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When several intruders move in a granular medium, coupling effects are observed, the motion
of one intruder affecting that of others. In this paper, we investigate experimentally how the drag
forces acting on a pair of spherical intruders moving amid grains at constant velocity vary with the
transverse separation between them and their depth. When intruders are sufficiently far apart, they
do not influence each other, and the average drag felt by each of them matches that of a single
intruder. However, for small distances between intruders and at a given depth, the average drag
per intruder decreases, highlighting a collaborative effect that facilitates motion. This collaboration
effect is amplified when the depth of the intruders increases. We propose a model for the drag
reduction of a pair of intruders based on the breakup of contact chains, caused by the perturbation
generated by the neighbor intruder. Our findings provide new insights into the interaction effects
on the motion of solids in sand, such as those observed in animal locomotion, root growth, and soil
survey.

I. INTRODUCTION

The relative motion between solid bodies (intruders) and granular materials is ubiquitous in nature and human
activities. In particular, at relatively small velocities, grains’ motion is dominated by solid-solid friction and the
formation and breakup of contact chains [1–8], in a regime called quasistatic. This regime can be observed in the
thrusting of plows in agricultural activities, in avalanche protection devices aimed at slowing down the flow [9, 10],
in root growth [11, 12], and in the motion of animals in the soil [13]. One case of particular interest is when several
intruders move within grains, since the motion of each intruder can affect those of others [14], establishing a cooperative
behavior. Further applications can be envisaged: if one intruder affects the motion of others, the ground can be probed
to detect the presence of solid objects, such as buried rocks or ice. This opens new opportunities for prospecting the
soil of planets and moons for the presence of ice and other materials, for instance.
In order to quantify the interaction between intruders moving through grains, various model experiments were

carried out. The first type of study concerns intruders that move freely in low-density grains, corresponding to
densities much lower than those of the intruders. For example, a pair of intruders impacting a light granular medium
side by side first repel themselves in the horizontal plane at a low depth and attract each other at a higher depth
[15, 16]. Whereas a Bernoulli-like mechanism is invoked to explain the attractive behavior, the repulsion is interpreted
as being due to granular jamming in the region between the intruders. In a two-dimensional (2D) case, the behavior
of several intruders was also studied numerically for pairs and trios of larger disks moving freely amid smaller disks
[14]. These simulations showed the existence of cooperative dynamics between the intruders, even when they were
at relatively large distances from each other. They also revealed that the final arrangement of the intruders in space
depends on their initial positions, with particular cases where the same final configuration was reached for different
initial conditions. The cooperative dynamics were rationalized as the result of compaction and expansion of granular
matter in front and behind each intruder, respectively.
A second type of study concerns threaded objects placed at a constant separation distance, for which forces have

been measured during their motion. For a pair of intruders, it has been shown that the side force acting on intruders
varies with separation, from repulsive for small values to attractive for relatively higher values [17–19]. Dhiman et al.

proposed a mechanism to explain these observations, where repulsion and attraction are given, respectively, by the
formation and breakup of contact chains linking the intruders [19]. These chains depend, in turn, on the intruders’
surfaces and the shear zones close to them: the intruders’ surfaces tend to stabilize contact chains, while the shear
zones tend to destabilize them. Moreover, Caballero et al. found that the drag force acting on each intruder does not
vary significantly with their separation, although it is lower than in the case of a single intruder [17]. For a bounded-2D
granular system, Carvalho and Franklin [14] observed a nonmonotonic behavior of the drag force with the separation
of the intruders. The drag force exhibits a minimum at intermediate separation distance before returning to the same
value as an individual intruder for a large separation.
Interaction effects between threaded objects were also observed for a pair of horizontal rods penetrating downward

into a granular bed [20]. Beginning with contact intruders, the total mechanical work required for the penetration
process first increases with the separation distance until the gap is large enough to allow the grains to flow between
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FIG. 1: (a) Sketch of the experimental setup for the displacement along the x axis of two spherical intruders of
diameter d, immersed in grains at the depth h. (b) Picture of an experiment for two immersed intruders ∆ = 30 mm
apart, at depth h = 14 mm and moving at the velocity V0 = 2.7 mm s−1 during the forward journey. The image is

used for visualization purposes to show the surface deformation that occurs at the shallowest depth.

the rods. Once the grains can flow between the intruders, the total work decreases by 25% until it reaches a plateau
value. In order to characterize the interaction between two intruders, Merceron et al. [21] carried out experiments
where they visualized the granular flow around a pair of intruders placed side by side. The intruders are forced to
move upward into a 2D granular medium consisting of small bidisperse disks. They showed that there is a separation
distance between the intruders below which the motion of grains in front of one intruder is affected by the other.
Remarkably, this distance is observed to be independent of the intruders’ size.
Despite the progress made in recent years, many questions remain unanswered concerning the drag force resulting

from these cooperative behaviors. Thus, we have conducted experiments in which we forced either one or two spheres
to move horizontally at different depths within a granular medium while measuring the drag forces involved in
their motion. We probe the spatial extent of the interaction between the spheres by exploring the influence of the
separation distance on the mean drag experienced by each sphere and determining an associated characteristic length
of the interaction. We also explore the possibility of developing a model to predict this drag.
After describing the experimental setup in Sec. II, we present in Sec. III drag force measurements of one or a pair

of intruders moving horizontally through a granular medium. Section IV presents a model to describe the reduction
in drag as the distance between the intruders decreases and for different burial depths. Finally, Sec. V summarizes
the main conclusions of this work.

II. EXPERIMENTAL SETUP

The experiments consist of pulling intruders (polyamide spheres with a diameter d = 20 mm) at a constant velocity
V0 inside a granular medium made of slightly polydisperse glass spheres (diameter dg = 1 ± 0.3 mm and density
ρ ≃ 2.5 × 103 kg m−3). The grains are contained in a rectangular box 365 mm long and 270 mm wide, and filled
to a height of 97 mm [Fig. 1(a)]. To ensure the randomness of the initial conditions and the homogenization of the
granular bed, the box is vibrated manually along the transverse y direction before each experiment takes place, which
results in a flattened free surface bed with an initial packing fraction of φ = 0.60 ± 0.02, measured by weighing the
contents of the box. We find that this procedure leads to reproducible measurements. The intruders are attached to
cylindrical rods of 5 mm in diameter, preventing any tilting or rotation, and immersed in the bed at depth h (h being
the distance separating the free surface of grains from the center of the intruder). The rods are connected to force
gauges (load cell 780 g, Phidgets Inc.) that measure the longitudinal time-varying drag force f0(t) at a frequency of
60 Hz. The whole system is fixed to an x-direction moving plate, controlled by a linear stepper motor ensuring the
displacement of the intruders at a velocity V0 from 10−1 to 10 mm s−1 [Fig. 1(a)].
Two distinct configurations will be considered below: (i) the displacement of a single intruder in the x direction

from one edge of the box to the other, and initially placed at y = 0 and depth z = h ; (ii) the displacement of two
side-by-side intruders at the same abscissa x and same depth z = h, located initially at y = ±∆/2 and separated by
a distance ∆ measured from their centers as seen in Fig. 1(a). To prevent any wall effects [22], we ensure to stay far
enough from the side walls during an experiment, with a minimal intruder/wall distance of approximately 3 d, and
we restrict immersion depths to h ≤ 49 mm to maintain a distance greater than 2.5 d between the intruders and the
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FIG. 2: (a) Mean drag force on a single intruder F0 as a function of its horizontal velocity V0 at a depth h = 14 mm.
Solid symbols correspond to forward motion and open symbols to backward motion. Inset: Instantaneous drag force
on a single intruder f0 as a function of the position x at two different depths (h = 14 mm and h = 49 mm), and a
travel velocity of V0 = 2.7 mm s−1 for ( ) forward and ( ) backward motions, respectively. The shaded area
corresponds to the region of interest where the measurements are carried out. (b) Mean drag force on a single
intruder F0 as it moves horizontally at V0 = 2.7 mm s−1, as a function of immersion depth h. Solid symbols

correspond to forward motion and open symbols to backward motion. The curves are the best fits of the data, of the
form F0 = A0 h+B0 h

2, where the solid line corresponds to A0 ≃ 2.9 10−2 ± 0.1 10−2 N mm−1 and
B0 ≃ 4.1 10−4 ± 0.3 10−4 N mm−4, and the dashed line to A0 ≃ 2.8 10−2 ± 0.1 10−2 N mm−1 and

B0 ≃ 3.1 10−4 ± 0.2 10−4 N mm−2.

bottom wall. In addition, in the x direction, data are acquired in a region of interest (ROI) located at the center of the
box, in the range of 135 mm ≤ x ≤ 225 mm. Finally, note that one experiment consists of moving the intruder forward
(along positive x) in the undisturbed granular medium, and then, in a second step, making the return path (toward
negative x) in the wake generated by the forward path and seen in Fig. 1(b). Note that free surface deformation can
appear at shallow depths. The surface deformations become less significant as the object is deeper in the granular
medium, as observed in previous studies [23].

III. EXPERIMENTAL RESULTS

A. Journey of a single intruder

We first study the displacement of a single intruder at constant velocity V0 in the granular medium at depth h.
The inset in Fig. 2(a) shows the typical evolution of the intruder drag force f0 as it moves at V0 = 2.7 mm s−1 at
the depth h = 14 mm, from one side of the box to the other. Note that here and in the remainder of this paper, the
drag force measured during the movement of the rod alone (i.e., without the intruder attached to its end) has been
subtracted from the force signal for each probed depth h, so as to retain only the force experienced by the intruder.
This method has already been adopted in other experimental studies [24]. Despite some fluctuations, associated with
the creation/breaking of force chains [1, 8, 25], we observe distinct zones in the force signal presented in the inset of
Fig. 2(a). When the movement of the intruder begins, the force increases abruptly when the motion starts, and then,
after a transient regime, reaches an extended zone of slow variation which becomes more negligible as the intruder
is deeper in the granular medium [26]. Finally, on approaching the box walls, the force starts to increase again, as
already reported in previous studies [1, 8]. In the following, we will define the mean drag force F0 felt by a single
intruder, as the average of the instantaneous force f0 over the 90 mm long region of interest (ROI) located at the
center of the box, so that F0 = |〈f0(x)〉ROI|, where the absolute value accounts for the mean drag force in both
journeys of the intruders (forward and backward).
Figure 2(a) displays the evolution of the mean drag force F0 as a function of the imposed displacement velocity

V0. Drag force measurements are made during the intruder’s first pass (solid symbols), and also during its backward
return as it passes through the wake it previously created (open symbols). No significant variation in F0 is observed
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FIG. 3: Mean drag force F for both intruders as a function of the space between them ∆− d, for a displacement at
V0 = 2.7 mm −1 at the depth h = 49 mm. Solid symbols correspond to forward motion and open symbols to

backward motion, and error bars represent the standard deviation in five realizations. The horizontal lines and
shaded areas correspond, respectively, to force values F0 and their typical fluctuations, obtained with a single

intruder under similar conditions.

with the displacement velocity V0, over the two-decade range experimentally explored. In a granular medium, the
fact that the drag force does not depend on velocity is the signature of a quasistatic regime characterized by a Froude
number smaller than one. This Froude number, expressed as the ratio of the kinetic pressure due to collisions between
grains to the pressure generated by the gravity field, is written as Fr = V0/

√
gh and has a value smaller than 0.03 for

all cases studied here, consistent with the quasistatic regime hypothesis [26–31].

Figure 2(b) shows the evolution of the mean drag force F0 on a single intruder as a function of burial depth h. The
drag force F0 is observed to increase with the depth h, both in the forward and backward directions. This increase is
slightly supralinear and can be modeled by a quadratic function of h, in agreement with observations from a previous
experimental study [24]. We also note that the backward drag force seems to be slightly lower than the forward drag
force. This difference can be explained by the fact that the intruder passes in its wake, i.e., in an area that has been
slightly structured in some way by its first passage [32]. Note that the horizontal free surface has also been disturbed
by the passage of the rod, slightly modifying the effective burial height.

B. Journey of two side-by-side intruders

Let us now consider the displacement of two side-by-side intruders separated by a distance ∆, at velocity V0 and
depth h, as sketched in Fig. 1(a). Each force sensor provides a signal similar to that shown in the inset in Fig. 2(a).
The overall drag force F of the system composed of the two intruders is determined as the average of the mean drag
forces experienced by each of the intruders, F0. Figure 3 shows the evolution of the mean drag force F as a function of
the distance between the intruders (∆−d) while the spheres velocity and depth were kept constant to V0 = 2.7 mm −1

and h = 49 mm respectively. Each point in this figure corresponds to an average of five experiments. The error bars
correspond to the standard deviation calculated on these five realizations. The variation of force F with distance
between intruders (∆− d) follows the same trend, for both the forward and backward journeys. For large separations
(∆− d & 50 mm), the mean drag force F remains constant. This constant value corresponds to that measured for a
single intruder, on both the forward and backward journeys, as attested by the horizontal lines in Fig. 3 depicting the
drag force F0 for a single intruder under similar conditions. Thus, the two intruders do not interact with each other.
When the intruders are closer to each other (∆ − d . 50 mm), the average drag force is significantly lower than at
large separation. This decrease can reach up to 30% in relative value when the distance between intruders vanishes,
which is well below the usual force fluctuations observed for a single intruder (depicted as gray regions in Fig. 3).
Therefore, they cooperate with each other, resulting in a reduction in drag force. Finally, as already mentioned for a
single intruder, we note that the drag force is about 10% lower during the backward journey than during the forward
one due to the passage of intruders in their own wake. We also observe that the error bars are smaller in the case of
backward motion than in the case of forward motion.
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Figure 4 shows the normalized drag force F̃ = F/F0 as a function of the normalized distance between intruders

δ̃ = (∆ − d)/d for different burial depths h, on both the forward [Fig. 4(a)] and backward [Fig. 4(b)] journeys. The

evolution of F̃ with δ̃ is similar in both cases and also whatever the burial depth h. It can also be seen that when
the two intruders are close enough to each other, the greater the burial depth, the greater the relative drag reduction.
Since the force increases roughly linearly with δ̃ at short distances between intruders, and saturates at a constant
value when they are far enough apart, we propose to model the observed behavior with an exponential law of the
form

F̃ = 1− Λ exp

(

− δ̃

δ̃s

)

, (1)

where Λ is a coefficient corresponding to the relative reduction in drag and δ̃s a normalized characteristic screening
length reflecting the typical distance from which intruders can affect each other. When δ̃ < δ̃s, the intruders cooperate
and the drag force per intruder is lower than the value for a single intruder moving through the grains. Conversely,
when δ̃ > δ̃s, the intruders do not interact with each other, i.e., we recover the case of a single intruder. Note that
even in the limit of touching intruders, the separation distance between the two rods holding the intruders is large
enough to ensure that there is no interaction between them.
Equation (1) allows us to fit our experimental data for each burial depth h shown in Figs. 4(a) and 4(b), and

extract the corresponding Λ and δ̃s values. We note that the solid lines plotted in Figs. 4(a) and 4(b) were obtained
for both the forward and backward journeys together. The evolution of the drag reduction coefficient Λ and the
normalized screening length δ̃s as a function of the normalized burial depth h̃ = h/d are plotted in Figs. 4(c) and
4(d), respectively. It can be seen that as the penetration depth increases, the Λ reduction is greater. For the sake of

simplicity, the whole data set can be described by a linear behavior of the form Λ ∼ h̃. The linear fit proposed here
should not be valid for larger values of h̃, as it is unreasonable to expect Λ to exceed the value 1. Saturation of Λ
is therefore expected for large values of h̃ which are above the depth range possible to be explored with the current
experimental setup. The normalized screening length δ̃s is observed to be rather constant with the normalized burial
depth h̃, with δ̃s = 1.2. We also note that for the shallowest depth (h̃ ≃ 0.7), the normalized screening length δ̃s and
reduction Λ deviate from these trends. These deviations may be due to a free-surface effect since they are observed
when the burial depth is less than one sphere diameter. It is important to note in Figs. 4(c) and 4(d) that additional
measurements were carried out at a velocity approximately four times higher (cross symbols in these figures), and we

observe that both the coefficients Λ and δ̃s are unaffected, at least in the quasistatic regime.
Finally, it is possible to propose a master curve on which the data are superposed. Figure 5 shows the evolution

of (F̃ − 1)/Λ as a function of δ̃/δ̃s. We can see that the data gather around the experimental fit of Eq. (1) for both
the forward and backward runs. We also observe that measurements at shallow depths deviate from the model due
to free-surface effects.

IV. DISCUSSION

In this section, we discuss how the interactions between two intruders moving side by side in a granular material
can be rationalized. For the side force appearing on two side-by-side cylinders in a granular flow, it has been shown
experimentally and numerically that the direction of this force (attraction or repulsion) correlates with the sign of
the difference in granular temperature between the inside and outside of the cylinders [17, 18]. The same argument of
granular temperature difference has been invoked to rationalize the axial segregation of large spheres in a rotating drum
filled with small grains [33]. However, Dhiman et al. [19] carried out discrete element method (DEM) simulations of
two side-by-side intruders and showed that the temperature and pressure fields do not follow the evolution expected by
kinetic theory. They concluded that the difference in granular temperature should be a consequence of the interactions
rather than its cause. In order to understand the origin of the side forces that appear on the intruders when they
are close to each other, Dhiman et al. [19] studied numerically the dynamics of force chains in their vicinity. They
found that the presence of a neighbor shears the force chains of the first intruder and breaks them more often. As
a result, the first intruder pushes less on the granular material on its neighbor’s side than it does on the other side.
In addition, this would also predict a reduction of the drag force on the intruder when its neighbor is close. This
scenario is also in agreement with the observations of Reddy et al., who observed that the presence of a shear zone
in the vicinity of a cylindrical intruder immersed in grains reduces its yielding force [34]. We therefore formulate the
observations of Dhiman et al. [19] in an empirical model where the force field of the first intruder is perturbed by the
velocity field of its neighbor. Our approach is two-dimensional and is based on time-averaged local force and velocity
fields within the granular material, which is described as a continuous medium. The velocity field around a cylinder
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FIG. 4: Normalized drag force F̃ = F/F0 as a function of the normalized distance between the intruders

δ̃ = (∆− d)/d for (a) a forward motion and (b) a backward motion at V0 = 2.7 mm s−1, and different depths
(•,◦) h = 14 mm, (�, �) h = 19 mm, (N, △) h = 29 mm, (◮, ⊲) h = 39 mm, (�, ♦) h = 49 mm. Solid lines

correspond to the best fits of the data with Eq. (1). Parameters (c) Λ and (d) δ̃s resulting from the fitting of the

data with Eq. (1) as a function of the normalized depth h̃. Dashed lines correspond to (c) Λ = 0.1h̃ and (d) δ̃s = 1.2.
In the panels, error bars represent the standard deviation in five realizations.

moving amid grains has been studied experimentally [35] with the following relation:

v(r, θ)

V0

= −Ar(r) cos θ er +Aθ(r) sin θ eθ, (2)

where r and θ are the cylindrical coordinates with origin at the center of the object, as shown in Fig. 6(a) and the
two functions Ar and Aθ write:

Ar(r) =
r − d/2 + λs

r

[

1− exp

(

−r − d/2

λ0

)]

and Aθ(r) = 1 +
r − d/2 + λs − λ0

λ0

exp

(

−r − d/2

λ0

)

, (3)

where λ0 is the characteristic length over which the velocity varies along the radial direction, and λs reflects the
velocity slip tangential to the object surface. These two parameters have been shown to depend on the cylinder
diameter d and the grain size dg according to the empirical relations: λ0 = d/4+2dg and λs = 0.45 d [35]. In our case,
i.e., an intruder of 20 mm in diameter moving amid grains of 1 mm, it corresponds to λ0/d = 0.35 and λs/d = 0.45.
Note that the velocity field given by Eq. (2) is expressed in the reference frame of the intruder, and here it should
be expressed in the reference frame of the laboratory by adding +V0 ex to Eq. (2). This velocity field is represented
with blue arrows in Fig. 6(a). The network of forces around an object moving in a granular medium has been studied
in experiments with photoelastic grains [36] or by numerical simulations [8]. Both approaches reveal that the force
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distribution extends over a characteristic length: high stresses are applied close to the object and there are no stress
variations far from the intruder [37]. Furthermore, experiments with 2D photoelastic grains revealed that the force
distribution decreases exponentially with the distance from the intruder [25, 36]. From these studies, it is possible to
propose an expression for the average local force per unit area in the granular material, which follows an exponential
decay and whose pattern resembles that of the force chains usually observed around intruders [8, 25]. The force per
unit area around the intruder can be described empirically by the following expression:

f = fr exp

(

−r − d/2

λ0

)

cos θ er + fθ exp

(

−r − d/2

λ0

)

sin θ eθ. (4)

This expression assumes that the characteristic length over which the force field varies in the radial direction is the
same as that of the velocity field, i.e., λ0. It also introduces two force coefficients, fr and fθ, whose ratio reflects the
way the force chains deviate from the radial direction. The average force field of Eq. (4) corresponds to the space
average of the normal forces transmitted by contacts between particles per unit area and is a continuous representation
of the discrete contact network. Figure 6(a) shows with red arrows a typical example of a force field resulting from
Eq. (4). In this approach, the total drag force experienced by an intruder is considered to correspond to the integral
of the force field per unit area over a surface bounded by the perimeter of the intruder and a thickness of one grain.
We have only considered the frontal part of the object because it is the main contributor to the total drag force [25].
Thus the drag force F0 expresses as

F0 =

∫ π/2

−π/2

∫ d/2+dg

d/2

f · ex dr rdθ, (5)

and can be calculated analytically as

F0 =
π

2
(fr − fθ)λ0

[

λ0 +
d

2
−
(

λ0 +
d

2
+ dg

)

exp

(

−dg
λ0

)]

. (6)

Note that in the limit where dg ≪ λ0, the previous expression simplifies to F0 ≃ (π/4)(fr − fθ)ddg. Under these
circumstances, the drag force scales linearly with the effective surface area of the object ddg, as expected in two-
dimensional configurations [26, 31].
In the rest of the paper, the forces will be normalized by this reference value F0 given by Eq. (6), which corresponds

to the case where there is no interaction, and we will consider the ratio F̃ = F/F0 introduced in Sec. III. In order
to account for the mechanism proposed by Dhiman et al. [19] in this framework and calculate the drag force in the
presence of interactions, we assume that the force field around the first intruder f1 is perturbed locally by the velocity
field of the second intruder v2. We hypothesize that the perturbed force field f

′

1 writes

f
′

1 = f1

(

1− α
|v1 · v2|

V 2
0

)

, (7)
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FIG. 6: (a) Top view sketches illustrating the model developed to rationalize the interaction between the two
intruders: (top left) notations of the problem; (bottom left) area in front of one intruder where the color scale from
blue to red encodes increasing values of the interaction term α|v1 · v2|/V 2

0 in Eq. (7); (right) velocity field (blue
arrows) of the neighboring intruder at the bottom disturbs the force field (red arrows) induced by the movement of

the intruder at the top (and vice versa, not shown here for visibility purposes). (b) Normalized drag force F̃ for a

backward motion as a function of the normalized separation distance δ̃. Symbols correspond to experimental data at
different depths and solid lines represent the best fit with the model. (c) Parameter λ0 divided by d resulting from

the best fit of the data as a function of the normalized depth h̃. The dashed line indicates λ0/d ≃ 0.48.

(d) Coefficient α resulting from the best fit of the data as a function of the normalized depth h̃. The dashed line

corresponds to α ≃ 0.55 h̃.

where α is a nondimensional coefficient that represents the strength of the interaction. In this phenomenological
formulation, α is an ad hoc parameter adjusted from experimental data. Note that this expression depends only on
the orientation of the local velocity fields of the two intruders and not on their norm. The area of velocity and force
interactions between the two intruders is highlighted in Fig. 6(a). In the following, we study how this interaction
modifies the total drag force on one intruder as a function of the separation distance ∆. We solve this problem
numerically by computing Eq. (5), where the force field f is replaced by the perturbed force field f

′

1 given by Eq. (7).
This calculation gives the drag force F in the presence of interaction and allows it to be compared with the reference
force F0. We repeat this procedure for different separating distances ∆ and compute the resulting drag force ratio
F̃ on one intruder. This approach results in a normalized drag force F̃ that tends toward one for large separation
distances (∆ ≫ d) and decreases as the separation distance is reduced, in agreement with our observations. As we

have used renormalization, the drag force ratio F̃ is only a function of α, λ0 and λs. Therefore, we consider λ0 and α
as free parameters, keep λs/d = 0.45 constant, and search for the best fits of the measurements of the normalized drag
force at each depth in the case of a backward motion. Figure 6(b) presents the normalized drag force as a function of
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the separation distance for three different depths along with the best fits of the model. We observe that the model
correctly captures the reduction in drag force observed experimentally. The estimated values of λ0/d and α found

with this procedure are plotted as a function of h̃ in Figs. 6(c) and 6(d), respectively. Note that similar parameters are
found when adjusting the forces measured in the case of forward motion. We observe in Fig. 6(c) that the ratio λ0/d
is roughly independent of the depth of the intruder, except at shallow depths where surface effects are not negligible.
At large depths, the ratio λ0/d is about 0.48, in close agreement with the estimate of Seguin et al. [35]. Figure 6(d)
shows that the coefficient α resulting from the fitting procedure increases linearly with depth. This observation is
consistent with the fact that the parameter α is related to the relative magnitude of drag reduction, which follows
the same evolution as seen in Fig. 4(c).

In addition, this procedure can also be used to calculate the side force experienced by the intruders when they
interact with each other. The side force is calculated by integrating the force field projected onto the y direction

in a similar way to Eq. (5) as: FS =
∫ π/2

−π/2

∫ d/2+dg

d/2 f
′

1 · ey dr rdθ. In doing so, we find that the lateral force tends

toward zero at large separation distances (∆ ≫ d) and is attractive at smaller separation distances. This prediction
is in line with previous observations made in experiments and simulations for separation distances that are not too
small (∆ > 0.1d) [17–19]. Since side forces are not the scope of this work, we decided to not present these results
here. Finally, the framework proposed above, although empirical, provides an extensive prediction of the interaction
between two objects moving in a granular material in the quasistatic regime.

Another point that is relevant to discuss is the reference case of two spheres in interaction in a viscous fluid, and
how the situation compares with the granular case. The interaction in viscous fluids has been analytically solved
using force-point methods by Happel and Brenner [38]. In the case of two identical spheres moving side by side at a
constant velocity (flow perpendicular to the centerline linking the spheres), the drag force is predicted to reduce as
the separation between the spheres decreases. At the first order, the drag force on the sphere is predicted to reduce as
F/3πηdV0 = 1/[1 + (3/8)d/∆] where η is the fluid’s viscosity. Note that in the limit of touching spheres (∆ = d), the
relative drag reduction in the viscous case is approximately equal to 27%, which is the same order of the highest drag
reduction measured in our experiments in granular materials [Fig. 4(c)]. Such drag reduction in viscous flow has been
observed experimentally in the case of two bubbles ascending side by side [39], and with two spheres in yield-stress
fluid [40]. However, in the case of interacting spheres in viscous flows, no depth dependence on drag reduction is
predicted. Another important difference between both situations is that side forces are not present in the viscous
case.

V. CONCLUSION

In this paper, we investigated experimentally how drag forces acting on a pair of transversely aligned intruders
vary with their depth and transverse separation as they move at constant speed in a granular bed. We found that
the mean drag experienced by each intruder is lower than that for a single intruder when separations are small, and
that the drag increases with their separation, until it reaches a plateau equal to the single intruder’s value for large
separations, evincing, therefore, a cooperation dynamics within a given distance range. In addition, we found that the
drag reduction for small separations increases with depth and that data for the mean drag varies exponentially with
the intruder-intruder separation, and propose a model for the drag reduction based on the breakup of contact chains
caused by the local motion of grains. Despite the progress made so far, some aspects need to be investigated further,
such as the forces on intruders when they are closer than one grain diameter of each other, since small distances
were limited in our experimental setup, or are at higher depths than those presented in this paper, given that one
should expect a saturation in drag reduction at large depths. Although the model has some limitations, being two-
dimensional and using phenomenological laws, it describes well our experimental results. Another perspective would
be to study the influence of free surface deformations at shallow depths. Other examples are the behavior of intruders
when their motion is not confined to the longitudinal direction, so that they can approach or repel each other, move
upward, or even rotate, and the system behavior for higher speeds and different shapes of intruders and grains. Our
findings, however, shed light on the cooperative dynamics and coupling effects taking place in granular media.

ACKNOWLEDGMENTS

The authors thank J. Amarni, A. Aubertin, L. Auffray, C. Manquest and R. Pidoux for their technical support.
This work has benefited from fruitful discussions with G. Gauthier, H. Perrin, M. Rabaud and F. Melo. The authors
are grateful to the São Paulo Research Foundation FAPESP (Grants No. 2018/14981-7, No. 2020/04151-7, and No.



10

2022/12511-9) for financial support.

[1] E. Kolb, P. Cixous, N. Gaudouen, and T. Darnige, Phys. Rev. E 87, 032207 (2013).
[2] A. Tordesillas, J. E. Hilton, and S. T. Tobin, Phys. Rev. E 89, 042207 (2014).
[3] R. Kozlowski, C. M. Carlevaro, K. E. Daniels, L. Kondic, L. A. Pugnaloni, J. E. S. Socolar, H. Zheng, and R. P. Behringer,

Phys. Rev. E 100, 032905 (2019).
[4] C. M. Carlevaro, R. Kozlowski, L. A. Pugnaloni, H. Zheng, J. E. S. Socolar, and L. Kondic,

Phys. Rev. E 101, 012909 (2020).
[5] R. Kozlowski, H. Zheng, K. E. Daniels, and J. E. S. Socolar, Front. Phys. 10, 916190 (2022).
[6] R. Kozlowski, H. Zheng, K. E. Daniels, and J. E. S. Socolar, Soft Matter 17, 10120 (2021).
[7] L. A. Pugnaloni, C. M. Carlevaro, R. Kozlowski, H. Zheng, L. Kondic, and J. E. S. Socolar,

Phys. Rev. E 105, L042902 (2022).
[8] D. D. Carvalho, N. C. Lima, and E. M. Franklin, Phys. Rev. E 105, 034903 (2022).
[9] J. Benito, Y. Bertho, I. Ippolito, and P. Gondret, EPL 100, 34004 (2012).

[10] B. Darbois Texier, Y. Bertho, and P. Gondret, Phys. Rev. Fluids 8, 034303 (2023).
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