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Abstract— This paper deals with the important topic of industrial robots identification. The usual 

identification method is based on the inverse dynamic identification model and least squares 

technique. This method has been successfully applied on several industrial robots. Good results are 

obtained provided a well-tuned derivative bandpass filtering of joint positions to calculate joint 

velocities and accelerations is used. However, we can doubt whether the bandpass filtering is well 

tuned or not. An alternative is instrumental variable techniques that are robust to data filtering and 

statistically optimal. In this paper, we propose a generic instrumental variable approach suitable for 

robots identification. Instruments set is the inverse dynamic model built from simulated data 

calculated from simulation of the direct dynamic model. The simulation is based on previous 

estimates and assumes the same reference trajectories and the same control law structure for both 

actual and simulated robots. At last, gains of simulated controller are updated according to 

instrumental variable estimates to obtain a valid instruments set at each step of the algorithm. The 

proposed approach validates the inverse and direct dynamic models at the same time, is not sensitive 

to initial conditions and has a fast convergence. Experimental results obtained on a six degrees of 

freedom industrial robot show the effectiveness of our approach: 60 dynamic parameters are 

identified in 3 iterations. 

Index Terms—Closed loop identification, Instrumental variable method, Rigid robot dynamics.
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I. INTRODUCTION 

HE usual robots identification method is based on the inverse dynamic identification model and least 

squares technique. This method, called Inverse Dynamic Identification Model – Least Squares method 

(IDIM – LS), has been successfully applied to identify inertial parameters of several prototypes and 

industrial robots [1][2][3][4][5] among others. Good results are obtained provided a well-tuned derivative 

bandpass filtering of joint positions to calculate joint velocities and accelerations is used. However, even 

with guidelines for bandpass filtering tuning given in [5], we can doubt whether IDIM – LS estimates are 

unbiased or not. 

This leads us to try other identification methods: the Extended Kalman Filter (EKF) [6], the Set 

Membership Uncertainty [7], an algorithm based on Linear Matrix Inequality (LMI) tools [8] and a 

maximum likelihood (ML) approach [9][10]. However, these techniques do not really improve IDIM – LS 

method and they were not validated on 6 degrees of freedom (DOF) industrial robots. 

Another approach is the Instrumental Variable technique (IV) introduced by Reiersøl in 1941 [12]. In 

[13][14][20][21][24], IV methods are studied for linear systems. However, these works are mostly 

theoretically oriented and validated on low dimensional linear systems. This may explain why there are few 

real world applications, especially in robotics [25][26]. This shows that a gap must be bridged between 

theory and control engineering practices. 

In this paper, we propose a generic IV approach relevant for identification of any rigid robot. Instruments 

set is the inverse dynamic model built from simulated data calculated from simulation of the direct dynamic 

model. The simulation assumes the same reference trajectories and the same control law structure for both 

actual and simulated robots and is based on previous IV estimates. This defines an iterative algorithm 

stopping when convergence is achieved. Finally, gains of simulated controller are updated according to IV 

estimates to obtain a valid instruments set at each step of the algorithm. This algorithm, called IDIM – IV, 

validates the inverse and direct dynamic models of robot at the same time, improves the noise immunity of 

estimates with respect to corrupted data in the observation matrix resulting from noisy measurements and/or 

bad tuning of joint positions bandpass filtering, is not sensitive to initialization and has a fast convergence. 

A condensed version of this work has been presented in [15] and [22]. This paper contains detailed proofs 

to enlighten the theoretical understanding of IDIM – IV method, gives additional experimental results and 

deals with experimental validation of statistical assumptions. 

The paper is organized as follows: Section II reviews the usual identification technique IDIM – LS. 

Section III presents IDIM – IV identification method. Tests that check statistical assumptions are introduced 

in section IV. The modeling and experimental identification of TX40 robot are presented in section V. 

T 
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Finally, section VI is the conclusion. 

II. IDIM: INVERSE DYNAMIC IDENTIFICATION MODEL TECHNIQUE 

In this part, we recall the main steps of IDIM – LS identification method. Full details can be found in 

[23]. 

A. Inverse dynamic model of robots 

The inverse dynamic model (IDM) of n  moving links robot calculates the ( )1n×  joint torques vector τ  as 

a function of generalized coordinates and their derivatives [16]: 

( ) ( ),= +τ M q q N q qɺɺ ɺ   (1) 

Where q , qɺ  and qɺɺ  are respectively the ( )1n×  vectors of generalized joint positions, velocities and 

accelerations; ( )M q  is the ( )n n×  matrix of robot inertia; ( ),N q qɺ is the ( )1n×  vector of centrifugal, Coriolis, 

gravitational and friction torques. 

The modified Denavit and Hartenberg (DHM) notation allows obtaining a IDM linear in relation to a set 

of base dynamic parameters β : 

( ), ,=τ IDM q q q βɺ ɺɺ   (2) 

Where ( ), ,IDM q q qɺ ɺɺ  is the ( )n b×  matrix of basis functions of bodies dynamics and β  is the ( )1b×  vector of 

base parameters. 

Equation (2) represents the Inverse Dynamic Identification Model (IDIM). Base parameters are the 

minimum number of dynamic parameters from which the IDM can be calculated. They are obtained from 

standard dynamic parameters by regrouping some of them with linear relations [17][18]. Standard 

parameters of a link j  are: jXX , jXY , jXZ , jYY , jYZ  and jZZ  the six components of the inertia matrix of 

link j  at the origin of frame j ; jMX , jMY  and jMZ  the components of the first moment of link j ; jM  the 

mass of link j ; jIa  a total inertia moment for rotor and gears of actuator j ; jFv  and jFc  the viscous and 

Coulomb friction parameters of joint j . 

B. Data acquisition 

Usually, data available from robots controllers are the following: measurements of q  and measurements 

of the ( )1n× control signals vector τv  calculated according to control law. Robots are mostly position – 

controlled. Control laws widely used in robotics are PD, PID, computed torque (flatness control) and 

passive controls [16]. When identifying base parameters, PD control is preferred to the others because it is 
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easy to tune and excellent tracking is not necessary [23]. Motors actuating moving links are PI current – 

controlled. Current closed loop has a bandwidth greater than 500(Hz). Then, in the frequency range of 

dynamics (less than 10(Hz)), its transfer function is modeled as a static gain [23]. Control signal of motor 

j ,
jτv , is connected with the motor j  current reference. τ  is given by: 

τ τ=τ G v   (3) 

Where τG  is the ( )n n×  diagonal matrix of drive gains. Diagonal components of τG  have a priori values 

given by manufacturers that can be checked with special tests. 

C. Data filtering 

In (2), q  is estimated with q̂  obtained by filtering measurements of q  through a lowpass Butterworth filter 

in both the forward and reverse directions using filtfilt Matlab function. ( )ˆ ˆ,q qɺ ɺɺ  are calculated with a central 

differentiation algorithm of q̂ . In doing so, we avoid distortion when calculating ( ), ,IDM q q qɺ ɺɺ  coefficients. 

This point is discussed in [5]. IDIM given by (2) is sampled at a measurement frequency mf  while robot is 

tracking some reference trajectories ( ), ,r r rq q qɺ ɺɺ . 

τ  being perturbed by high frequency disturbances and since there is no high frequency information 

because of lowpass filtered data ( )ˆ ˆˆ , ,q q qɺ ɺɺ , a parallel decimation procedure is used to eliminate torque ripples 

and information free high frequency samples. The parallel decimation is carried out with decimate Matlab 

function. This point is discussed in [5] too. 

D. IDIM – LS estimates 

After data acquisition, sampling and parallel decimation, we obtain the following over-determined linear 

system: 

( ) ( )ˆ ˆˆ , ,= +Y τ W q q q β ρɺ ɺɺ   (4) 

Where ( )Y τ  is the ( )1r ×  measurements vector built from actual torques τ ; ( )ˆ ˆˆ , ,W q q qɺ ɺɺ  is the ( )r b×  

observation matrix built from ( )ˆ ˆˆ , ,IDM q q qɺ ɺɺ ; ρ  is the ( )1r ×  vector of error terms; r  is the number of rows in 

(4). 

In (4) Y  and W , equations of each joint j  are regrouped together. Thus, Y  and W are partitioned so that: 

( )
1

n

 
 =  
 
 

Y

Y τ

Y

⋮ , ( )
1

ˆ ˆˆ , ,
n

 
 =  
 
 

W

W q q q

W

ɺ ɺɺ ⋮ , with 

( )

( )

1j

j

j en

 
 =  
 
 

τ

Y

τ

, 

( ) ( ) ( )( )

( ) ( ) ( )( )

ˆ ˆˆ 1 , 1 , 1

ˆ ˆˆ , ,

j

j

j

e e e
n n n

 
 
 =
 
 
 

IDM q q q

W

IDM q q q

ɺ ɺɺ

⋮

ɺ ɺɺ

, ( ) ( ) ( )( )ˆ ˆˆ . , . , .
j

IDM q q qɺ ɺɺ  is 
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the j
th

 row of the ( )n b×  matrix of the basis functions ( ) ( ) ( )( )ˆ ˆˆ . , . , .IDM q q qɺ ɺɺ  given by (2). jY  and j
W  represent 

the 
en  equations of a subsystem j , 

en  being the number of rows in jY  and j
W . 

Using base parameters and “exciting” reference trajectories [1][19], we get a well conditioned matrix W . 

A good conditioning number of W  means that base parameters are well excited and they can be well 

identified. 

E. Statistical analysis 

ρ  is assumed to have zero mean, to be serially uncorrelated and to be heteroskedastic e.g. to have a 

diagonal covariance matrix �  partitioned so that: 

( )2 2 2

1 e e en j n n ndiag σ σ σ=� I I I⋯ ⋯  

Where 
enI  is the ( )e en n×  identity matrix. Heteroskedasticity assumption is based on the fact that robots are 

non linear MIMO systems. 

2

jσ  is the error variance calculated from subsystem j  OLS solution e.g. : 

( )ˆ ˆˆ , ,j j j= +Y W q q q β ρɺ ɺɺ   (5) 

Thus, the Weighted LS (WLS) estimator is used to estimate β . The WLS solution of (4) is given by: 

( ) 1
1 1ˆ T T

LS

−− −=β W � W W � Y   (6) 

Usually, such weighting operations normalize error terms in (4). Indeed, with: 

1/2−=ρ � ρ  (7) 

One obtains ( ) ( )1/2 1/2T T

rE E− −= = =ρρΣ ρρ � ρρ � I . 

The estimated covariance matrix of the WLS estimator is: 

( ) 1
1T

LS

−−=Σ W � W   (8) 

( ) ( )2
ˆˆ ,

LS
LSi

i iβσ = Σ  is the ith diagonal coefficient of
LSΣ . The relative standard deviation ( )ˆˆ%

LS iβσ of ( )ˆ
LS iβ , the ith 

component of ˆ
LSβ , is then given by: 

( )
( )

( )
ˆ

ˆ

ˆ100*
ˆ%

ˆ
LS

LS

i

i

LS i

β
β

σ
σ =

β
 for ( )ˆ 0LS i ≠β   (9) 

IDIM – LS identification method was successfully applied on several prototypes and industrial robots 
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(see the references given  in introduction). This identification method is illustrated in Fig. 1. 

F. Limitations of DIDIM – LS method 

However, to provide unbiased results, measurements of q  and τv  must be accurate enough at high 

sampling rate. Furthermore, the bandpass filtering described in this part must be well tuned. At last, the 

direct dynamic model (DDM) given by (10) is validated a posteriori. 

( ) ( ),= −M q q τ N q qɺɺ ɺ   (10) 

 

Control

law
Robot

Sampling (fm)

+ bandpass filtering

Sampling (f
m
)

Lowpass filtering

+ downsampling

ˆ ˆˆ , ,q q qɺ ɺɺ

Inverse Dynamic

Identification Model

IDM

( )ˆ ˆˆ , ,IDM q q qɺ ɺɺ

( ) ( )ˆ ˆˆ, , ,Y τ W q q qɺ ɺɺ

,q qɺ

2ˆ min= −
β

β Y Wβ

Linear LS

τ

β̂

r

r

r

 
 
 
 
 

q

q

q

ɺ

ɺɺ

 

Fig. 1. IDIM LS Identification scheme 

 

An alternative for eliminating bias of IDIM – LS estimates is the Instrumental Variable (IV) method that 

deals with the problem of noisy observation matrix and can be statistically optimal. 

G. Brief theoretical background of IV method 

It is well known that LS estimates are unbiased if the following assumption holds [11], chapter 7: 

( ) 0TE =W ρ  (11) 

Where ( ).E  is the expectation operator. 

In this case, W  is not correlated with ρ . A violation of assumption (11) leads to biased LS estimates [11]. 

( )ˆ ˆˆ , ,W q q qɺ ɺɺ  being built from noisy measured data, we can doubt whether ( )ˆ ˆˆ , ,W q q qɺ ɺɺ  is correlated with ρ  or 

not, even if the bandpass filtering data described in the previous section is used. That is the reason why it is 

interesting to use the IV method introduced by Reiersøl in 1941 [12]. This method consists in introducing 
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an ( )r b×  instrumental matrix denoted Z  such that (4) becomes: 

T T TZ Y = Z Wβ + Z ρ  

We make the following assumptions: 

( )TE Z W  exists, is finite and of full rank b   (12) 

( ) 0TE =Z ρ   (13) 

Then, the simple IV estimator provides unbiased estimates given by: 

( ) 1
ˆ T T

SIV

−
=β Z W Z Y  

IV methods were widely studied and applied to linear systems, Box – Jenkins model especially, 

[13][14][20][21][24] among others. According to these works, a good manner consists in building Z  from 

only simulated data. These simulated data are outputs of an auxiliary model which is the noise – free 

mathematical model of the system to be identified. Instruments can be constructed on previous IV estimates 

denoted as 1ˆ k

IV

−β . This defines an iterative process stopping when convergence is reached. 

However, these works are mostly theoretically oriented and validated on low dimensional linear systems. 

Furthermore, in many real world applications, these methods cannot be used as is. This may explain why IV 

methods are rarely employed in robotics, see [25][26]. 

In the following section, we aim at bridging the gap between theory and control engineering practices by 

proposing a generic IV approach relevant for rigid robots identification. 

III. INSTRUMENTAL VARIABLE APPROACH FOR ROBOTS IDENTIFICATION 

A. Choice of a valid instrumental variable matrix 

Because we have ( ) ( ) brankrank == WZ , the system is called “jut identified”. In this case, the true model is 

assumed to be: 

( ), , y= +Y W q q q β eɺ ɺɺ  

Where ye  is the ( )1×r  vector of measurement noise, ( )qqqW ɺɺɺ ,,  is the noise – free observation matrix denoted 

as nfW  from now. We make the following assumption: ( ) 0=y
T
nfE eW . We have the following relation: 

VWW += nf  

Where V  is a ( )r b×  matrix of error terms uncorrelated with 
nfW  and ye , that is ( ) 0T

nfE =V W  and 
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( ) 0T

yE =V e . Since we have Vβeρ −= y , W  is correlated with ρ  leading to biased LS estimates. A ( )r b×  

valid instrumental matrix is: 

( ), ,nf= =Z W W q q qɺ ɺɺ  (14) 

To show that, the IDM is assumed to well specified. Hence, we obtain: 

nf= + = +W Z V W V  

Thus, it follows: 

( ) ( ) ( ) ( )T T T T

nf nf nf nf nfE E E E= + =Z W W W W V W W  

Finally, the following relations hold: 

( )( ) ( )( )T T

nf nfrank E rank E b= =Z W W W  (15) 

( ) ( ) 0T T

nfE E= =Z ρ W ρ  (16) 

Indeed: ( ) ( ) ( ) 0T T T

nf nf y nfE E E= − =W ρ W e W V β . 

Hence, with 
nf=Z W , assumptions (12) and (13) hold. Now, we must choose and simulate a valid 

auxiliary model to build an instrumental matrix Ẑ  that is as close as possible to Z  given by (14). 

B. Choice and simulation of a valid auxiliary model 

For robots, the auxiliary model is the DDM (direct dynamic model) given by (10). Simulation of the 

DDM is performed assuming same reference trajectories and the same control law structure for both actual 

and simulated robots. In addition, simulation of DDM is based on previous IV estimates. Hence, at step k , 

where k is the k
th

 IV estimates, simulated joint accelerations are given by: 

( ) ( )( )1 1ˆ ˆ, , ,
k k

S IV S S S S IV

− −= −M q β q τ N q q βɺɺ ɺ   (17) 

By integrating (17), we get the ( )1n×  vectors of simulated joint velocities Sqɺ  and positions Sq . The ( )1n×  

vector of simulated torque 
Sτ  is given by ,S Sτ τ=τ G v , where ,Sτv  is the ( )1n× vector of simulated control 

signals calculated according to the control law. 

Like measurements, simulated data are sampled at a measurement frequency mf . The ( )mn b×  

instrumental variable matrix is then ( )1ˆˆ , , , k

fm fm S S S IVδ
−=Z W q q q βɺ ɺɺ . Where ( )1ˆ, , , k

fm S S S IVδ
−W q q q βɺ ɺɺ  is the ( )mn b×  

sampled matrix of  ( )1ˆ, , , k

S S S IV

−IDM q q q βɺ ɺɺ . 
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Each column of  ˆ
fmZ  is resampled at a lower rate (parallel decimation). Then we have: 

( )1ˆˆ , , ,
k

S S S IVδ
−=Z W q q q βɺ ɺɺ  

Compared with IDIM – LS and the other methods cited in introduction, IDIM – IV uses IDM and DDM. 

Thus, both DDM and IDM are validated at the same time. This is the first contribution of our approach. 

 

Unfortunately, a simple simulation of the DDM to get Sq , Sqɺ  and Sqɺɺ  is not enough to build Z  defined by 

(14). Indeed, simulation of the DDM is based on previous IV estimates 1ˆ k

IV

−
β and we may obtain ˆ

nf≠ =Z Z W . 

So, the choice of initial values 0ˆ
IVβ  is crucial even if IV algorithms are known to be quite robust to 

initialization [21]. In fact, a bad choice of 0ˆ
IVβ  may lead to algorithm divergence or invalid IV estimates 

because of violation of relations (12) and (13). 

Thus, we propose an insensitive to initial conditions IV algorithm. This assumes that the following 

condition: 

( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ, , , ,
k k k k

S IV S IV S IV IV≈ ∀q β q β q β q q q βɺ ɺɺ ɺ ɺɺ  (18) 

is satisfied at any iteration k , starting with 0=k . 

This is possible by tacking the same control law structure for both actual and simulated robots with the 

same performances given by bandwidth, stability margin or closed loop poles. Because parameters of the 

simulated robot, e.g. ˆ k

IVβ , change at each iteration k , gains of the simulated controller must be updated 

according to ˆ k

IVβ . 

 

For example, let us consider a PD control law for each joint j . The inverse dynamic model (IDM) (1) for 

the joint j , can be written as a decoupled double integrator perturbed by a coupling torque, such that: 

( ),j j j j j= −τ M q q pɺɺ  

jp  is considered as a perturbation given by: 

( ) ( ), ,
n

j j i i j

i j≠
= − −∑p M q q N q qɺɺ ɺ  

( ),j iM q  is approximated by a constant inertia jJ , given by: 

( )( ),maxj j j j i j j
q

J ZZ Ia ZZ Ia= + + − −M q  
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jJ  is the maximum value of inertia moment with respect to q . This gives the smallest stability margin of 

the closed loop second order transfer function while q  varies. It must be taken at least as jj IaZZ +  which 

can be calculated from a priori CAD values. The DDM of a joint j  is approximated by a double integrator 

as following: 

( )
( )

( )
,

j j j j

j

j j jJ

+ +
= ≈
τ p τ p

q
Μ q

ɺɺ  

We understand it makes sense to use linear techniques to tune closed – loop performances of each joint j  

closed – loop. 

 

Let us consider the joint j  PD control of the actual robot illustrated in Fig. 2. 

1

s

1

s
a

j

1

J

ap

j

ap

j

J

gj

a

vk
j

a

pk ++
-

+
- j

a
gτ

jτ

jp

jqɺɺ jqɺ jq
jrq

jτν

 

Fig. 2. Joint PD control of the actual robot 

 

The control input is given by: 

( )( )
j j j j j

j

ap

ja a a

p v r j v j ap

J
k k k

g
τ

τ

= − −ν q q qɺ  (19) 

jτ  is given by: 

j j

a

j gτ τ=τ v   (20) 

Where 
j

ga
τ  is the actual drive gain, j

aJ  is the actual value of jJ , j
ap

J  and 
j

g
ap

τ  are a priori values of the 

actual unknown values j
aJ  and 

j
g

a
τ  respectively.  

If a priori values are equal to actual ones, then 
jp

a
k  and 

jv
a
k  are the PD control gains of the normalized 

double integrator system 21 s . Closed – loop performances are chosen with the desired 2 poles of the 

second order closed – loop transfer function characterized by 
jn

dω  and j
dζ . 

jn
dω  is the desired natural 

frequency which characterizes the closed – loop bandwidth and j
dζ  is the desired damping which 
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characterizes the closed – loop stability margin. It comes (see [23] for details): 

2

j

j

d

na

p d

j

k
ω
ζ

=  and 2
j j

a d d

v j nk ζ ω=   (21) 

 

Now let us consider the joint j  PD control of the simulated robot illustrated in Fig. 3. 

1

s

1

sk

j

1

Ĵ

k

j

ap

j

Ĵ

J

ap

ja

vj ap

j

J
k

gj

s

pk ++
-

+
-

ap

jgτ
jrq

jτν
,S jτ

,S jp

,S jqɺɺ ,S jqɺ ,S jq

 

Fig. 3. Joint PD control of the simulated robot 

 

The variables ( ), , , ,, , ,S j S j S j S jq q q τɺ ɺɺ  present in Fig. 3 are computed by numerical integration of (10). The 

control law of the simulated robot has the same structure as the actual one illustrated in Fig. 2. It can be 

seen that the actual gain j

j

a ap

v j

ap

k J

gτ

 must be multiplied by j
apk

j JĴ  to obtain the same normalized double 

integrator open – loop system 21 s  and the same closed – loop transfer function. The proportional gain 
j

a

pk  

does not depend at all on parameters values. Hence, we keep 
j j

s a

p pk k= . But the derivative gain in the 

simulator must be updated with k
jĴ  at each iteration k . Hence, at each iteration k , 

j

s

vk must be updated as 

follows: 

j j

k

js a

v v ap

j

Ĵ
k k

J
=  (22) 

This allows to keep ( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ, , , ,
k k k k

S IV S IV S IV IV≈ ∀q β q β q β q q q βɺ ɺɺ ɺ ɺɺ . Finally, after simulating the MDD with gains 

updating given by (22), after sampling of simulated data and parallel decimation, we have: 

( ) ( )1ˆˆ , , , , ,
k

S S S IV nfδ
−= ≈ = =Z W q q q β W q q q W Zɺ ɺɺ ɺ ɺɺ  (23) 

Compared with other IV algorithms, gains updating performed at each iteration of IDIM – IV allows us 

obtaining ( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ, , , ,
k k k k

S IV S IV S IV IV≈ ∀q β q β q β q q q βɺ ɺɺ ɺ ɺɺ  leading to ˆˆ k

nf IV≈ ∀Z W β . Thus, relations (12) and (13) hold 
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ˆ k

IV∀ β . This algorithm not sensitive to initial values 0ˆ
IVβ  is the second contribution of our approach. 

In the following sections, it is reasonable to make the following approximation ˆ ≈Z Z . 

C. Algorithm initialization 

In [23], it is proposed to take a regular inertia matrix ( )0ˆ,S IVM q β  to have a good initialization for 

numerical integration of the DDM. It is obtained with: 

0ˆ 0IV =β , except for, 10 =jIa , for nj ,1=   (24) 

D. Calculation of IDIM – IV estimates 

After data acquisition, data filtering and parallel decimation, we obtain: 

( ) ( )ˆ ˆˆ , ,
T T T= +Z Y τ Z W q q q β Z ρɺ ɺɺ  

Where Z  is our ( )r b×  instrumental variable matrix given by (23). Y  and W  are defined by (4). 

In Y , W  and Z , equations of each joint j  are regrouped together. Thus, like Y  and W , Z  is partitioned 

so that: 

1

n

 
 =  
 
 

Z

Z

Z

⋮  with 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 , 1 , 1

, ,

j

S S S

j

j

S e S e S en n n

 
 

=  
 
  

IDM q q q

Z

IDM q q q

ɺ ɺɺ

⋮

ɺ ɺɺ

,  

( ) ( ) ( )( ). , . , .j

S S SIDM q q qɺ ɺɺ  is the j
th

 row of the ( )n b×  matrix of the basis functions ( ) ( ) ( )( ). , . , .S S SIDM q q qɺ ɺɺ  given 

by (2). Partitions of Y and W  are given in (4). 

j
Y , jW  and j

Z   represent the 
en  equations of a subsystem j . 

Because ρ  is assumed to be heteroskedastic (see II), IV estimates are given by: 

( ) 1
1 1ˆ k T T

IV

−− −=β Z � W Z � Y   (25) 

This solution is called Weighted IV estimates (WIV). 

Like with LS techniques, such weighting operations normalize error terms. However, when using IDIM – 

IV method, 2

jσ  is the error variance calculated from subsystem j  IV solution e.g. : 

( ) ( ) ( ) ( )ˆ ˆˆ , ,
T T T

j j j j j j= +Z Y Z W q q q β Z ρɺ ɺɺ  

The covariance matrix of IV estimates is given by: 

( ) 1
1T

IV

−−=Σ Z � Z  
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( ) ( )2
ˆˆ ,k

IV
IVi

i iβσ = Σ  is the i
th

 diagonal coefficient of 
IVΣ . Relative standard deviation ( )ˆˆ% k

IV iβσ  is given by: 

( )
( )

( )
ˆ

ˆ

ˆ100*
ˆ%

ˆ

k
IV

k
IV

i

i k

IV i

β
β

σ
σ =

β
 for ( )ˆ 0k

IV i ≠β   (26) 

Where ( )ˆ k

IV iβ  is an IDIM – IV estimation of ( )iβ  at step k . 

E. Convergence criterion 

This process is iterated until its convergence: 

1

1

1

k k

k

tol
−

−

−
≤

ρ ρ

ρ
 and 

( ) ( )
( )

1

211,...,

ˆ ˆ

max
ˆ

k k

IV IV

ki b
IV

i i
tol

i

−

−=

−
≤

β β

β
  (27) 

Where kρ  is the 2-norm of ρ  at step k . 

The parameters 1tol  and 2tol  are values ideally chosen to be small to get fast convergence with good 

accuracy. A good compromise consists in choosing 1tol  and 2tol  between 2.5% and 5.0%. 

F. Algorithm of the IDIM – IV identification method 

The scheme of IDIM – IV method is illustrated in Fig. 4. 

IDIM – IV identification algorithm is summarized as follows: 

Compute the inverse and direct dynamic models with SYMORO+ software; 

Compute W  and Y  according to (4); 

Step 0: initialize IDIM – IV with the regular initialization given by (24); 

While 
( ) ( )

( )

1

1

1 211,...,
1

ˆ ˆ

& & max
ˆ

k k

IV IVk k

ki b
k IV

i i
tol tol

i

−
−

−=
−

 −− ≥ ≥
 
 

β βρ ρ

ρ β
 do: 

Simulate the DDM by updating gains of the simulated controller with (22); 

Compute ˆ
nf≈ =Z Z W  as described in  section B; 

Compute IV solution with (25); 

End of while. 
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Control

law Robot
Sampling (fm)

+ bandpass filtering

( )
( ) ( )

1ˆ k

IV

S S S S S

Direct Dynamic Model

,

−

= −

β

M q q τ N q qɺɺ ɺ

Control

law

ˆT T k

IV=Z Y Z Wβ

Simulated robot

Actual robot
Sampling (fm)

( )ˆ ˆˆ , ,IDM q q qɺ ɺɺ

Inverse Dynamic

Identification Model

Sampling (fm)

Inverse Dynamic

Identification Model

Lowpass filtering

+ downsampling

,q qɺ ˆ ˆˆ , ,q q qɺ ɺɺ

( )ˆ ˆˆ , ,S S SIDM q q qɺ ɺɺ

ˆ ˆˆ , ,S S Sq q qɺ ɺɺ

τ

Sτ

r

r

r

 
 
 
 
 

q

q

q

ɺ

ɺɺ

 

Fig. 4. Scheme of the IDIM – IV identification method 

 

Since DDM and IDM can be calculated with SYMORO+ software, IDIM – IV is a “fully – automated” 

identification method. This is the third contribution of our approach. 

IV. VALIDATION OF STATISTICAL ASSUMPTIONS AND MODEL REDUCTION 

A. Introduction 

In many papers, statistical assumptions are not verified while estimates quality depends on them. This is 

particularly true when one faces real world systems identification. 

In Statistics, statistical tests are carried out with homoskedastic errors [11]. That is the reason why the 

tests described in this sections use ρ  and not ρ . In addition, according to (7), if statistical assumptions 

made on ρ  hold, those made on ρ  hold too. 

B. Statistical assumptions made on ρ  

1) Normality of ρ  

Normality assumption is crucial to get unbiased estimates. If this assumption is violated, then both LS 

and IV theories do not work. The Kolmogorov – Smirnov test (KS – test) allows doing that [11]. 

KS – test is a nonparametric test for equality of continuous one dimensional probability distribution that 

can be used to compare a sample with a reference probability distribution. The KS – test quantifies a 

distance between the empirical distribution function (EDF) of the sample and the cumulative distribution 

function (CDF) of the reference distribution. 

In our case, ρ  resulting from a normalization of ρ , the reference distribution is ( )0,1Ν . The null 
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hypothesis is then ( )0 : 0,1H Νρ ∼ . The EDF of ρ  is compared with the CDF of the reference distribution via 

a KS – test with a 0.05 level of significance. KS – test is carried out with kstest MATALB function. 

If the KS – test rejects 0H , something goes wrong with measurements, bandpass filtering is badly scaled 

or IDM is misspecified. For misspecified IDM, some effects such as non linear frictions, stiffness and so 

forth, are missing and they must be included (see [30] for a good overview). 

2) Independent samples test 

It is important to check if samples are independent or not. Indeed, if ρ  is serially correlated, then relative 

deviations given by (9) or (26) are no longer consistent because they are underestimated. 

A simple way to find correlation between samples consists in using linear regressions. For the i
th

 sample 

of ρ , one writes : 

( ) ( ) ( ) ( )1 21 2 ... pi a i a i a i p= − + − + + −ρ ρ ρ ρ  

Where each 
ia  is a coefficient and p  is an dependence order chosen by the user with 

ep n<< . 

We obtain the following over-determined linear system:  

ρ = +y Φa u  (28) 

Where 

( )

( )

1

e

p

n

ρ

 +
 =  
  

ρ

y

ρ

⋮ , 

( ) ( )

( ) ( )

1

1e e

p

n n p

 
 =  
 − − 

ρ ρ

Φ

ρ ρ

⋯

⋮ ⋮

⋯

, 
1

p

a

a

 
 =  
 
 

a ⋮  and u  is the error assumed to be serially 

uncorrelated and to have zero mean. 

 

Estimates of a , â , are LS solution of (28): 

( ) 1

ˆ T T

ρ
−

=a Φ Φ Φ y  (29) 

The readjusted 2Rρ  is given by [11]: 

2 22 ˆ1Rρ ρ ρ= − −y Φa y  (30) 

ρ  is serially uncorrelated if each ˆ
ia  is close to zero with large deviation and if 2Rρ  is close to zero 

(typically less than 0.1). Roughly speaking, in this case, columns of Φ  do not explains variations observed 

on ρy . 

If ρ  is serially correlated, then information free useless samples are present and they must be removed. 

The parallel filter cutoff frequency must be therefore rescaled according to the order p . 
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C. Model reduction 

Some dynamic parameters remain poorly identifiable because they have a poor contribution on dynamics. 

They can be cancelled to simplify inverse and direct models. 

In papers written by Gautier and Khalil, it is suggested that parameters such that 
ˆˆ%

LSβσ  is greater than a 

bound between 20% and 30% are cancelled to keep a set of essential parameters of a simplified dynamic 

model without loss of accuracy (see [3] for instance). However, there is neither formal proof nor test that 

validates or rejects such statement. 

In statistics, the F – statistic is widely used to validate/invalidate model reduction [11]. It is assumed that 

( )0 : 0,1H Νρ ∼  holds. From b  base parameters, bc  parameters may constitute the set of essential parameters. 

The F – statistic is used as follows: 

1. First, one runs IDIM – IV method with the b  base parameters and one computes ρ ; 

2. Second, one runs IDIM – IV method with the bc  essential parameters and one computes cρ , the error 

norm obtained with the reduced model; 

3. Third, one calculates 
( )2 2

2
ˆ

c
en b

F
b bc

− − =  − 

ρ ρ

ρ
. 

If F̂  is less than or compatible with ( ) ( ) ( )1 , , eb bc n b
F α− − − , then the F – statistic accepts the model reduction. 

Otherwise, the model reduction is rejected. The F – statistic is carried out with vartest2 MATLAB function. 

Parameters that show the largest relative deviations are eliminated first and this process is executed in a 

decreasing way (
ˆˆ% 60%

IVβσ = , …, 
ˆˆ% 30%

IVβσ = ) until the F – statistic fails. 

It is important to note that IDIM – IV method is used instead of IDIM – LS because IDIM – LS estimates 

may be biased. It is also suggested to perform the KS – test to check the normality of 
cρ . If the KS – test 

fails, it does not make sense to run the F – statistic. 

V. EXPERIMENTAL IDENTIFICATION RESULTS 

A. Modeling of TX40 Robot 

Stäubli TX40 robot has a serial structure with six rotational joints. Robot kinematics is defined using the 

modified Denavit and Hartenberg notation (see Fig. 5). 

Geometric parameters defining TX40 frames are given in Table 1: 0=jσ  means that joint j  is rotational; 

jα  and jd  give respectively the angle and distance between 1−jz  and jz  along 1−jx ; jθ  and jr  give 

respectively the angle and the distance between 1−jx  and jx  along jz . Because all joints are rotational, jθ  is 



> < 

 

17 

the position variable of joint j  e.g. 
j jθ=q . 

TX40 robot is characterized by a coupling between joints 5 and 6. This coupling effect adds two 

additional parameters: 6mfv  the motor 6 viscous friction coefficient and 6mfc  the motor 6 dry friction 

coefficient. Full details about TX40 modeling are given in [27]. TX40 has 60 base dynamic parameters. The 

columns of ( ), ,IDM q q qɺ ɺɺ  in (2) are obtained using the Newton – Euler recursive algorithm. SYMORO+ 

software is used to automatically calculate the customized symbolic expressions of models [16]. 

 

TABLE 1 

GEOMETRIC PARAMETERS OF TX40 ROBOT 

j σj αj dj θj rj 

1 0 0 0 θ1 0 

2 0 -π/2 0 θ2 0 

3 0 0 d3 = 0.225m θ3 r3 = 0.035m 

4 0 π/2 0 θ4 r4 = 0.225m 

5 0 -π/2 0 θ5 0 

6 0 π/2 0 θ6 0 

 

 

Fig. 5. Link frames of TX40 Stäubli robot 

 

Joint positions and control signals are stored with a sampling frequency measurement KHzfm 5= . 

Robot simulation is carried out with the same reference trajectories and with the same PD control law 

structure as actual TX40 robot. In addition, gains of the simulated controller are updated with (22), at each 



> < 

 

18 

step of IDIM – IV. IDIM – IV identification method is initialized with all base parameters equal to 0 except 

1=jIa  for 5≠j  and 25 =Ia  because of the coupling effect. At last, we choose 1 2 2.5%tol tol= = . 

We use a C MEX S-Function of SIMULINK on a 2011 laptop PC with INTEL i7 CPU to run the DDM 

simulation. For a 8s trajectory duration, one step of IDIM –  IV takes 3.5s. 

Reference trajectories ( ), ,r r rq q qɺ ɺɺ  are fifth order polynomials. Since we have ( ) 200cond =W , reference 

trajectories excite well all base parameters [19]. 

B. IDIM-LS and IDIM – IV methods with well tuned bandpass filtering 

IDIM – LS and IDIM – IV methods are carried out with a filtered position q̂ , calculated with a 50(Hz) 

cut-off frequency forward and reverse fourth order Butterworth filter and with velocities q̂ɺ  and 

accelerations q̂ɺɺ , calculated with a central difference algorithm of q̂ . Butterworth filter is tuned according to 

rules given in [5][23]  and recalled in section II. The maximum bandwidth for joint 6 is 10(Hz)dynω =  leading 

to choose >5*  >50(Hz)fq dyn fq,ω ω ω ,
fqω  being the filter cutoff frequency. Then we choose a 50(Hz) cut-off 

frequency. 

Parallel decimation is carried out with a lowpass Tchebyshef filter with a cutoff frequency 

2  20(Hz)fp dyn fp* ,ω ω ω> > ,
fpω  being the parallel filter cutoff frequency. Then we choose a 10(Hz) cut-off 

frequency. According to the relation 2* *0.8* /(2* )fp m df nω π= , the sample rate 
mf  is divided by 100dn = . 

The normality assumption of ρ  is validated because the KS – test accepts ( )0 : 0,1H Νρ ∼ . The histogram 

of ρ  obtained with IDIM – IV method is plotted in Fig. 7. It matches a Gaussian distribution and we have 

, ,
ˆ ˆ 1.03 1.0LS IVρ ρσ σ= = ≈ . So, errors terms in ρ  are normalized and heteroskedasticity is well taken into 

account. Furthermore, there is no missing effect such as non linear friction or stiffness. IDM is well 

specified. The test of independency described in section IV was run. We have 2 0.05 0.1Rρ = <  and 

coefficients 
ia  are small with large relative deviations. So, samples of ρ  can be considered independent. 

Finally, all statistical assumptions made on ρ  hold in practice. 

IDIM – LS and IDIM – IV estimates are given in Table 2 and Table 3 respectively. IDIM – IV method 

needs only 3 steps to converge (see Table 4). F – statistic accepts to cancel parameters such that ( )ˆˆ%
LS iβσ  or 

( )ˆˆ% k
IV iβσ  is greater than 30%. Indeed, we have: 48.5=ρ , 49c =ρ , 2160en = , 60b =  and 28bc =  leading to 

2 2

2

49 48.5 2160 60
1.4

60 2848.5

 − −  ≈  −  
. This value is smaller than 0.95,32,2100 1.6F ≈ . Finally, from 60 base parameters, 

only 28 are well identified with good relative standard deviation. These parameters define a set of essential 
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dynamic parameters. 

IDIM – LS estimates match those provided by IDIM – IV method. According to the Hausman's theory 

[28], IDIM – LS estimates are unbiased. Like the other identification methods cited in introduction, IDIM – 

IV does not improve IDIM – LS coupled with good bandpass filtering data. In fact, in such case, we can 

write ( ) ( ) nfWqqqWqqqW =≈ ɺɺɺɺɺɺ ,,ˆ,ˆ,ˆ  and this explains why IDIM – LS estimates are unbiased. 

Direct comparisons have been performed (see Fig. 6). Estimated torques constructed with IDIM – LS and 

IDIM – IV estimates fit measured torques. Since we have ˆ 5%LS− =Y Wβ Y  and ˆ 6%IV− =Y Zβ Y , 

identification results are of good quality. 

Norm of error relative to filtered joint position calculated at each step k  and for each axis j  is given in 

Table 5. Since these relative errors are very small, less than 0.2%, relation (18) is always satisfied. This 

result emphasizes effectiveness of gains updating of simulated controller given by (22). 

 

TABLE 2: 

IDIM – LS ESTIMATES 

 ˆ
LSβ  ˆˆ%

LSβσ   ˆ
LSβ  ˆˆ%

LSβσ  

ZZ1R 1.25 1.1 Fc3 6.10 1.8 

Fv1 8.18 0.6 MX4 -0.02 16.0 

Fc1 6.57 2.2 Ia4 0.03 8.8 

XX2R -0.48 2.6 Fv4 1.14 1.4 

XZ2R -0.16 4.3 Fc4 2.30 2.5 

ZZ2R 1.08 1.0 MY5R -0.03 13.0 

MX2R 2.20 2.5 Ia5 0.04 8.8 

Fv2 5.67 1.0 Fv5 1.88 1.8 

Fc2 7.76 1.8 Fc5 2.90 2.9 

XX3R 0.13 9.4 Ia6 0.01 9.4 

ZZ3R 0.12 7.6 Fv6 0.68 1.5 

MY3R -0.60 2.2 Fc6 2.10 2.5 

Ia3 0.09 8.8 fvm6 0.63 1.6 

Fv3 2.02 1.6 fcm6 1.80 3.7 

 

TABLE 3: 
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IDIM – IV ESTIMATES AFTER 3 STEPS 

 3ˆ
IVβ  ˆ

ˆ%
IVβσ   3ˆ

IVβ  ˆ
ˆ%

IVβσ  

ZZ1R 1.25 1.3 Fc3 6.0 1.9 

Fv1 8.20 0.7 MX4 -0.02 20.0 

Fc1 6.55 2.6 Ia4 0.03 9.4 

XX2R -0.48 2.9 Fv4 1.15 1.5 

XZ2R -0.16 4.8 Fc4 2.27 2.6 

ZZ2R 1.09 1.2 MY5R -0.03 14.0 

MX2R 2.21 2.9 Ia5 0.04 11.0 

Fv2 5.68 1.2 Fv5 1.90 2.0 

Fc2 7.77 2.1 Fc5 2.80 3.5 

XX3R 0.13 10.0 Ia6 0.01 10.9 

ZZ3R 0.12 8.8 Fv6 0.69 1.6 

MY3R -0.60 2.3 Fc6 2.00 2.8 

Ia3 0.10 9.2 fvm6 0.63 1.8 

Fv3 2.03 1.8 fcm6 1.81 4.2 

 

TABLE 4: 

IDIM – IV ESTIMATES CONVERGENCE 

 0ˆ
IVβ  1ˆ

IVβ  2ˆ
IVβ  3ˆ

IVβ  

ZZ1R 1.0 1.24 1.25 1.25 

Fv1 0.0 8.18 8.20 8.20 

Fc1 0.0 6.54 6.54 6.54 

XX2R 0.0 -0.47 -0.48 -0.48 

XZ2R 0.0 -0.15 -0.16 -0.16 

ZZ2R 1.0 1.08 1.09 1.09 

MX2R 0.0 2.20 2.21 2.21 

Fv2 0.0 5.62 5.68 5.68 

Fc2 0.0 7.75 7.77 7.77 

XX3R 0.0 0.125 0.13 0.13 

ZZ3R 0.0 0.12 0.12 0.12 
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MY3R 0.0 -0.60 -0.60 -0.60 

Ia3 1.0 0.09 0.10 0.10 

Fv3 0.0 2.00 2.03 2.03 

Fc3 0.0 6.00 6.0 6.0 

MX4 0.0 -0.01 -0.02 -0.02 

Ia4 1.0 0.03 0.03 0.03 

Fv4 0.0 1.13 1.15 1.15 

Fc4 0.0 2.26 2.27 2.27 

MY5R 0.0 -0.025 -0.03 -0.03 

Ia5 2.0 0.04 0.04 0.04 

Fv5 0.0 1.90 1.90 1.90 

Fc5 0.0 2.75 2.80 2.80 

Ia6 1.0 0.009 0.01 0.01 

Fv6 0.0 0.64 0.69 0.69 

Fc6 0.0 1.95 2.00 2.00 

fvm6 0.0 0.61 0.63 0.63 

fcm6 0.0 1.78 1.81 1.81 

 

TABLE 5: 

NORM OF ERROR RELATIVE TO FILTERED JOINT POSITION 

,
ˆ

ˆ

j S j

j

−q q

q
 

0=k  1=k  2=k  3k =  

Joint 1 0.080% 0.078% 0.078% 0.078% 

Joint 2 0.050% 0.045% 0.045% 0.045% 

Joint 3 0.050% 0.048% 0.048% 0.048% 

Joint 4 0.051% 0.050% 0.050% 0.050% 

Joint 5 0.100% 0.097% 0.097% 0.097% 

Joint 6 0.120% 0.119% 0.119% 0.119% 
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Fig. 6. Direct validations performed for joint 1, 2, 3, 4, 5 and 6. Blue: measurement; red: estimation; black: 

error. 

 

 

Fig. 7. Histogram of IV error and estimated Gaussian with data filtering 

 

C. IDIM-LS and IDIM – IV methods without bandpass filtering 

IDIM – LS and IDIM – IV methods are carried out with measurements of q  and with ( )qq ˆ,ˆ ɺɺɺ  calculated by 

a central difference algorithm of q  measurements without lowpass Butterworth filtering. There is no 

parallel decimation. IDIM – IV starts with the regular initialization. IDIM – LS and IDIM – IV estimates are 

given in Table 6 and Table 7. Once again, IDIM – IV method needs 3 steps to converge (see Table 4). We 

give the essential parameters because the model reduction is accepted by the F – statistic. 

IDIM – LS estimates do not match those calculated with IDIM – IV method. Since IDIM – IV estimates 
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given in Table 7 stick to those given in Table 3, IDIM – LS estimates are biased. IDIM – LS fails because 

of the too large noise in the observation matrix ( )ˆ ˆ, ,W q q qɺ ɺɺ  coming from derivation of q  without lowpass 

filtering. In fact, we have ( ) 0≠ρW
T

E . 

IDIM – IV succeeds because the instrumental matrix ( )1ˆˆ , , , k

fm fm S S S IVδ
−=Z W q q q βɺ ɺɺ  is calculated with the 

simulated values ( )SSS qqq ɺɺɺ ,,  that
 
are very close to the actual ones ( )qqq ɺɺɺ ,,  thanks to gains updating performed 

at each step of the algorithm. 

This validation shows that IDIM – IV cancels the bias of IDIM – LS, coming from a noisy estimation of 

( )qqq ˆ,ˆ, ɺɺɺ  that gives a too noisy observation matrix ( )ˆ ˆ, ,W q q qɺ ɺɺ . This result was expected because this a property 

of IV methods. 

However, we can notice that IDIM – IV has lost its efficiency compared with IDIM – IV coupled with a 

parallel decimation. Indeed, deviations given in Table 7 are greater than those given in Table 3. This 

experimental result shows that parallel decimation can be related with “optimal prefilters” used in [21][24]. 

The normality assumption of ρ  is validated because the KS – test accepts ( )0 : 0,1H Νρ ∼ . The histogram 

of ρ  obtained with IDIM – IV method is plotted in Fig. 8. It matches a Gaussian distribution and we have 

,
ˆ 1.02 1.0IVρσ = ≈ . So, errors terms in ρ  are normalized and heteroskedasticity is well taken into account. The 

test of independency described in section IV was run. We have 2 0.07 0.1Rρ = <  and coefficients 
ia  are small 

with large relative deviations. So, samples of ρ  can be considered independent. Finally, all statistical 

assumptions made on ρ  hold in practice. 

 

TABLE 6: 

IDIM – LS ESTIMATES WITHOUT DATA FILTERING 

 ˆ
LSβ  ˆˆ%

LSβσ   ˆ
LSβ  ˆˆ%

LSβσ  

ZZ1R 0.06 5.5 Fc3 5.56 1.4 

Fv1 8.10 0.4 MX4 0.06 2.8 

Fc1 6.06 1.3 Ia4 0.01 11.5 

XX2R -0.08 4.1 Fv4 1.20 1.9 

XZ2R -0.02 6.7 Fc4 2.30 3.5 

ZZ2R 0.05 3.2 MY5R -0.02 8.1 

MX2R 4.20 0.7 Ia5 0.01 6.8 

Fv2 5.15 0.6 Fv5 1.84 1.9 
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Fc2 8.26 0.9 Fc5 2.85 1.5 

XX3R -0.01 20.0 Ia6 0.001 19.0 

ZZ3R -0.05 3.2 Fv6 0.68 2.2 

MY3R -0.30 1.8 Fc6 2.00 3.8 

Ia3 0.05 2.2 fvm6 0.64 1.8 

Fv3 2.21 1.05 fcm6 1.74 3.62 

 

TABLE 7: 

IDIM – IV ESTIMATES WITHOUT DATA FILTERING 

 3ˆ
IVβ  ˆ

ˆ%
IVβσ   3ˆ

IVβ  ˆ
ˆ%

IVβσ  

ZZ1R 1.25 2.6 Fc3 5.9 3.4 

Fv1 8.25 1.7 MX4 -0.02 40.0 

Fc1 6.50 6.6 Ia4 0.03 13.0 

XX2R -0.48 6.0 Fv4 1.16 1.9 

XZ2R -0.16 10.0 Fc4 2.20 3.8 

ZZ2R 1.08 2.4 MY5R -0.03 21.7 

MX2R 2.20 5.8 Ia5 0.04 17.0 

Fv2 5.68 2.3 Fv5 1.95 2.6 

Fc2 7.73 4.1 Fc5 2.80 5.5 

XX3R 0.13 20.0 Ia6 0.01 15.1 

ZZ3R 0.11 19.0 Fv6 0.69 2.2 

MY3R -0.60 4.2 Fc6 2.00 4.0 

Ia3 0.10 15.0 fvm6 0.64 2.4 

Fv3 2.06 2.8 fcm6 1.79 5.8 
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Fig. 8. Histogram of IV error and estimated Gaussian without data filtering 

 

D. IDIM – IV method compared with Total Least Squares (TLS) technique 

IDIM – IV method is now compared with TLS method because one can resort with TLS method when 

facing noisy observation matrix. Details about TLS method can be found in [29] and many papers of the 

same authors. 

TLS method is carried with and without bandpass filtering. When coupled with a well tuned bandpass 

filtering, TLS estimates stick to IDIM – LS estimates given in Table 2. Like other approaches, TLS 

technique does not improve IDIM – LS method. Without bandpass filtering, TLS method provides 

estimates given in Table 8. In this case, TLS estimates do not match IDIM – IV estimates. It comes that the 

TLS estimator is biased. Unlike IDIM – IV method, TLS cannot cancel the bias resulting from a too noisy 

observation matrix ( )ˆ ˆ, ,W q q qɺ ɺɺ . This result shows that IDIM – IV is more effective than TLS technique. 

 

TABLE 8: 

TLS ESTIMATES WITHOUT BANDPASS FILTERING 

 ˆ
LSβ  ˆˆ%

LSβσ   ˆ
LSβ  ˆˆ%

LSβσ  

ZZ1R 0.11 5.0 Fc3 5.60 1.6 

Fv1 8.05 0.5 MX4 0.01 2.5 

Fc1 6.00 1.4 Ia4 0.01 13.0 

XX2R -0.12 4.0 Fv4 1.18 2.5 

XZ2R -0.08 6.3 Fc4 2.30 3.7 

ZZ2R 0.43 5.1 MY5 -0.03 8.0 
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R 

MX2R 3.21 0.9 Ia5 0.02 7.0 

Fv2 5.22 0.6 Fv5 1.91 2.1 

Fc2 8.20 1.0 Fc5 2.80 1.8 

XX3R -0.01 22.0 Ia6 0.005 20.0 

ZZ3R 0.05 3.3 Fv6 0.68 2.0 

MY3R -0.40 2.1 Fc6 2.00 4.1 

Ia3 0.07 2.2 fvm6 0.65 2.0 

Fv3 2.10 1.4 fcm6 1.75 3.8 

 

E. IDIM – IV method compared with classical Output Error Method (OE) 

Because natural Output Error (OE) overcome the problem of noisy observation matrix, IDIM – IV 

method is compared with a classical OE technique (see [23], section III). OE identification methods 

minimize a quadratic error between an actual output and a simulated output of the system assuming both 

the actual and the simulated systems have the same input. For robots identification, it is more suitable to 

choose the closed-loop OE method (CLOE) [23]. Taking measured joint positions as outputs, the actual 

outputs vector is qy =q  and the simulated output vector is SS qy = . Sq  is obtained from integration of the 

DDM (10). The criterion to be minimized is therefore: 

( ) ( ) ( )2 T

q S q S q SJ = − = − −β y y y y y y  

The minimization of ( )βJ  is a nonlinear LS problem. Estimates can be computed using algorithms such as 

gradient method or Newton methods. These methods, based on a first or second order Taylor’s expansion of 

( )βJ , are available in lsqnonlin MATLAB function. 

DDM simulation is performed without updating gains of the simulated controller and the Gauss – Newton 

(GN) algorithm is initialized with acceptable values. The lsqnonlin MATLAB function is used. GN 

algorithm converges after 1000 iterations and we retrieve IDIM – IV estimates given in Table 3. However, 

if GN algorithm is initialized with the regular initialization, it does not converge. As expected, classical OE 

methods are not suitable for 6 DOF robots identification: they converge slowly and they are sensitive to 

initialization whereas IDIM – IV converges after 3 iterations only and is not sensitive to initialization. 
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VI. CONCLUSION 

In this paper has presented a generic IV method suitable for robots identification, called IDIM – IV, was 

successfully applied on a 6 DOF industrial robot manufactured by STAUBLI. 

This identification method combines the inverse and the direct dynamic models. These models are 

validated at the same time. Until now, the inverse and direct models were validated separately. 

IDIM – IV algorithm improves noise immunity of estimates with respect to corrupted data in W  coming 

from noisy measurements and/or bad tuning of bandpass filters of joint positions. A bandpass filtering is 

not needed to get unbiased estimates. However, if IDIM – IV method is used without parallel decimation, it 

may loss its efficiency. 

Gains of simulated controller being updated at each step of IDIM – IV according to IDIM – IV estimates, 

the algorithm is not sensitive to initialization and has a fast convergence. Only 3 iterations are needed to 

identify 60 dynamic parameters. With classical IV methods, at last 5 iterations are needed to identify low 

dimensional systems. 

IDIM – IV was also compared with TLS and OE methods. Experimental results show that IDIM – IV is 

more effective than these two approaches. 

At last, statistical assumptions were experimentally validated with rigorous statistical tests. In many 

papers, statistical assumptions are rarely verified while they are crucial to obtain good estimates. 
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