
HAL Id: hal-04799898
https://hal.science/hal-04799898v1

Preprint submitted on 23 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple explicit thermodynamic closure for multi-fluid
simulations including complex vapor-liquid equilibria:

application to NH 3 -H 2 O mixtures
J. Carmona, I. Raspo, V. Moureau, P. Boivin

To cite this version:
J. Carmona, I. Raspo, V. Moureau, P. Boivin. A simple explicit thermodynamic closure for multi-fluid
simulations including complex vapor-liquid equilibria: application to NH 3 -H 2 O mixtures. 2024.
�hal-04799898�

https://hal.science/hal-04799898v1
https://hal.archives-ouvertes.fr


A simple explicit thermodynamic closure for multi-fluid

simulations including complex vapor-liquid equilibria:

application to NH3 –H2O mixtures.

J. Carmona1a, I. Raspob, V. Moureaua, P. Boivinb

aCORIA, CNRS UMR6614, Normandie Université, UNIROUEN, INSA of Rouen,
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Abstract

This paper presents a new thermodynamic closure formulation appropriate

for the simulation of subcritical multiphase flows, where two liquid/vapor

components need to be considered, in addition of an arbitrary number of

perfect gas non-condensable components. Assuming each component to fol-

low the Noble-Abel Stiffened Gas (NASG) equation of state allows to derive

a fully explicit formulation for the mixture pressure. A matching phase

transition solver is then proposed, to compute efficiently and accurately the

thermochemical equilibrium of the said mixture. The model capabilities are

then illustrated through a two-dimensional simulation of a liquid ammonia

tank leak into 80%-saturated humid air, where water is found to significantly

condensate when interacting with the ammonia jet.
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1. Introduction

Alternative to hydrocarbons for transport and energy applications are be-

ing actively investigated, in line with world-wide decarbonization objectives.

Hydrogen H2 is an interesting energy carrier candidate, with the highest

specific energy among fuels. Its low volumetric energy density brings safety

issues [1] for transport applications, where space is a constraint: H2 then

either needs to be heavily compressed to 700-900 bars, or cooled to cryogenic

temperatures for tanks to have a reasonable size.

Ammonia NH3 may present an interesting compromise [2]: the molecule

has a volumetric energy density higher than that of H2, and is found liquid for

much more moderate conditions, 4-10 bar at ambient temperature, compared

to cryogenic H2.

Whether liquid H2 and/or NH3 is retained as energy carrier, complex

phase transition problems are encountered in the design of the storage sys-

tems. For both fuels, the saturation temperature is significantly lower than

that of water, so any leak from the system will trigger condensation, or even

freezing of the water contained in the surrounding air. This phase change

is important to take into account, as water concentration has a significant

impact, e.g. on reactivity [3, 4].

In the presence of two liquid (or condensable) phases, the Vapor-Liquid

Equilibria (VLE) are complex since two components of the mixture are in-

volved. Then, the equality of chemical potentials of both species in vapor

and liquid phases must be prescribed. This equilibrium condition is usually

expressed in terms of fugacity, especially when an Equation of State (EoS)
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is used. However, depending on the pressure and temperature range of in-

terest, simplifications can be done. At low and moderate pressure, the vapor

phase can be considered as a perfect gas and the fugacity is replaced by the

component partial pressure. Moreover, if the liquid phase is supposed to

be an ideal solution, the equilibrium condition can be replaced by the very

simple Raoult’s law. An intermediate solution is provided by the general-

ized Raoult’s law, used in the present paper, where the Poynting factor and

the activity coefficient are introduced to account for the non-ideality of the

mixture. The activity coefficient is then obtained from a Gibbs free energy

model, such as Wilson, UNIQUAC, UNIFAC or NRTL models [5]. Whatever

the model used or the assumptions made, the coupling of the VLE condition

with the mass balance leads to the well-known Rachford-Rice Eq. (18).

Solving multi-component VLE coupled with fluid simulations may there-

fore be costly since the computation typically has to be performed at every

grid point and time step. Diminishing this cost can be achieved via tab-

ulation of the VLE over a range of conditions [6]. While table lookup is

inexpensive when few input parameters are needed, table generation may

however require significant resources, especially when the range of interest is

wide. When only one constituent is condensable, a variety of phase transition

model are available [7–13], but none of them – to the authors knowledge –

is valid when two components in the liquids are present. The present study

aims at bridging this gap.

The present study has two main objectives, answered in the first two sec-

tions of this paper. First, a new explicit thermodynamic closure is provided

for mixtures consisting of two miscible liquid-vapor couples as well as an ar-
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bitrary number of non-condensable gases. Second, a dedicated simple VLE

solver is derived, for use in numerical simulations.

Canonical validations are presented in Sec. 4. They are carried out in the

context of a multi-fluid 4-equation model [10, 11, 14–18] – which is derived

from the 7-equation Baer–Nunziato model [19] by assuming instantaneous

mechanical and thermal relaxation – but the VLE model is flow solver in-

dependent. Finally, an ammonia tank leak into humid air is investigated in

Sec. 5, evidencing the presence of water condensation in the vicinity of the

NH3 jet.

2. Multiphase thermodynamic closure

2.1. The Noble-Abel Stiffened-Gas equation of state

The thermodynamic closure for a multiphase mixture is based on the

Noble-Abel Stiffened Gas (NASG) EoS for each of its constituents:

p(ρ, T ) =
ρ(γ − 1)CvT

(1− ρb)
− p∞, (1)

where p is the pressure, ρ is the density, T is the temperature, γ is the heat

capacity ratio, Cv is the specific heat capacity at constant volume (or at

constant pressure, Cp = γCv), b is the covolume, and p∞ is a parameter

representing the molecular attraction in the liquid phase. In this study,

coefficients γ, Cv, b and p∞ are assumed to be constant [20].

Considering a mixture of N constituents, each component is identified by

the subscript k = 1, ..., N and its thermodynamic state is denoted as ϕ = l

for liquid or ϕ = g for gas. For each k component in a state ϕ, specific volume

vk,ϕ, specific enthalpy hk,ϕ, specific internal energy ek,ϕ and sound speed ck,ϕ
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read: 

vk,ϕ(p, T ) =
(Cp,k,ϕ − Cv,k,ϕ)T

p+ p∞,k,ϕ

+ bk,ϕ

hk,ϕ(p, T ) = Cp,k,ϕ T + bk,ϕp+ qk,ϕ,

ek,ϕ(p, T ) =
p+ γk,ϕ p∞,k,ϕ

p+ p∞,k,ϕ

Cv,k,ϕ T + qk,ϕ,

c2k,ϕ(p, T ) =
γk,ϕ v

2
k,ϕ (p+ p∞,k,ϕ)

v − bk,ϕ
,

(2)

where qk,ϕ is the reference energy (here at T = 0 K).

The saturation pressure psat,k(T ) for the condensable components may

be computed by an iterative procedure solving the equality of the chemical

potentials as in [21] or by simple Antoine correlations as suggested in [20].

Saturation properties computations being extensively required, the latter is

chosen here in order to get an explicit calculation. Antoine’s parameters as

well as their range of validity are given in Sec. 3.3 for the components of

interest.

2.2. Equation of state for the mixture

In the following, mechanical and thermal equilibria are assumed in the

elemental volume. The flow is thus locally represented as a mixture where

each component shares a common pressure, velocity and temperature, but

occupies its own sub-volume [15]. As an example, Fig. 1 represents an ele-

mental volume consisting of two miscible liquid-vapor couples of species and

an arbitrary number of non-condensable gases at mechanical and thermal

equilibria. As each sub-volume is at the same pressure and temperature,

the mixture specific volume and internal energy are linked to (p, T ) by the
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p, T

Y1,l

Y2,l

Y1,g

Y2,g
liquid vapor

non-condensable

Yk≥3,g

Figure 1: Representation of a control volume containing two miscible liquid-vapor couples
of species and an arbitrary number of non-condensable gases at mechanical and thermal
equilibria.

following mixture relations:v =
∑N

k=1

∑
ϕ=l,g Yk,ϕ vk,ϕ(p, T ),

e =
∑N

k=1

∑
ϕ=l,g Yk,ϕ ek,ϕ(p, T ),

(3)

where Yk,ϕ is the mass fraction of the kth constituent at ϕ state.

For use in a conservative solver [11, 15, 20, 22], temperature T and pres-

sure p must be expressed as functions of the conservative variables. It is then

necessary to invert system (3).

To that intent, temperature may be expressed from (3) by:

T =
v − b̄∑N

k=1

∑
ϕ=l,g

Yk,ϕ(γk,ϕ−1)Cv,k,ϕ

p+p∞,k,ϕ

, (4)

with b̄ =
∑N

k=1

∑
ϕ=l,g Yk,ϕbk,ϕ. Alternatively, T may be obtained as a func-

tion of the mixture energy as:

T =
e− q̄∑N

k=1

∑
ϕ=l,g Yk,ϕCv,k,ϕ

(
p+γk,ϕp∞,k,ϕ

p+p∞,k,ϕ

) , (5)

with q̄ =
∑N

k=1

∑
ϕ=l,g Yk,ϕ qk,ϕ.
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Further assuming that the mixture is composed of only two condensable

components (k = 1, 2) and any number of non-condensable gases and that

∀k = 1, ..., N , p∞,k,g = 0 – i.e. that for k = 1, ..., N and ϕ = g the constituent

k obeys the Clausius-Clapeyron EoS for gases – equality of expressions (4)

and (5) leads to a cubic equation for p as a function of (v, e):

a3p
3 + a2p

2 − a1p− a0 = 0, (6)

with

a0 = p∞,1,l p∞,2,l

∑N
k=1 Yk,gCv,k,gAk,g

a1 =
∑N

k=1

∑
ϕ=l,g Yk,ϕCv,k,ϕAk,ϕ(p̄∞ − p∞,k,ϕ)− p∞,1,l p∞,2,l

∑N
k=1 Yk,gCv,k,g

a2 =
∑N

k=1

∑
ϕ=l,g Yk,ϕCv,k,ϕ(p̄∞ − p∞,k,ϕ − Ak,ϕ)

a3 =
∑N

k=1

∑
ϕ=l,g Yk,ϕCv,k,ϕ,

(7)

p̄∞ =
N∑
k=1

p∞,k,l = p∞,1,l + p∞,2,l (8)

and

Ak,ϕ = (γk,ϕ − 1)

(
e− q̄

v − b̄

)
− γk,ϕp∞,k,ϕ. (9)

This concludes the explicit thermodynamic closure for a multi-constituent

mixture consisting of two condensable components and any number of non-

condensable gases, with Eqs. (3), (4) and (6)-(9) providing all the necessary

relations.
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2.3. Simplified expression for p = f(ρ, T )

The expression of the pressure can be further simplified by neglecting the

cubic term in Eq. (6), leading to the following explicit formula for p:

papprox =
a1 +

√
a21 + 4a0a2
2a2

(10)

This simplification leads to a relative error ε=|p − papprox|/p on the order

of O
(

p

p∞

)
when only liquid is present (

∑N
k=1 Yk,g = 0), or on the order of

O
(

p2

p2∞

)
everywhere else (

∑N
k=1 Yk,g > 0), corresponding to typical values

of 5 × 10−4 or 2.5 × 10−7 in atmospheric conditions, respectively, for p∞ =

2× 108 Pa.

This observation is corroborated by Fig. 2 (left) presenting, in barycentric

coordinates in the domain of mole fractions for a complex mixture containing

liquid ammonia NH3, liquid water H2O and gaseous nitrogen N2, the relative

error ε obtained with the quadratic formula (10): values below 10−7 are ob-

tained almost everywhere, apart from the line corresponding to
∑N

k=1 Yk,g = 0

where the error is nevertheless below 10−3. The variation of ε with respect

to gas components mass fraction
∑N

k=1 Yk,g (Fig. 2-right) confirms that the

relative error is slightly larger than 10−4 in absence of gas components and

about 10−7 when
∑N

k=1 Yk,g tends to 1.

3. Efficient phase transition solver

3.1. Motivation

Under certain thermodynamic conditions of pressure and temperature,

phase transition can occur between liquid and gaseous phases. During this

process, only the mass conservation equations of the involved components
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Figure 2: Relative error on the pressure ε with respect to the various constituents mass
fractions of a mixture of liquid ammonia NH3, liquid water H2O and gaseous nitrogen N2

in atmospheric condition (left) and with respect to gas components mass fraction following
the white dashed line (right).

are modified by adding source terms. For a binary mixture, these source

terms write:

∂ρY1,l

∂t
+∇ · ρY1,lu = ρν1 (g1,g − g1,l) (11)

∂ρY2,l

∂t
+∇ · ρY2,lu = ρν2 (g2,g − g2,l) (12)

∂ρY1,g

∂t
+∇ · ρY1,gu = −ρν1 (g1,g − g1,l) (13)

∂ρY2,g

∂t
+∇ · ρY2,gu = −ρν2 (g2,g − g2,l) (14)

where gk,ϕ is the mass-specific partial Gibbs energy of component k at state

ϕ and νk represents a relaxation parameter, for component k, controlling

the rate at which thermodynamic equilibrium is reached. This last term

depends in particular on the specific interfacial area, the temperature and

the pressure. Although certain models exist [7–10, 12], its estimation is very

complex as it can accurately be determined only when the interfacial area is

known (for example for droplets and bubbly flows or for some stratified flows
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[23]) or when mesh resolution is sufficiently high to capture interfaces at all

spatial scales. A more practical and very common method [11, 14, 15, 24–

26] is thus to consider that the relaxation parameter is infinitely large νk →

+∞ and so that the system is always at thermodynamic equilibrium. This

hypothesis is valid for most of the flows of interest. However, it should be

noted that it may be inadequate when the delay in evaporation and the

appearance of metastable states are key features in the evolution of the flow.

Instead of using source terms, the equilibrium state is thus directly com-

puted by solving a VLE at each time step from the state predicted by the

hyperbolic transport of conservative variables. As the mixture specific vol-

ume v = 1/ρ, the internal energy e and the mass fractions of all the non-

condensable gas components Yk,g for k ≥ 3 remain constant during the phase

transition, the goal of this VLE is to express the equilibrium state (p∗, T ∗,

Y ∗
k,ϕ for k = 1, 2 and ϕ = l, g) from these variables. Such work has already

been presented in [11] for a single condensable species in equilibrium with a

multi-component gas mixture. The present paper is devoted to the extension

of this work to the case of two condensable components.

3.2. Expression of the thermodynamic equilibrium of a binary liquid-vapor
mixture

The necessary condition for equilibrium in multi-phase mixtures is that

the chemical potential of each condensable component (k = 1, 2) is the same

in the two phases:

µk,l(p, T,Xk,l) = µk,g(p, T,Xk,g), for k = 1, 2 (15)
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where Xk,ϕ is the mole fraction of component k in the phase ϕ, i.e.:

Xk,ϕ =

Yk,ϕ

Wk∑N
k=1

Yk,ϕ

Wk

, (16)

with Wk the molecular weight of component k. An equivalent condition is

the equality of fugacities in both phases for each condensable component:

fk,l(p, T,Xk,l) = fk,g(p, T,Xk,g), for k = 1, 2 (17)

Adding a mass conservation constraint to the latter condition allows re-

formulating the VLE in the form of the so-called Rachford-Rice equation:

F (τg) =
N∑
k=1

(Kk − 1)zk
1 + (Kk − 1)τg

= 0, (18)

where Kk is the equilibrium constant of the kth component.

In the following, as mentioned above, it is further assumed that only two

components are condensable (k = 1 and k = 2), which induces:

∀k ≥ 3, Kk >> 1. (19)

The Rachford-Rice equation then simplifies to:

F (τg) =
(K1 − 1)z1

1 + (K1 − 1)τg
+

(K2 − 1)z2
1 + (K2 − 1)τg

+
N∑
k=3

zk
τg

= 0, (20)

where zk is the total mole fraction of the kth component e.g.:

z1 = W
Y1,l + Y1,g

W1

,

z2 = W
Y2,l + Y2,g

W2

,

zk≥3 = W
Yk≥3,g

Wk≥3

,

(21)
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W being the mean molecular weight of the mixture:

W =

(
N∑
k=1

Yk,l + Yk,g

Wk

)−1

, (22)

and τg the mole fraction of the gas phase:

τg =
N∑
k=1

W
Yk,g

Wk

. (23)

The equilibrium constants of the condensable components, K1 and K2,

are obtained from the fugacity constraint (Eq. (17)). Under the assumptions

of the NASG EoS, the vapor phase constituents behave like a perfect gas.

The fugacity of the vapor components thus reduces to:

f1,g = X1,g p (24)

f2,g = X2,g p (25)

The fugacity of the liquid components is proportional to the pure component

vapor pressure psat,k:

f1,l = X1,l psat,1(T ) a1(T,X1,l)P1(p, T ) (26)

f2,l = X2,l psat,2(T ) a2(T,X2,l)P2(p, T ) (27)

where ak (k = 1, 2) refers to the so-called activity coefficient of the kth

constituent, which allows taking into account non-ideal solutions, and Pk

is its Poynting factor:

Pk(p, T ) = exp

(∫ p

psat,k
vmk,l(p, T )dp

RT

)
(28)

where R is the universal gas constant and vmk,l corresponds to the molar

specific volume at liquid state of the kth component.
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As this factor accounts for the effect of liquid compression on fugacity,

it can be often neglected (namely ∀k = 1, 2, Pk(p, T ) = 1) as long as the

pressure remains low or moderate.

By definition, the equilibrium constant of the condensable components

corresponds to the ratio between its vapor and its liquid mole fractions:

K1 =
X1,g

X1,l

(29)

K2 =
X2,g

X2,l

(30)

Therefore, by combining Eqs. (24), (26) and (29) and, Eqs. (25), (27) and

(30), the equilibrium constants of the condensable components write:

K1 =
psat,1(T ) a1(T,X1,l)P1(p, T )

p
(31)

K2 =
psat,2(T ) a2(T,X2,l)P2(p, T )

p
(32)

3.3. Vapor-liquid equilibrium of a NH3-H2O mixture

Considering a mixture of ammonia NH3 and water H2O, where NH3 is

identified by the index 1 and H2O by the index 2, the activity coefficient

of each condensable component of the mixture is computed with the NRTL

model [5]:

ln (a1(T,X1,l)) = (1−X1,l)
2

[
τ21

(
G21

X1,l + (1−X1,l)G21

)2

+
τ12G12

((1−X1,l) +X1,lG12)2

] (33)

ln (a2(T,X2,l)) = (1−X2,l)
2

[
τ12

(
G12

X2,l + (1−X2,l)G12

)2

+
τ21G21

((1−X2,l) +X2,lG21)2

] (34)

13



where,

τ12 = a12 +
b12
T

(35)

τ21 = a21 +
b21
T

(36)

and,

G12 = exp (−α12τ12) (37)

G21 = exp (−α12τ21) (38)

Gij is an energy parameter characteristic of the interaction between species

i and j and α12 corresponds to the non-randomness of the mixture. The

parameters a12, b12, a21, b21 and α12 were fitted to a set of vapor-liquid equi-

librium data [27–30] resulting in a mean deviation |pexp− pcalc|/pexp equal to

5.6%. The fitted values are given in Tab. 1.

System NH3 +H2O
a12 1.4223
b12 -739.67
a21 -1.7681
b21 406.87
α12 0.2

Table 1: Fitted parameters of the NRTL model for ammonia and water activity coefficients
in the (NH3 +H2O) mixture.

The vapor pressures of pure components are calculated using the Antoine

equation:

log10(psat,i(T )) = Ai −
Bi

Ci + T
(39)

with psat,i in bar.
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For water, the parameters Ai, Bi and Ci were fitted to experimental data

in the temperature range 273K ≤ T ≤ 613K [31–33] whereas for ammonia,

due to a lack of data, the values given by the NIST were used (see Tab. 2).

Component H2O NH3

Ai 5.139118 4.86886
Bi 1702.018315 1113.928
Ci -41.719448 -10.409

Table 2: Parameters of the Antoine equation for the vapor pressure of pure components.

The VLE curves obtained by solving the Rachford-Rice equation with the

above modeling of activity coefficient are compared with the experimental

data of Rizvi et al. [27] for three temperatures in Fig. 3. Globally, the bubble

and dew point pressures of the mixture are accurately calculated with the

proposed model for all the range of NH3 mole fraction. It must be underlined

that these results were obtained by neglecting the Poynting factor.

3.4. Simplified problem: VLE at given (p, T, Yk≥3,g)

To illustrate the problem to be solved, and to provide an initial condi-

tion for the simulations, the case is considered where equilibrium values for

pressure, temperature and non-condensable component mass fractions are

imposed in the VLE calculation (i.e. p = p∗, T = T ∗ and Yk,g = Y ∗
k,g for

k ≥ 3). In these conditions, the condensable component mass fractions Y ∗
k,ϕ

for k = 1, 2 and ϕ = l, g are the only unknowns of the VLE problem, since

the mixture specific volume v∗ and mixture internal energy e∗ at equilibrium

are directly computed with the EoS from p∗, T ∗ and Y ∗
k,ϕ for k = 1, ..., N and

ϕ = l, g. Figure 4 depicts the situation.
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Figure 3: Comparison of vapor-liquid equilibria obtained by solving the Rachford-Rice
equation with a NRTL model for activity coefficients with experimental data of [27] in
symbols. Dew and bubble point pressure curves are plotted as function of the ammonia
mole fraction for a binary multi-phase mixture of NH3 and H2O at temperature T =
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Figure 4: Representation of a control volume in the flow model for the simplified problem,
at constant (p, T, Yk≥3,g). The properties identified with the superscript ∗ are modified by
the VLE calculation.
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Under these conditions, the simplified Rachford-Rice Eq. (20) reduces to

the following quadratic equation for τg:

a2τ
2
g − a1τg − a0 = 0, (40)

with
a2 = (K1 − 1)(1−K2),

a1 = (K1 − 1)z1 + (K2 − 1)z2 +
∑N

k≥3 zk[(K1 − 1) + (K2 − 1)],

a0 =
∑N

k≥3 zk.

(41)

yielding an explicit analytical solution for τg:

τg(p, T, Yk≥3,g) =
a1 +

√
a21 + 4a0a2
2a2

. (42)

Note that, since zk remains constant through phase transition ∀k, knowledge

of τg fully defines the liquid and gas mass fraction of each component as:
Yk,l = yk

1− τg
1 + (Kk − 1)τg

,

Yk,g = yk
Kkτg

1 + (Kk − 1)τg
,

(43)

trivially conserving the mass fraction yk of each condensable component :

yk = zk
Wk

W
. (44)

Figure 5 (left) shows the classical behavior of a binary NH3−H2Omixture,

e.g. with zk≥3 = Xk≥3,g = 0, at a pressure p = 2 bar. The bubble and

dew point temperatures, obtained by solving the simplified Rachford-Rice

Eq. (20) respectively with τg = 0 and τg = 1 (see Appendix B), are plotted

in function of NH3 mole fraction z1. As expected, the two curves cross at the
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Figure 5: Vapor-liquid equilibria at pressure p = 2 bar: dew and bubble temperature
curves as a function of the NH3 mole fraction z1 for a binary multi-phase mixture of NH3

and H2O at left and, for a complex mixture with two condensable components NH3 and
H2O and non-condensable gases (

∑N
k≥3 zk =

∑N
k≥3 Xk,g = 0.3) at right.

saturation temperature of NH3 at z1 = 1 (Tsat,1 = 254 K), and of H2O at z1 =

0 (Tsat,2 = 393 K). The right plot of Fig. 5 repeats the left one when adding

a non-condensable gas mole fraction of zk≥3 = Xk≥3,g = 0.3. As previously

noted by Chiapolino et al. [11] in the case of one condensable component,

the bubble point disappears: for every amount of non-condensable gas, no

matter how small, one can find a solution to the VLE problem using Eq. (42)

including small quantities of gases.

Figure 6 shows the equilibrium gas phase mole fraction τg for three NH3

contents z1 = (0, 0.5, 1−
∑N

k≥3 zk) (materialized by vertical lines in Fig. 5) as

a function of temperature at p = 2 bar for a binary NH3−H2O mixture (left)

and for a complex mixture with two condensable components NH3 and H2O

and with a mole fraction of non-condensable gas
∑N

k≥3 zk =
∑N

k≥3Xk,g = 0.3

(right). Sharp jumps are obtained for pure components z1 = (0, 1) and a

smooth transition is observed for the binary mixture (z1 = 0.5) between
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Figure 6: Equilibrium gas phase mole fraction τg for three NH3 contents z1 = (0, 0.5, 1−∑N
k≥3 zk) (materialized by vertical lines in Fig. 5) as a function of temperature at pressure

p = 2 bar. At left, the mixture is binary NH3 − H2O (
∑N

k≥3 zk = 0.0). At right, the
mixture contains two condensable components NH3 and H2O and a mole fraction of non-
condensable gas

∑N
k≥3 zk = 0.3.

bubble and dew points. However, in presence of a non-condensable gas,

smooth change is always obtained until dew point whatever the value of the

ammonia content z1. A discontinuity in the solution of the VLE problem is

thus observed near the dew point for all the mixtures and, also near the bub-

ble point for binary mixtures. In these regions, the Rachford-Rice equation

is not valid and a special treatment has to be provided. Therefore, at and

above the dew temperature, the mixture is fully gaseous and the gas mole

fraction τg is set to one. And, for binary mixtures only, the condensable

components are in liquid state at and below the bubble temperature: the gas

mole fraction τg is thus set to zero. The case of pure component mixtures

(z1 = (0, 1) in Fig. 6) is directly covered by previous checks as bubble and

dew points curves cross at pure component saturation temperature.

The solution of the VLE problem at given (p, T, Yk≥3,g) is given by the
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algorithm 1. Note that, since temperature and pressure are related at satu-

ration, the reasoning can also be applied to pressure by reversing the sign of

the comparisons.

if Yk≥3,g = 1 then
Only non-condensable gas is present: No need to compute equilibrium;

else
Compute dew temperature (or equivalently pressure).
if T > Tdew (or equivalently p < pdew) then

Full vapor mixture
τg ← 1

else
if Yk≥3,g = 0 then

The mixture is a binary mixture.
Compute bubble temperature (or equivalently pressure).
if T < Tbubble (or equivalently p > pbubble) then

Full liquid mixture
τg ← 0

else
Solve Rachford-Rice equation.
τg ← τg(p, T, Yk≥3,g) (Eq. (42))

end

else
Solve Rachford-Rice equation.
τg ← τg(p, T, Yk≥3,g) (Eq. (42))

end

end
Compute liquid and gas mass fractions of each condensable
components using Eq. (43).

end
Algorithm 1: VLE calculation procedure at constant pressure p = p∗,
temperature T = T ∗ and non-condensable gas component mass fractions
Yk,g = Y ∗

k,g for k ≥ 3.

3.5. VLE at given (ρ, e, Yk≥3,g)

In simulations of multiphase flows, the conservative variables (mass, mo-

mentum and total energy) are usually transported, so that thermo-chemical
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equilibrium can no longer be achieved considering constant (p, T ) as in Sec. 3.4.

Indeed, as depicted in Fig. 7, density ρ = ρ∗ and internal energy e = e∗ are

now invariant through phase change while the pressure p∗ and temperature

T ∗ at equilibrium become unknown in addition to the condensable compo-

nent mass fractions Y ∗
k,ϕ for k = 1, 2 and ϕ = l, g. As previously noticed in

ρ, e, p, T

Y1,l

Y2,l

Y1,g

Y2,g
liquid vapor

non-condensable

Yk≥3

phase transition
ρ, e, p∗, T ∗

Y ∗
1,l

Y ∗
2,l

Y ∗
1,g

Y ∗
2,g

liquid vapor

non-condensable

Yk≥3

Figure 7: Representation of a control volume in the flow model during the phase transition
step. The properties identified with the superscript ∗ are modified through the relaxation
process.

Sec. 3.4, the knowledge of the gas mole fraction τ ∗g at equilibrium is sufficient

to determine the mixture composition. Hence, the problem to be solved in-

volves three unknowns (p∗,T ∗,τ ∗g ). Conservation of mass ρ = ρ∗ and internal

energy e = e∗ provides the two first relations while the simplified Rachford-

Rice Eq. (20) gives the last. The problem to be solved is thus summarized

by the following system:
v = v∗ =

∑
k=1,2

[
Y ∗
k,lvk,l(T

∗, p∗) + Y ∗
k,gvk,g(T

∗, p∗)
]
+
∑N

k=3 Yk,gvk,g(T
∗, p∗)

e = e∗ =
∑

k=1,2

[
Y ∗
k,lek,l(T

∗, p∗) + Y ∗
k,gek,g(T

∗, p∗)
]
+
∑N

k=3 Yk,gek,g(T
∗, p∗)

(K1−1)z1
1+(K1−1)τ∗g

+ (K2−1)z2
1+(K2−1)τ∗g

+
∑N

k≥3
zk
τ∗g

= 0

(45)

where v = 1
ρ
represents the specific volume of the mixture. Such problem does

not have an explicit solution, and efficient strategies have to be developed.

21



Figure 8 shows the surfaces typically formed by the τg, p and T values that are

solutions to each of the three equations in the system (45). The VLE solution

is obtained at the intersection of the three surfaces. It can be remarked that

this intersection is always unique due to the convex nature of the NASG EoS.

This unicity is very important, as it is a prerequisite for the use of the VLE

computation strategy which is discussed next.

v = cst
e = cst
sat

VLE

Figure 8: Surface solution of the three equations in the system (45). The reference state
corresponds to the VLE at P = 2 bar and T = 300 K with a mole fraction of non-
condensable gas (

∑N
k≥3 zk =

∑N
k≥3 Xk,g = 0.4) computed with the algorithm of Sec. 3.4.

In order to save computational time, the presence of condensable compo-

nent is first checked and, the thermodynamic equilibrium is not calculated if

only non-condensable gas is present. As the VLE solution is unique, a proof

by contradiction can then be applied to treat the limit case where only vapor

is present. The pressure ptest and temperature Ttest are thus computed by
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assuming that τg = 1. The pressure ptest is then compared to the dew point

pressure pdew calculated from Eq. (B.4). If the pressure has a physical value

(ptest > 0) and is below the dew point (ptest < pdew), the set (τg = 1, ptest,

Ttest) is a solution of the VLE problem. As this problem admits a unique

solution, the equilibrium gas mole fraction is τ ∗g = 1 and, the equilibrium

pressure p∗ and temperature T ∗ are p∗ = ptest and T ∗ = Ttest. In absence of

non-condensable components, the limit case of a full liquid mixture has also

to be checked. The same type of reasoning as for dew point is used: the pres-

sure ptest and temperature Ttest are computed by assuming that τg = 0. The

pressure ptest is then compared to the bubble point pressure pbubble determined

using Eq. (B.2): If ptest is above the bubble point pressure (ptest > pbubble), the

set (τg = 0, ptest, Ttest) is the solution of the VLE problem: τ ∗g = 0, p∗ = ptest

and T ∗ = Ttest. Finally, if the solution doesn’t match any of the limit cases,

the mixture at equilibrium is in a two-phase state (0 < τg < 1). A classical

Newton-Raphson’s algorithm is then used to determine the solution (τ ∗g , p
∗,

T ∗) of the VLE problem. Details of the resolution are given in Appendix C.

The overall methodology for solving the VLE problem at given (ρ, e, Yk≥3,g)

is summarized in the algorithm 2.
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if Yk≥3 = 1 then
Only non-condensable gas is present: No need to compute equilibrium

else
Search for a solution without liquid
→ Compute pressure ptest and temperature Ttest with the EoS
assuming a full vapor mixture.
→ Compute dew point pressure pdew.
if 0 < ptest < pdew then

Full vapor mixture
τ∗g ← 1, p∗ ← ptest and T ∗ ← Ttest

else
if Yk≥3,g = 0 then

The mixture is a binary mixture
Search for a solution without vapor
→ Compute pressure ptest and temperature Ttest with the EoS
assuming a full liquid mixture.
→ Compute bubble point pressure pbubble.
if ptest > pbubble then

Full liquid mixture
τ∗g ← 0, p∗ ← ptest and T ∗ ← Ttest

else
Search for a solution with vapor and liquid
→ Solve the system using a Newton-Raphson algorithm:
(τNR

g , pNR, TNR).

τ∗g ← τNR
g , p∗ ← pNR and T ∗ ← TNR

end

else
Search for a solution with vapor and liquid
→ Solve the system using a Newton-Raphson algorithm:
(τNR

g , pNR, TNR).

τ∗g ← τNR
g , p∗ ← pNR and T ∗ ← TNR

end

end
Compute liquid and gas mass fractions of each condensable
component using Eq. (43).

end
Algorithm 2: VLE calculation procedure at constant density ρ = ρ∗,
internal energy e = e∗ and non-condensable gas component mass fractions
Yk,g = Y ∗

k,g for k ≥ 3.
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4. 1D numerical results

The behavior and robustness of the present modelling strategy are tested

on series of 1D shock tube cases. The shock tube has already been used by

Chiapolino et al. [11] to validate their approximated VLE algorithm as the

presence of shock waves, contact discontinuities and rarefaction fans create

arduous flow conditions. In all test cases, the tube is 1 m long and the

initial discontinuity is located at 0.5 m. The mixture is made of ammonia

NH3, water H2O and air. For sake of simplicity, air is modeled by nitrogen

N2. This approximation is perfectly valid since nitrogen represents about

78% of air composition. The thermodynamic parameters for NH3, H2O and

N2 are given in Appendix A. The boundary conditions are non-reflecting

outlet boundary condition (NSCBC) initially proposed by [34] and recently

extended to NASG EoS by [18]. The flow is solved using a three-step Runge-

Kutta numerical scheme combined with a Godunov spatial integration where

fluxes are computed using a HLLC Riemann solver. The whole method is

implemented within the YALES2 solver [35] for unstructured grids. Origi-

nally developed to solve Low-Mach number flows, an explicit compressible

solver has recently been developed to solve all-Mach number flows. The 1D

domain is composed of 1000 equidistant nodes.

4.1. Effect of the simplified pressure formulation

The validity of the simplified expression for pressure (Eq. (10)) is dis-

cussed through two shock tube cases. In both cases, the domain is filled with

a two-phase mixture made of condensable NH3 and H2O and non-condensable

N2 at temperature Tl = Tr = 300 K, where the subscripts r and l refer to

right and left sides, respectively. The mole fraction of each components in
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the mixture is zl = zr = [zNH3 zH2O zN2 ] = [0.2 0.2 0.6]. The velocity is set

to ul = ur = 0 m.s−1 and the pressure in the right side is pr = 1 bar. The

pressure in the left side is pl = 2 bar in the first case and pl = 50 bar in the

second case. Figure 9 shows the pressure field at time t = 1 ms for the first

simulation and, t = 0.5 ms for the second one.

0.0 0.2 0.4 0.6 0.8 1.0
Axial position [m]

1.0

1.2

1.4

1.6

1.8

2.0

Pr
es

su
re

 [b
ar

]

0.0 0.2 0.4 0.6 0.8 1.0
Axial position [m]

0

10

20

30

40

50

Pr
es

su
re

 [b
ar

]

Initial solution
Exact P
Approximate P

Figure 9: Comparison between the exact pressure (thick lines) and the approximate one
(symbols). Shock tube test with a two-phase mixture made of liquid NH3, liquid water,
vapor NH3, vapor water and air. The dashed lines represent the initial conditions: pl =
2.105 Pa, pr = 1.105Pa (left), pl = 50.105 Pa, pr = 1.105Pa (right) and Tl = Tr = 300 K,
ul = ur = 0m.s−1, zleft = zright = [0.2 0.2 0.6]. Final time: t = 1ms (left) and t = 0.5ms
(right). Mesh: 1000 cells. For the sake of clarity, only 50 symbols out of 1000 are plotted
for the approximate solution.

Perfect agreement is obtained between the exact formulation (Eq. (6))

and the simplified expression (Eq. (10)). The L2 norms of the relative error

ϵ on pressure caused by the simplified formulation are ϵ = 3.33.10−7 (pl = 2

bar) and, ϵ = 2.08.10−4 (pl = 50 bar). As expected from discussion in

Sec. 2.3, the error increases with pressure, but remains very small. The use

of the simplified expression is particularly interesting for its associated cal-

culation cost as the pressure computation is significantly cheaper than with

the iterative resolution of the exact expression. In both cases, the simulation
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cost per CPU and per node is thus reduced by around 41%, including 64%

for the VLE calculation. Because of its low cost and very good accuracy, the

simplified expression (Eq. (10)) is used in all subsequent simulations.

4.2. Robustness of the VLE algorithm

Three shock tube cases inspired by [11] are now simulated to demonstrate

the robustness and behavior of the VLE algorithm among several charac-

teristic mixture conditions: (1) far from the phase bounds, (2) with non-

condensable air in major proportion and (3) with condensable components

at liquid state in major proportion.

4.2.1. Shock tube test with a mixture far from the phase bounds

A two-phase mixture with initial mole fraction set to zl = zr = [zNH3 zH2O zN2 ] =

[0.2 0.2 0.6] is considered throughout the entire domain. The temperature

and velocity are uniform and equal to Tl = Tr = 300 K and ul = ur = 0

m.s−1. The initial pressure is set to pl = 2 bar on the left and pr = 1 bar on

the right. The results are shown at time t = 1 ms in Fig. 10.

In this case, the shock compression and the resulting rise in temperature

cause the condensables to evaporate. While the rarefaction wave upstream

of the shock causes a temperature drop and condensation of NH3 and H2O.

These results are physically consistent and in accordance with those obtained

by [11] for a monospecies liquid.

4.2.2. Shock tube test with a mixture with non-condensable air in major pro-
portion

The entire domain is filled with an air mole fraction zN2 = 0.98. The small

remaining molar fraction is divided equally between the two condensables.

The initial pressure is set to pl = 6 bar on the left and pr = 2 bar on the
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right. The temperature is Tl = Tr = 280 K and the velocity is ul = ur = 0

m.s−1. Figure 11 shows the results obtained at t = 1 ms.

As in the previous case, evaporation and condensation caused by the

shock compression and the rarefaction wave respectively are observed. How-

ever, due to the small amount of condensable, the liquid ammonia and water

evaporates completely in the compression zone and all the vapor water con-

denses in the expansion zone. This illustrates the ability of the method to

correctly handle the full transition of a species from one phase to another

without oscillation.

4.2.3. Shock tube test with a mixture with condensable components at liquid
state in major proportion

The last shock-tube test concerns the case where the non-condensable air

is in negligible proportion zN2 = 10−5 and the condensable components form

a mixture of zNH3 = 0.2 and zH2O = 0.7 − 10−5 in the liquid state. This

mixture composition is uniform throughout the tube. The temperature and

velocity are also uniform, at Tl = Tr = 280 K and ul = ur = 0 m.s−1. The

pressure is pl = 4 bar on the left and pr = 2 bar on the right. The flow

conditions after t = 0.5 ms is shown in Fig. 12.

The results are also in line with [11]: as the heat capacity of the liquid

is higher than that of the gas, a slight evaporation is observed, but the case

is quasi-isothermal. It is interesting to note that the appearance of vapor in

the liquid mixture has an effect on the density that changes the velocity and

temperature. Despite its density modification, the appearance of vapor in

the liquid is simulated without oscillation, demonstrating the stability of the

method.
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Figure 10: Shock tube test with a two-phase mixture made of liquid NH3, liquid water,
vapor NH3, vapor water and air. The solid and dotted lines represent the solutions at the
last time step with and without phase transition, respectively. The dashed lines represent
the initial conditions: pl = 2.105 Pa, pr = 1.105Pa, Tl = Tr = 300 K, ul = ur = 0m.s−1,
zl = zr = [0.2 0.2 0.6]. Final time: t = 1ms. Mesh: 1000 cells.
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Figure 11: Shock tube test with a two-phase mixture made of liquid NH3, liquid water,
vapor NH3, vapor water and air. The solid and dotted lines represent the solutions at the
last time step with and without phase transition, respectively. The dashed lines represent
the initial conditions: pl = 6.105 Pa, pr = 2.105Pa, Tl = Tr = 280 K, ul = ur = 0m.s−1,
zl = zr = [10−2 10−2 0.98]. Final time: t = 1ms. Mesh: 1000 cells.
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Figure 12: Shock tube test with a two-phase mixture made of liquid NH3, liquid water,
vapor NH3, vapor water and air. The solid and dotted lines represent the solutions at the
last time step with and without phase transition, respectively. The dashed lines represent
the initial conditions: pl = 4.105 Pa, pr = 2.105Pa, Tl = Tr = 280 K, ul = ur = 0m.s−1,
zl = zr = [0.3 0.7− 10−5 10−5]. Final time: t = 0.5 ms. Mesh: 1000 cells.
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5. 2D simulation of a two-phase jet from a leaking tank

The capabilities of the present method is now illustrated on phase-change

two-phase jet. The chosen case represents a typical configuration of a leak

in a pressurised liquefied gas tank. This type of accident is particularly

challenging to simulate because it involves many violent physical phenomena.

The pressure drop caused by the leak creates a flash evaporation of the liquid.

The resulting expansion then creates an acceleration that can lead to the

formation of shocks at the outlet of the release. A very cold two-phase spray

is then produced downstream of the leak. When it comes into contact with

the surrounding humid air, the water in the air condenses, creating a two-

phase mixture containing vapor and liquid water, gas from the reservoir in

liquid and evaporated form, and non-condensable air.

5.1. Configuration and numerical set up

A 2D configuration of a leak from a tank containing pressurized liquid

ammonia is considered. As shown in Fig. 13, it consists of a tank, a chan-

nel from which liquefied gas is leaking and a large domain representing the

atmosphere. The ammonia is stored at 4.1 bar and T = 271 K (1 K below

the saturation temperature of ammonia). The ambiant is composed of non-

condensable air, represented by nitrogen N2, and vapor water H2O at P = 1

bar and T = 283 K. The thermodynamic parameters are provided in Ap-

pendix A. The relative air humidity is set to 80%, corresponding to autumn

morning conditions. The specific humidity, i.e. the vapor mass fraction in

the ambiant, is thus YH2O,g = 6.1285× 10−3.

The inlet and outlet boundary conditions are NSCBC boundary condi-

tion [34] extended to NASG EoS [18]. A subsonic inlet condition is imposed
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A

B C

D E FG

H I

J

Zoom

X (abscissa) (mm) Y (mm) X(abscissa) (mm) Y (mm)

A -80 0 F -2 2.5

B -80 52 G -22 2.5

C -50 52 H -22 52

D -50 1.75 I 200.5 52

E -12 1.75 J 200.5 0

Figure 13: Geometrical data for half the computational domain of the 2D liquid ammonia
leakage case.

along the segment BC in order to maintain the static pressure P = 4.1 bar,

the temperature T = 271 K and composition YNH3,l = 1.0 in the upper part of

the tank. A subsonic outlet is placed along the segment IJ, imposing P = 1

bar. The remaining segments are treated as slip wall boundary conditions.

As for the 1D cases, the flow is solved with a three-step Runge-Kutta

numerical scheme for time integration and a Godunov scheme for spatial

integration. In order to reduce the numerical error, the spatial scheme accu-

racy is increased up to the second order using a MUSCL reconstruction for

unstructured grid with a Sweby limiter (β = 1.8). The gradients involved in

the MUSCL reconstruction are computed using the linear finite-element pro-

jection from [36]. A SLAU2 [Simple Low-dissipation AUSM (Advection Up-

stream Splitting Method)] Riemann solver is also used instead of the HLLC.

Originally proposed by [37] and later improved in its second version by [38],
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SLAU2 is a low-dissipative Riemann solver, especially at low Mach numbers,

which allows small-scale spray destabilisation to be captured.

The domain is initially discretized with 220 000 triangles with a character-

istic size between ∆xinit = 0.5 mm and ∆xinit = 0.7 mm. To ensure a good

description of the spray, an isotropic Adaptive Mesh Refinement (AMR) tech-

nique based on the MMG library [39–41] is introduced. The cell size ∆x is

thus controlled using a criterion based on the gradient of the liquid ammonia

mass fraction ∇YNH3,l:

∆x = min

(
max

(
1

N∆x|∇YNH3,l|
,∆xmin

)
,∆xinit

)
(46)

where N∆x = 20 refers to the number of cells in the gradient and ∆xmin = 0.1

mm is the minimum authorized cell size. The latter parameter limits the

cell size in case of too strong local gradient. In addition, the growthrate is

limited to 1.05 to prevent excessive cell size variation due to violent gradient.

The mesh is adapted every 1000 iterations of the flow solver. Note that

this parameter was chosen arbitrarily, but it was found to be sufficient to

ensure satisfactory discretisation of the gradients. Starting from 220 000

triangles, the number of elements increases as the spray spreads and reaches,

for example, 838 000 after t = 1.7 ms of simulation time. Figure 14 shows

the field of element sizes at this simulation time.

5.2. Results

Figure 15 gives the result of the simulation after t = 1.7 ms. For ease of

reading, only the area of interest bounded by the dots and labelled ’Zoom’ in

Fig. 13 is shown. All the expected physical phenomena are well reproduced.

The leak from the tank creates a two-phase jet of ammonia that propagates
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Figure 14: Element size field at t = 1.7 ms in the ”Zoom” region (see Fig. 13) of the 2D
simulation of a two-phase jet from a leaking tank.

through the domain at high speed. Evaporation of the ammonia begins in

the leak channel, causing the density of the jet to drop rapidly. The local

expansion then accelerates the jet, which leaves the channel at a very high

speed, creating shocks. These can be seen in Fig. 16, which shows a density-

based numerical schlieren defined as [42]:

ζ = exp

(
−k |∇ρ|

max(|∇ρ|)

)
(47)

with k = 100. On contact with the cold jet, the water contained in the humid

air at rest condenses in the shear zone. It then mixes with the ammonia,

creating a downstream spray consisting of a two-phase mixture of liquid and

gaseous ammonia, liquid and vapor water and air, which spreads into the

atmosphere.

All the expected physical phenomena are therefore well represented, demon-

strating the relevance and robustness of the present strategy for simulating
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Figure 15: Fields of density, pressure, temperature, velocity magnitude and mass fractions
at t = 1.7 ms in the ’zoom’ region (see Fig. 13) of the 2D simulation of a two-phase jet
from a leaking tank.

pressurised liquefied gas leaks. In particular, this will allow to investigate

the safety risks associated with ignition of the mixture and the influence of
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Figure 16: Numerical schlieren field at t = 1.7 ms in the ”Zoom” region (see Fig. 13) of
the 2D simulation of a two-phase jet from a leaking tank.

humidity on these risks in a future work.

6. Concluding remarks

We have presented:

• a new explicit thermodynamic closure for mixtures of two liquid-vapor

couples and an arbitrary number of non-condensable gases.

• a rapid Vapor-Liquid Equilibrium (VLE) solver for the said mixture,

to be used in numerical simulations.

The resulting framework was validated via a series of shock-tube simulations,

systematically testing the models under extreme conditions, and exploring

the pure liquid and pure gas limits, where the vapor-liquid equilibrium no

longer exists.
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The robustness of the approach was also shown via a complex two-dimensional

simulation of an ammonia leak. In future work, the model will be tested in

configurations relevant for the safety of cryogenic H2 tanks.
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Appendix A. Thermodynamic parameters

NH3(l) NH3(g)

Cp [J/kg/K] 4.4467× 103 2.2343× 103

γ [−] 2.5074 1.2796
b [m3/kg] 4.4643× 10−4 0
p∞ [Pa] 6.178 955 506 090× 108 0
q [J/kg] −8.646 478 030× 105 1.010 565 997 5× 106

H2O(l) H2O(g)

Cp [J/kg/K] 4.185× 103 1.908× 103

γ [−] 1.0123 1.3281
b [m3/kg] 9.203× 10−4 0
p∞ [Pa] 1.835 000 00× 108 0
q [J/kg] −1.143 000× 106 1.957 000× 106

N2(g)

Cp [J/kg/K] 1.045× 103

γ [−] 1.407
b [m3/kg] 0
p∞ [Pa] 0
q [J/kg] −2.355× 103

Table A.3: Parameters in SI units for liquid and gaseous ammonia and water and gaseous
nitrogen derived using the methodology of [20].

Appendix B. Determination of bubble and dew points pressures
and temperatures from the Rachford-Rice equation

By definition, the bubble and dew points correspond respectively to tem-

perature at given pressure - or inversely pressure at given temperature -

where the first bubble of vapor and the first droplet of liquid are formed.

In practice, they relate to the solution of the Rachford-Rice Eq. (18) with

τg = 0 and τg = 1, respectively.

The bubble point pressure pbubble, or temperature Tbubble, for a binary

mixture of two condensable components can be obtained from the simplified
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Rachford-Rice Eq. (20), by setting τg = 0:

(K1 − 1)z1 + (K2 − 1)z2 = 0 (B.1)

Taking into account the expression of Kk and noting that, since τg = 0, then

zk = Xk,l, this equation can be reformulated as:

z1psat,1(T )a1(T, z1)P1(p, T ) + z2psat,2(T )a2(T, z2)P2(p, T ) = p (B.2)

where psat,k depends on temperature through the Antoine equation (see

Sec. 3.3). Thus, at a fixed pressure p and mixture composition, the bub-

ble point temperature Tbubble can be obtained by solving Eq. (B.2) through a

simple Newton-Raphson algorithm. The bubble point pressure pbubble can be

determined in the same way, but by fixing the temperature T . Note that, if

the Poynting factor Pk(p, T ) is neglected, the bubble point pressure pbubble is

obtained explicitly from Eq. (B.2).

The dew point pressure pdew, or temperature Tdew, can be obtained simi-

larly by setting τg = 1 in the Rachford-Rice Eq. (20):

z1
K1

+
z2
K2

= 1 (B.3)

which can be reformulated as previously as:

z1
psat,1(T )a1(T,X1,l)P1(p, T )

+
z2

psat,2(T )a2(T,X2,l)P2(p, T )
=

1

p
(B.4)

Here again, using this equation, the dew point pressure pdew can be calculated

by fixing the temperature T or, alternatively the dew temperature Tdew can

be determined for a given pressure p. However, even if the Poynting factor

Pk(p, T ) is ignored, the dew point pressure pdew still cannot be obtained
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explicitly because the mole fraction of components k = 1, 2 in the liquid

phase Xk,l required to calculate the activity coefficients is not known. A

simple iterative methodology is thus used. The pressure is first calculated by

Eq. B.4 assuming that a1(T,X1,l) = 1 and a1(T,X2,l) = 1. The mole fractions

Xk,l are then computed by combining expressions of the equilibrium constant

Eqs. (29) and (31) (or Eqs. (30) and (32)):

Xk,l =
zkP

psat,k(T )ak(T,Xk,l)Pk(p, T )
(B.5)

with zk = Xk,g because τg = 1. They are finally used to recompute the

activity coefficients and dew point pressure. The full procedure is repeated

until the convergence of mole fraction values is reached.

In the case of a complex mixture including two condensable components

and several non-condensable gas (∀k ≥ 3, zk,g > 0), the bubble point dis-

appears as discussed in Sec. 3.4. This is clearly illustrated by the fact that

τg = 0 is a forbidden value of Eq. (20). On the other hand, the dew point

pressure pdew, or temperature Tdew, can be obtained from Eq. (B.4) previously

derived for the binary mixture but considering that z1 + z2 +
∑N

k≥3 zk = 1

instead of z1 + z2 = 1.

Appendix C. Summary of the Newton-Rachford algorithm for equi-
librium at given (ρ, e)

The method to solve directly the algebraic system (45) is presented here.

Eliminating condensable mass fractions by τg using Eq. (43), the system (45)

47



becomes: 

v =
∑

k=1,2 zk
Wk

W [1+(Kk−1)τ∗g ]

[(
1− τ ∗g

)
vk,l(T

∗, p∗)

+Kkτ
∗
g vk,g(T

∗, p∗)
]
+
∑N

k=3 Yk,gvk,g(T
∗, p∗)

e =
∑

k=1,2 zk
Wk

W [1+(Kk−1)τ∗g ]

[(
1− τ ∗g

)
ek,l(T

∗, p∗)

+Kkτ
∗
g ek,g(T

∗, p∗)
]
+
∑N

k=3 Yk,gek,g(T
∗, p∗)

(K1−1)z1
1+(K1−1)τ∗g

+ (K2−1)z2
1+(K2−1)τ∗g

+
∑N

k=3
zk
τ∗g

= 0

(C.1)

In order to solve this system (C.1), it is rewritten as:

f1(p
∗, T ∗, τ ∗g ) = v −

∑
k=1,2 zk

Wk

W [1+(Kk−1)τ∗g ]

[(
1− τ ∗g

)
vk,l(T

∗, p∗)

+Kkτ
∗
g vk,g(T

∗, p∗)
]
+
∑N

k=3 Yk,gvk,g(T
∗, p∗)

f2(p
∗, T ∗, τ ∗g ) = e−

∑
k=1,2 zk

Wk

W [1+(Kk−1)τ∗g ]

[(
1− τ ∗g

)
ek,l(T

∗, p∗)

+Kkτ
∗
g ek,g(T

∗, p∗)
]
+
∑N

k=3 Yk,gek,g(T
∗, p∗)

f3(p
∗, T ∗, τ ∗g ) =

(K1−1)z1
1+(K1−1)τ∗g

+ (K2−1)z2
1+(K2−1)τ∗g

+
∑N

k=3
zk
τ∗g

(C.2)

As the algebraic system (C.2) is non-linear, it is common to use an iterative

method such as a Newton-Raphson’s algorithm (also simply called Newton’s

algorithm). Let’s then define:

X =


p∗

T ∗

τ ∗g

 (C.3)

and,

F (X) =


f1(p

∗, T ∗, τ ∗g )

f2(p
∗, T ∗, τ ∗g )

f3(p
∗, T ∗, τ ∗g )

 . (C.4)
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The system is resolved when F (X) = 0. Its solution vector X is expressed

as:

Xn = Xn−1 −
(
∂F

∂X

)−1

F (Xn−1) (C.5)

where n denotes the current iteration of the iterative method and, ∂F
∂X

is the

Jacobian matrix:

∂F

∂X
=


∂f1
∂p∗

∂f1
∂T ∗

∂f1
∂τ∗g

∂f2
∂p∗

∂f2
∂T ∗

∂f2
∂τ∗g

∂f3
∂p∗

∂f3
∂T ∗

∂f3
∂τ∗g

 . (C.6)

Following the Newton-Raphson’s algorithm, the equation (C.5) can be

iterated until convergence of X is reached. This convergence is obtained

when:

ϵ =

√√√√1

3

3∑
i=1

[(
Xn

i −Xn−1
i

)
·Wi

]2
< 1 (C.7)

where W is a vector containing the weights computed as follows:

∀ i = 1...3, Wi = (rtol,i|Xn
i |+ atol,i)

−1 . (C.8)

rtol and atol are respectively vectors containing the relative and absolute

tolerance on error for each variable. Their values are set to:

∀ i = 1...3, rtol,i = 10−6 (C.9)

and,

atol =


10−2 Pa

10−2 K

10−14

 . (C.10)
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