product is further analyzed using 1H NMR in CDCl3 to confirm its 

structure and purity (see Figure SI-4). 

 

 
 
Figure 8. Synthesis scheme of three key intermediates (1, 2, 3) of the crown ether liquid crystal. 
 

3.4.1. Synthesis of intermediate products. Three crucial presynthetic steps were followed 

to form key intermediates: 1-chloro-2-{2-[2-(2-chloroethoxy)ethoxy]ethoxy}ethane (1), 

alpha-bromo-para-toluic acid (2), and 3-octaoxyphenyl (3). These intermediates were 

subsequently utilized in the final product synthesis of crown ether liquid crystal. The synthetic 

procedure for the intermediate (1) involved evaporating 2,2′-[oxybis(ethane-2,1-

diyloxy)]di(ethan-1-ol) evaporate under vacuum of SOCl2 and extracting the formed product 

with dichloromethane. The resulting product was then washed three times with water, dried 



- 14 - 

 

 
 
Figure 9. Complete synthetic route to 4-(4-{4- [2-(6,7,9,10,12,13,15,16-octahydro-5,8,11,14,17-
pentaoxabenzo-cyclopentadecen-2-yl)-ethyl]-phenylazo}−3-octyloxy-phenoxymethyl)-benzoic acid 
liquid crystal, the CELC investigated here. 

 
over MgSO4, and filtered. The obtained product's purity was verified by conducting 1H-NMR 

analysis in CDCl3. This intermediate material was subsequently used in the synthesis of the 

final product. The second intermediate was obtained by reacting sand 1-bromopyrrolidine-

2,5-dione in benzene peroxide/CCl4 at 80 °C for a duration of one night. The product obtained 

was 4-(bromomethyl)benzoic acid (2). Finally, the third intermediate (3) was synthesized by 

reacting benzene-1,3-diol and 1-bromooctane under the following conditions: PEG/Dioxane 
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(30/70) as a solvent and KHCO3 as a base, heated at 80 °C over a night. This intermediate 

was obtained in high yield (89 %) and was the major product of the reaction. 

 
3.4.2. Synthesis of mesogenic material. The synthesis of crown ether part of the final 

molecule was achieved by alkylation of aldehydes through the reaction of 3,4-

dihydroxybenzaldehyde (4) with (1) in the presence of sodium hydroxide and ethanol under a 

nitrogen atmosphere for two days. The crude yield (5) was purified by chromatography on 

silica gel using a mixture of ethyl acetate and dichloromethane (50:50) as the mobile phase. 

Subsequently, the aldehyde (5) was treated with 1-methyl-4-nitrobenzene in the presence of 

a mixture of potassium tert-butoxide and polyethylene glycol, followed by the addition of 

dilute hydrochloric acid for two nights to afford the desired nitro compound (6) in good yields. 

The crude yield was then partially reduced with a mixture of Zn, CaCl2, and 95 % ethanol by 

heating at 80 °C (7), followed by a total reduction of the nitro group in the presence of NaBH4 

and NiCl2/6H2O, and then with methanol at 80 °C for two hours to afford the corresponding 

product (8) in moderate to good yields. 

To form the diazo compound (9), two steps were required. First, the amine group was 

selectively ionized using an HCl 12M/dioxane system and NaNO2/H2O. Second, a selective 

reduction reaction with NaOH/H2O was performed in the presence of 3-(octyloxy)phenol (3) 

to alkylate in the meta position, resulting in the desired product (10). The organic phase was 

then extracted with dichloromethane after evaporating the dioxane, washed in acidified water 

multiple times, dried with MgSO4, filtered, and the solvent was eventually evaporated. The 

resulting residue was chromatographed on silica gel (70–230 mesh) using ethyl acetate as 

the mobile phase, and the pure compound was collected in the final fraction. Finally, the 

mesogenic acid was formed by reacting the solid product (10) with 4-(bromomethyl) benzoic 

acid in PEG as a solvent, heating, and using KHCO3 as a co-solvent. The acid formed in the 

solid state was recovered by adding acidulated H2O, which allowed it to be precipitated. The 

crude solid was then filtered through sintered glass. The recrystallized final CELC (see 

Figure SI-5) obtained in an appropriate solvent, was dried under vacuum. 

 
3.4.3. Amidification reaction and grafting procedure. In the last stage, the amidification 

reaction (see Figure 10). was performed by combining the ABDMS-silica with the liquid 

crystal (CELC), using a microwave-assisted grafting approach [34,35], ABDMS-silica was 

meticulously prepared, following the guidelines outlined in relevant scientific literature [35], 

after that, a 24 h drying process was applied to the ABDMS-silica, with the temperature being 

kept at 110 °C and under vacuum. In the final phase, a 50 mL Pyrex vessel was utilized to 
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combine15 mL of trifluorotoluene with the ABDMS-silica, and the contents were stirred. 

Simultaneously, in another 50 mL Pyrex vessel, a mixture consisting of 1 g of CELC, 1.63 g 

of (Benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate (PyBOP), and 1.09 

mL of N,N-diisopropylethylamine (DIPEA) in a suitable solvent was also being agitated. 

Afterward, both mixtures were amalgamated and placed within a microwave environment, 

wherein they underwent a grafting process lasting for a duration of 1 h, with the temperature 

set at 97 °C. Upon the completion of the grafting process, a concluding step involved the 

introduction of 2.4 mL of an end-capping reagent, namely N-(trimethylsilyl) dimethylamine. 

This reagent was introduced into the mixture, which was then subjected to an additional 

microwave treatment, lasting 1 h at a temperature of 90 °C. 

 

 
 
Figure 10. Grafting procedure of the CELC on the inert support of the column. 

 
Following this, any surplus reagent was effectively removed through a series of rinses, 

involving 30 mL of trifluorotoluene, 30 mL of tetrahydrofuran, and 30 mL of acetonitrile. The 

resultant CESP product was subsequently exposed to a drying process at a temperature of 

110 °C, under vacuum conditions, extending for a period of 24 h. This material is then packed 

into an HPLC column using a slurry technique [33]. The mesogenic group can provide 

selectivity for certain types of analytes, while the silica material provides a stable and inert 

support for the stationary phase. 

 
3.4.4. Structural characterization. The 1H NMR spectrum of the synthesized CELC was 

recorded in CDCl3 (see Figure SI-4). All δ values are given in ppm. The peaks correspond to 

different methylene groups within the ether-linked alkyl chain, each with a distinct chemical 

environment. The peak at δ = 0.80 (d, 3H, CH3) represents the terminal methyl group 

whereas other peaks at δ = 1.25 (qd, 8H, 4 × CH3-CH2-CH2-), δ = 1.5 (m, 2H, CH3-CH2-), δ = 
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1.75 (qd, 2H, -Ar-O-CH2-CH2-) and 3.75 (t, 2H, Ar-O-CH2-) are attributed to methylene groups 

in various positions along the alkyl chain. The peak at δ = 2.75 (-Ar-CH2) is due to the 

methylene groups adjacent to the aromatic rings, indicating their distinct chemical shift 

caused by the influence of the aromatic system. The methylene of the crown ether cycle is 

represented by peaks at δ = 3.35, 3.60, and 4.05. The protons bound to the aromatic ring (-

Ar-O-CH2-) are represented by a peak at δ = 5.35 ppm. Singlet peaks at δ = 6.40 and 

doublets 6.75 and 7.71 (N–H-aromatic-O) correspond to the proton attached to the aromatic 

ring. The peaks corresponding to the protons on the ring adjacent to the acid function are 

observed at δ = 6.55 and δ = 7.55 (d, 2H, H-aromatic). Protons attached to the aromatic ring 

between oxygen and the alkyl group are represented by peaks at δ = 7.88 and 7.32 (d, 2H, 

R–H-aromatic-O). The proton of the aromatic ring adjacent to the crown ether cycle 

resonates at 6.90 (d, 2H, H-aromatic). 

 
4. Results and discussion 
 
4.1. Characterization of CESP 
 
The elemental analysis shows the calculated percentages of carbon, hydrogen, and nitrogen 

in the compound, indicating good purity of the synthesized product. Transition temperatures 

of CELC determined by DSC are given in Table 1, showing a small nematic range at high 

temperatures. 

 
Table 1. Temperature transitions (determined by DSC). 

Transition Solid → Nematic Nematic → Liquid 

Temperature 142 °C 189 °C 

 
According to the literature [30], the following equation (Eq. (1)) can be used to determine the 

coverage density (τ) of CESP:(1). The variables in the equation Eq. (1) have the following 

definitions: pc is the carbon percentage by weight of the bonded material, Mc is the atomic 

mass of carbon, Mw is the molecular weight of the grafted molecule, nc is the total number of 

carbon atoms in the bonded organic group, and SBET is the specific surface area (m2.g−1 

silica). The analysis of Table 2 reveals a τ value of 2.06 µmol.m-2 for CESP. This value may 

appear relatively low when considering the surface area, but it's important to note that 76.5 % 

of the NH groups in ABDMS-silica were successfully bonded, indicating a highly effective 

coverage of the stationary phase. 
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Table 2. Elemental analysis of ABDMS-silica and CESP. 

Empty Cell ABDMS-silica CESP 

Carbon (%) 7.4 27.3 

Hydrogen (%) 1.86 3.11 

Nitrogen (%) 1.38 1.21 

τ NH2, µmol.m−2 2.7 2.7 

τ ELCP, µmol.m−2  2.06 

 
4.2. Thermal and chromatographic properties of the CESP 
 
The CESP column integrates both a crown ether ring and a liquid crystal state, these two 

attributes enhance chromatographic performance by providing shape selectivity and a variety 

of interaction capabilities with the analytes (see Figures SI-6 and SI-7), thus affecting the 

observed selectivity characteristics. 

To elucidate the impact of temperature on the behavior of the grafted liquid crystal, and 

based on the transitions identified through differential scanning calorimetry (DSC) analysis, a 

thermal study of the CESP was conducted in both normal and reversed-phase modes. This 

study aimed to confirm the presence of the mesogenic state and to investigate potential 

modifications. For each injection, three independent experiments were performed, and the 

averages were calculated to ensure precision and reliability. The Van't Hoff equation (Eq. (2)) 

was utilized for this purpose:(2) 

In Eq. (2), the parameters k, ΔH, ΔS, R, T, and Φ represent the retention factor, the 

enthalpy of transfer, the entropy of transfer, the ideal gas constant, the absolute temperature, 

and the phase ratio of the column, respectively. The Van't Hoff plots of ln k versus. 1/T show 

a linear trend. A deviation in the curve is observed when structural changes occur in the 

stationary phase due to its mesogenic state. As a result, the interactions between the solute, 

mobile phase and stationary phase vary. 

 
4.2.1. Normal-phase conditions. Figure 11 illustrates the temperature dependence of ln k 

for a series of aromatic hydrocarbons in normal-phase of CESP. The change in slope of the ln 

k versus temperature curve indicates a change in the enthalpy (ΔH) of the system. The first 

and second transition temperatures were located at 323 K (50 °C) and 307 K (34 °C). 

Additionally, the thermal curves reveal a variation in the selectivity of aromatic compounds 

during heating (Figure SI.6). Around the inflection points in the Van't Hoff plots, selectivity 

increases and falls below 1, indicating a reversal in the elution order of the compounds. This 

phenomenon is likely due to the presence of the mesogenic state, which enables increased 
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mobility of the stationary phase chains during heating, thereby making the crown ether cavity 

more accessible to the analyzed solutes. These properties result in varying efficiency, 

selectivity, and resolution of the isomers as a function of temperature, emphasizing the 

importance of understanding thermodynamic properties in chromatographic systems for 

effective separation strategies. 

 

 

Figure 11. Temperature dependence of ln k for aromatic hydrocarbons in normal phase. Under 
normal-phase conditions, the new stationary phase exhibited satisfactory separation efficiency and 
selectivity for various analytes, including benzene, toluene, p-xylene, m-xylene, ethyl-4-toluene, and 
trimethyl 1,2,4-benzene. 

 
For shape selectivity, xylene isomers: m-xylene/o-xylene (α = 1.05), m-xylene/p-xylene 

(α = 1.2), and o-xylene/p-xylene (α = 1.11), see Figure SI-8. Para- and meta-xylenes, known 

for being challenging to separate, CESP showed a high selectivity as well as for other 

aromatics solutes. The more linear solute, such as p-xylene is retained more strongly than m-

xylene within the crown ether cavity. That might be due to synergetic effect of the mesogenic 

chain and the crown ether cavity. 

 
4.2.2. Reversed-phase conditions. The liquid crystal phase influenced by the temperature 

enhances the interactions between the stationayry phase and the analytes [14], adding 

another dimension to the separation capabilities of the stationary phase. 

The Van't Hoff plot in Figure 12 shows two distinct breakpoints at 293 K (20 °C) and 

312 K (39 °C), indicating that CESP phase exhibits unique temperature-dependent 

mesophase properties. This demonstrates that the stationary phase undergoes a 

morphological change probably due to the molecular motions of the long mesogenic chains. 
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This underscores the fact that the liquid crystal stationary phase maintains its mesogenic 

properties across a range of mobile phase conditions. When the mobile phase is changed 

going from the normal to reversed phase, it essentially modifies the separation environment. 

In comparison to the normal phase, a noticeable shift in transition temperatures is observed, 

with the transitions being less pronounced. This can likely be attributed to the hydrophobic 

effect of the long-grafted chains in the stationary phase, which, in the presence of water in 

the mobile phase, restricts their mobility and hinders structural rearrangement. 

 

 
 
Figure 12. Temperature dependence of ln k for PAH in the reversed phase. 

 
To evaluate shape selectivity under reversed-phase conditions, linear polycyclic aromatic 

hydrocarbons (PAHs) are commonly used to assess aromatic selectivity and retention 

characteristics of stationary phases across different chromatographic conditions. In this study, 

seventeen hydrophobic PAHs with diverse geometries were selected as probe molecules. 

Utilizing a mobile phase composed of 65 % water, the CESP demonstrates exceptional 

separation of 17 polycyclic aromatic hydrocarbons (PAHs), each characterized by a structure 

containing 2 to 5 aromatic rings. Notably, five pairs of PAHs were successfully separated, 

offering valuable insights into the column's selectivity (see Figure SI-7). For instance, the 

CESP column exhibited significant selectivity between phenanthrene and anthracene (α = 

1.6), a level of separation rarely achieved with other stationary phases [3,36]. Furthermore, 

anthracene, characterized by its elongated structure, demonstrates greater retention than 
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phenanthrene, likely attributable to the shape selectivity of the stationary phase. The 

separation of isomers is also influenced by temperature, as illustrated in Figure SI-9. This 

dependence arises because temperature affects the kinetic energy of the molecules, which in 

turn impacts their interactions with the stationary phase. 

Overall, the new crown-ether based mesogenic stationary phase exhibits promising 

chromatographic performance in both normal-phase and reversed-phase modes, considering 

the influence of temperature on the thermodynamics of retention. It excels in separating 

traditionally challenging isomers and holds significant implications for the development of 

future advanced stationary phases. 

 
4.3. Applications of Chrompredict 1.0 based on performance of the CESP and several 
known chromatographic databases 
 
4.3.1. Selected descriptors for the CESP. A systematic comparison of the selected 

attributes in the reversed and normal phases (see Figure SI-10 and Figure SI-11), revealed 

that geometric and shape descriptors play a key role in the chromatographic behavior of 

compounds and their interactions with the stationary phase. Among the evaluated 

descriptors, Ipc (information of atom-pair connectivity) captures the overall connectivity 

pattern of a molecule, while Average Atom-Type E-State Index of order 5 for polarizability 

(AATS5p) considers the local environment of each atom. Moran Auto-Transformation of 

Structure (MATS) accounts for the distribution of atoms in a molecule, while Global Graph 

Index 4 (GGI4) and the second Zagreb Index capture the overall shape and complexity of a 

molecule. These descriptors provide a comprehensive representation of molecular structure 

and shape, enabling a deeper understanding of their chromatographic behavior. 

The unique characteristics of reversed-phase chromatography are highlighted by the 

dissimilarities in chosen features such as BalabanJx (topological index), Kappa3 (3D 

molecular shape index), and ATS6p (Atom-type topological state) (see Figure SI-12). In 

reversed-phase chromatography, where the stationary phase is nonpolar and the mobile 

phase is polar, descriptors associated with hydrophobicity, form, and size become more 

pertinent. These features reflect the interaction between the hydrophobic stationary phase 

and the analyte molecules, as well as the competition with the polar mobile phase, 

influencing chromatographic behavior. 

In normal-phase chromatography, where the stationary phase is polar and the mobile 

phase is nonpolar, descriptors connected to polarity, hydrogen bonding, and electronic 

interactions are more significant. Features such as GATS5c (Geary autocorrelation) and 

EState_VSA8_y (E-State van der Waals surface area) illustrate the interaction between the 
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polar stationary phase and solutes, alongside the competition with the nonpolar mobile 

phase, dictating chromatographic behavior in this mode. 

 
4.3.2. Selected descriptors for different chromatographic databases. Additionally, four 

auxiliary datasets were used, including the application of liquid crystals in normal-phase 

chromatography (LC-LCC8 column) [3] and gas chromatography (LCC1 and GC-3-CH3 

columns) [29,37], featuring a relatively smaller dataset of not > 38 small molecules. 

Furthermore, the METLIN Small Molecule Retention Time (SMRT) dataset [38], providing 

experimentally acquired reverse-phase chromatography retention time data for 1023 small 

molecules, was also incorporated as an external dataset thus covering a wide range of 

molecule types with different chemical structures (see Table 3). These diverse datasets 

provide a comprehensive evaluation of the software's performance and adaptability across a 

wide range of chromatographic conditions and different data scales. 

 
Table 3. Classification of injected molecules by solute families. 

Dataset Molecule Families 

LC-LCC8 [3], (Rev. mode) Polycyclic Aromatic. Hydrocarbons 

LCC1 [31] Aromatic Hydrocarbons 

GC-3-CH3 [37] Aromatic Hydrocarbons, Naphthalenes, Terpenes, Terpenoids 

METLIN [38] 

Aromatic Hydrocarbons, Polycyclic Aromatic Hydrocarbons (PAHs), Heterocyclic 
Compounds, 
Alkanes, Alkenes, Alkynes, Alcohols, Aldehydes, Ketones, Carboxylic Acids, 
Amines, Amides, Ethers, Epoxides, Halogenated Compounds 

 
The selection of these descriptors generated and selected after the pre-processing by 

Chrompredict 1.0 suggests that the retention time is influenced by a combination of factors 

related to the physicochemical properties and structural characteristics of the molecules. 

For the METLIN dataset [38], the selected descriptors focus more on specific atomic or 

molecular properties and their distribution within the molecule. They include measures of 

hydrogen bonding potential (NHOHCount, nHBDon), acidity (nAcid), autocorrelation 

properties (AATS3p, AATS1i, AATS3i, AATS4i), and solubility (FilterItLogS). This suggests 

that the interactions in the METLIN database might be greatly influenced by the presence of 

specific functional groups, the molecular acidity, hydrogen bonding, and solubility (Table 4). 
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Table 4. Comparison of selected descriptors from multiple databases after pre-processing. 

Data  
base 

Data's 
dimen. 

Correl. 
threshold 

Selected Descriptorsa 

LC-LCC8, 
Rev. mode 

39 65 

FpDensity 
Morgan2 

BCUT2D_CHGLO AATS4s ATSC4dv ATSC2i AATSC1v MATS3c 

GATS1c GATS1s BCUTdv-1l MINaaaC CIC2 CIC3 MIC2 

MATS3s MATS5s ZMIC2 ZMIC3    

METLIN 1023 67 

AATS3p AATS1i AATS3i AATS4i ATSC1are AATSC1c AATSC1are 

BCUTm-1l Mi ETA_epsilon_2 ETA_dEpsilon_D nHBDon FilterItLogS AMID_C 

NHOHCount nAcid MATS1are GATS1pe SLogP   

GC-3-CH3 38 46 
AATS3are AATSC0dv ETA_dEpsilon_A IC1 BIC1 MIC2 PEOE_VSA10_y 

AATS1s AATS3s EState_VSA6_y     

LCC1 23 65 

AATS4p MATS2dv MATS2d Xpc-6dv Xp-5dv MAXaaCH MAXaasC 

MPC5 Zagreb2 mZagreb1 mZagreb2 Ipc ATS5d PEOE_VSA7_y 

BsIC1       

 

a With: FpDensityMorgan2: Morgan fingerprint density at radius 2. BCUT2D_CHGLO: Burden Modified 

Eigenvalues 2D - lowest atomic partial charge. AATS4s: Average Broto-Moreau autocorrelation - lag 4 / 

weighted by atomic Sanderson electronegativities. ATSC4dv: Autocorrelation of lag 4 / weighted by atomic van 

der Waals volumes. ATSC2i: Autocorrelation of lag 2 / weighted by atomic ionization potentials. AATSC1v: 

Average autocorrelation of lag 1 / weighted by atomic van der Waals volumes. MATS3c: Moran autocorrelation 

of lag 3 / weighted by atomic charges. MATS3s: Moran autocorrelation of lag 3 / weighted by atomic Sanderson 

electronegativities. MATS5s: Moran autocorrelation of lag 5 / weighted by atomic Sanderson electronegativities. 

GATS1c: Geary autocorrelation of lag 1 / weighted by atomic charges. GATS1s: Geary autocorrelation of lag 1 / 

weighted by atomic Sanderson electronegativities. BCUTdv-1l: Burden Modified Eigenvalues - lowest 

eigenvalue n.1 / weighted by atomic van der Waals volumes. MINaaaC: Minimum atom-type E-state - aromatic 

carbons. CIC2: Information content index (neighborhood symmetry of 2-order). CIC3: Information content index 

(neighborhood symmetry of 3-order). MIC2: Mean information content on 2-order neighborhood. ZMIC2: Mean 

information content index (neighborhood symmetry of 2-order). ZMIC3: Mean information content index 

(neighborhood symmetry of 3-order). 

 

The descriptors selected for the liquid crystal columns are more varied, reflecting a 

broader range of molecular properties. They include measures of molecular structure and 

electronic properties (FpDensityMorgan2, BCUT2D_CHGLO, AATS4s, etc.), autocorrelation 

descriptors (AATS1s, AATS3s, AATS3are, etc.), and information content of the molecular 

structure (Ipc, ATS5d, AATS4p, etc.). This suggests that the interactions in the liquid crystal 

columns might be influenced by a wider range of factors, including the shape, size, and 

branching of the molecules, the spatial distribution of their atoms, their electronic states, and 

the complexity of their structure. 
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In summary, the selected descriptors in the METLIN database and the liquid crystal 

columns reflect the different types of interactions that might be occurring in each case, 

providing insights into the factors that might influence the retention time in chromatography 

(Table 4). The relevance of the selected molecular descriptors lies in their ability to 

encapsulate fundamental characteristics of molecular structure. They provide insights into 

key aspects such as molecular geometry, charge distribution, ionization potential, and van 

der Waals volumes. Consequently, they are instrumental in predicting retention values, as 

they effectively represent the molecular properties that govern chromatographic behavior. 

 
4.3.3. Exploratory data analysis for different database. The boxplots of the pre-processed 

data (see Figure 13). in both modes (reverse and normal) illustrate the effectiveness of the 

pre-processing offered by the software. Despite the residual presence of some outliers, the 

overall reduction in their prevalence suggests that the pre-processing process has 

significantly improved the quality of the data. These observations indicate that pre-processing 

plays a crucial role in obtaining cleaned data that is ready for further analysis. For a more 

comprehensive view, boxplots for other chromatographic databases, which also display the 

successful pre-processing of the data by the software, can be found in the annex (see Figure 

SI-13). 

 
4.3.4. Evaluation of the deep learning models. The evaluation of the model's performance 

on the six datasets reveals promising results for both the training and testing sets. The high 

R-squared values (see Table 5) indicate a strong linear relationship between the predicted 

and actual values, emphasizing the model's ability to capture a significant portion of the 

data's variance. Moreover, the low mean squared error demonstrates the model's accurate 

predictions, with the average predictions closely aligned with the true values. The low median 

reinforces the model's precision, highlighting its consistency in making predictions across 

various data points. Furthermore, the variance analysis showcases the model's stability in 

delivering consistent predictions throughout the datasets. 
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Figure 13. Boxplots generated by Chrompredict 1.0 after automatical preprocessing of two data sets 

descriptors distribution of ECSP in two different modes: (a) reversed mode and (b) normal mode. 
 
 
Table 5. Model evaluation metrics for different datasets. 

Phase 
CESP  
Rev. mode 

CESP  
Normal mode 

LC-LCC8 [3] 

Rev. mode 
GC-3-CH3 [37] METLIN [38] LCC1 [31] 

AI model DL a ML b DL ML DL ML DL ML DL ML DL ML 

Data T c V d T V T V T V T V T V T V T V T V T V T V T V 

R-squared 
% 

97 96 97 94 97 88 97 87 99 98 97 97 95 37 97 43 95 75 94 66 99.7 98.9 99.9 99.3 

EVS % e 97 97 97 94 96 88 96 87 99 98 97 98 93 42 97 49 95 63 94 66 99.8 99.7 99.9 99.3 

MAE % f 1.26 1.45 1.8 3.6 3.16 4.53 1.5 3.6 0.56 3.94 3.15 3.52 4.03 14.3 1.6 10 4.2 12.8 5.1 14.2 1.15 1.6 0.7 1.3 

Med-AE % g 0.15 0.18 0.6 2.3 2.11 3.58 0.8 2.5 0.07 0.56 2.23 2.66 2.5 9.48 0.14 5.4 2.5 7.4 3.6 11.3 0.8 1.5 0.7 1.7 

Mean-SE %h 1.51 1.61 0.1 0.3 0.22 0.35 0.07 0.4 2.31 1.28 0.18 0.18 4.2 4.39 0.1 2.5 0.4 3.6 0.5 3.4 0.02 0.03 7.1 0.02 

a DL: Deep learning. b ML: Machine learning. c T: Training. 
d V: Validation. e EVS: Explained variance score. f MAE: Mean absolute error. 
g Med-AE: Median absolute error. h Mean-SE: Mean squared error. 
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Figure 14. Linear regression evaluation of TR (min) and ln k by Chrompredict 1.0 (deep model 
prediction) applied to different HPLC datasets: (a) CESP-Reversed mode, (b) CESP-Normal mode, 
(c) LC-LCC8 and (d) METLIN. Blue dots and red dots correspond to training experimental and testing 
data, respectively. 
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In the linear regression evaluation (see Figures 14 and 15) the majority of data points 

closely align with the predicted values, indicating that the model effectively captures the 

retention behavior across the dataset. The 20 % of data used for testing was selected 

randomly, ensuring an unbiased assessment of the model's generalization ability. Although 

minor deviations were observed for certain individual molecules, these deviations fall within 

acceptable error margins (< 0.25). Overall, the results confirm the robustness and reliability of 

the model in predicting retention times for diverse compounds. 

 

 
 
Figure 15. Linear regression evaluation of Tr (min) and ln k by Chrompredict 1.0 (deep model 
prediction) applied to different GC datasets: (e) GC-3-CH3 and (f) LCC1. Blue dots and red dots 
correspond to training experimental and testing data, respectively. 

 
The results from Table 5 underscore the accurate predictive capabilities of both ML and DL 

algorithms for chromatographic behavior. Notably, ML and DL algorithms demonstrated 

comparable performance with smaller datasets. However, as the dataset size increases, DL 

algorithms exhibit superior performance, reflected by higher R-squared values and lower 

error metrics. These findings indicate the potential advantages of using DL algorithms when 
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working with larger chromatographic datasets, as they effectively capture intricate 

relationships and patterns within the data. 

To further investigate the effectiveness of models in addressing real-world problems, data 

was collected and compared to the predicted and actual values (Table 6). The deep learning 

model demonstrated a close agreement between predicted and experimental results, 

highlighting its practical applicability. The minor variations between experimental and 

predicted values, as commonly observed in predictive modeling, are influenced by factors 

such as column type, solvent composition, and mobile phase [39,40]. Additionally, the 

selected hyperparameters, which govern the model's learning process, may also contribute 

[41]. 

 
Table 6. Comparison between real and predicted values for retention time (min) and retention factors 
across four HPLC datasets. 

Techniq
ue 

High-pressure liquid chromatography 

 Dataset 
CESP 

Rev. mode 
CESP 

Normal mode 
LC-LCC8 [3] 
Rev. mode 

METLIN [38] 

 Molecule Acenaphthylene Tert-butylbenzene Benzo [a]fluroene 
Cetyltrimethyl 
ammonium-palmitate 
/ l-alanine 

 AI Model a    DNN a ML b DNN ML DNN ML DNN ML 

R/P b R P R P   R P R   P R P R P R P R P 

Tr c 2.56 3.64 2.56 3.71 7.12 6.95 7.12 6.67 2.16 2.15 2.16 2.21 
2.96/ 
7.24 

2.83/ 
7.74 

2.96/ 
7.24 

3.50/ 
6.42 

ln k d −1.57 −0.36 −1.57 −0.32 0.94 0.90 0.94 0.84 0.15 0.15 0.15 0.18 / / / / 

a AI model: Deep neural network (DNN) or machine learning (ML). b R: Real value, P: Predicted value. 
c Tr: Retention time (min). d ln k: Retention factor. 

 
The relevance of the selected molecular descriptors, including FpDensityMorgan2 

(associated with fingerprint density), BCUT2D_CHGLO (pertaining to atomic partial charge), 

and various autocorrelation descriptors (such as AATS4s and MATS3c), lies in their ability to 

encapsulate fundamental characteristics of molecular structure. These descriptors provide 

insights into key aspects such as molecular geometry, charge distribution, ionization 

potential, and van der Waals volumes. Consequently, they are instrumental in predicting 

retention values, as they effectively represent the molecular properties that govern 

chromatographic behavior. While the selected descriptors obtained from the RDKit and 

Mordred libraries provide valuable insights into key physicochemical interactions [40], 

expanding the dataset with additional molecular descriptors from other sources can 

significantly enhance the model's predictive performance. 

https://www.sciencedirect.com/science/article/pii/S0021967324008501?dgcid=author#tb6fn1
https://www.sciencedirect.com/science/article/pii/S0021967324008501?dgcid=author#tb6fn1
https://www.sciencedirect.com/science/article/pii/S0021967324008501?dgcid=author#tb6fn2
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In this context, the retention factors of volatile compounds were successfully predicted, 

illustrating the versatility of the deep learning model. Moreover, this AI-based approach can 

be extended beyond HPLC approach, and can be effectively applied to other 

chromatographic techniques, such as gas chromatography (GC-3-CH3 [37] and LCC1 [29]) 

(Table 7). In this table, the predictions for molecules not included in the training data were 

selected for testing, providing a more rigorous evaluation of the model using HPLC data. 

 
Table 7. Comparison betwseen real and predicted values for retention time 
and retention factors across two GC datasets. 

Technique Gas chromatography 

Dataset GC-3-CH3 [37] LCC1 [29] 

Molecule α-terpineol 1,2,4,5-tetramethylbenzene 

AI Model a DNN ML DNN ML 

R/P b R P R P R P R P 

Tr c 9.9 11.12 9.9 9.70 8.8 8.97 8.8 8.45 

ln k d 1.41 1.50 1.41 1.48 / / / / 

a AI model: Deep neural network (DNN) or machine learning (ML). b R: Real value, P: Predicted value. 
c Tr: Retention time (min). d ln k: Retention factor. 

 
5. Conclusion 

 
A novel AI-based tool called Chrompredict 1.0, has been developed to enhance the 

understanding of chromatographic interactions and to predict retention parameters based on 

data derived from a newly synthesized mesogenic crown ether stationary phase (CESP) 

grafted onto ABDMS-silica. This CESP was specifically designed for its unique combination 

of properties, including a molecular cavity, mesogenic behavior through a mobile chain, and a 

unique range of polar and non-polar interactions. These distinctive features enable its use in 

both normal and reversed-phase modes, significantly increasing the versatility and 

applicability across diverse datasets of our AI-based software's. As expected, it also offers 

exceptional chromatographic performance, particularly in the separation of linear polycyclic 

aromatic hydrocarbons (PAHs) and other hydrocarbons, demonstrating its powerful 

selectivity. Analytical and thermal evaluations confirmed the phase's ability to separate 

traditionally challenging isomers with a high degree of precision in both normal and reversed 

modes 

Data collected from the chromatographic experiments, including retention times (Tr) and 

capacity factors (k), were integrated into the Chrompredict 1.0 software, which uses 

SMILES-derived chemical descriptors to establish relationships between solutes and the 

stationary phase. After preprocessing, these data were used to train machine learning and 
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deep learning models, which were evaluated using a range of metrics and regression 

analyses. The software has been successfully applied to HPLC datasets from both normal 

and reversed-phase modes, as well as to GC data. Analysis of results have demonstrated a 

robust stability and strong generalization, achieving prediction accuracies for Tr and ln k 

values exceeding 90 %. The model was also able to predicted retention factors for volatile 

compounds, highlighting its flexibility and effectiveness in handling complex chromatographic 

dynamics. Tested on the METLIN database containing 1023 small molecules of varying 

structures and polarities, the software obtained an R² > 0.75 with an error margin of ±7.8 s, 

confirming its universal applicability. 

As the field of chromatography advances, the integration of deep learning models, such 

as those implemented in Chrompredict 1.0, alongside novel stationary phases like CESP, is 

poised to transform chromatographic methodologies. This innovative approach offers 

unprecedented precision in predicting retention behaviors and optimizing chromatographic 

processes, paving the way for significant advancements in the field. 
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