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Abstract
Material Point Method is used to study the impact deformation of elastic-perfectly plastic spherical particles. A wide range of
material properties, i.e. density, Young’s modulus and yield strength, are considered. The method is particularly suitable for
simulating extensive deformation. The focus of the analysis is on linking the coefficient of restitution and the percentage of
the incident kinetic energy dissipated by plastic deformation,Wp/Wi × 100, to the material properties and impact conditions.
Dimensionless groups which unify the data for the full range of material properties have been identified for this purpose. The
results show that when the particle deforms extensively,Wp/Wi × 100 and the equivalent plastic strain, are only dependent on
the particle yield strength and the incident kinetic energy, as intuitively expected. On the other hand, when the deformation is
small, Young’s modulus of the particle also affects bothWp/Wi × 100 and the equivalent plastic strain. Moreover, coefficient
of restitution is insensitive to Young’s modulus of the material. Dimensionless correlations are then suggested for prediction
of the coefficient of restitution, the equivalent plastic strain and Wp/Wi × 100. Finally, it is shown that the extent to which
the particle flattens due to impact can be predicted using its yield strength and initial kinetic energy.

Keywords Grains · Powder · Particle impact · Cold spraying · Large plastic deformation · Material point method

1 Introduction

Particle impact is a common occurrence in numerous appli-
cations that involve handling and processing of powders.
Depending on the impact details, it can have various impli-
cations for a process, e.g. it can affect the flow behaviour of
powders due to kinetic energy dissipation [1] or influence
the particle–particle and particle–substrate bonding mecha-
nism, and consequently the quality of the final film in coating
processes such as cold spraying and aerosol deposition [2,
3]. Thus, investigating the impact phenomenon is important
for understanding and improving the efficiency of such pro-
cesses.

Considering normal impact of an elastic-perfectly plastic
spherical particle with another body, a fraction of the ini-
tial kinetic energy of the impact is stored in the contacting
bodies as recoverable elastic strain energy. The remaining
fraction is primarily dissipated by propagation of elastic
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waves and, if the initial kinetic energy is sufficiently high to
induce yielding, plastic deformation. In light of this, inspec-
tion of energy loss during impact has long been a common
approach to study the impact phenomenon. While elastic
wave propagation is inherent in any impact regardless of
the impact velocity, it has been shown experimentally and
analytically that energy losses due to this mechanism are
less than 3–4% of the initial kinetic energy [4–7]. How-
ever, at relatively high impact velocities, plastic deformation
becomes the dominant mechanism for energy dissipation.
There are various experimental [8–19] and analytical [20–27]
studies that have investigated the energy dissipation dur-
ing elastic–plastic impact of spheres. However, experimental
investigation of particle impact is precarious as the event
takes place in an extremely short span of time. Addition-
ally, the available theoretical models are developed based on
simplifying assumptions and need to be validated by exper-
iments. Therefore, numerical simulations provide a great
means for analysis of the phenomena taking place throughout
impact.

Finite Element Method (FEM) and Discrete Element
Method (DEM) are the most popular numerical methods
used to date for simulation of particle impact. Specifically,
DEM has been broadly explored over the past three decades
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for a wide range of particle-related problems. The accuracy
of any DEM simulation depends on selecting an appro-
priate contact law as input, which can accurately account
for deformation. Analytical contact laws have widely been
adopted for DEM simulations. There are numerous models
implemented in DEM that describe the normal elastic–plas-
tic contact with [28–32] and without [21, 33, 34] adhesion.
However, such models are based on simplifying assumptions
and are currently only adequate for modelling problems that
involve small strains, i.e. not accounting for extensive defor-
mation.

As for FEM, there are several studies that model contact
between an elastic–plastic sphere and a rigid surface [35–41].
However, these studies examine the aforementioned case in
a quasi-static analysis. In fact, to the best of our knowledge,
Wu et al.’s [42] work is the only study where the specific
case of contact between an elastic–plastic sphere with a rigid
surface is modelled in the dynamic framework, though there
are several FEM studies that consider impact of an elastic
sphere with an elastic–plastic substrate [22, 43, 44]. Wu
et al. [42] have carried out two-dimensional FEM simula-
tions of impact between an elastic-perfectly plastic sphere
and a rigid wall. They conduct the simulations for differ-
ent impact velocities and mechanical properties, to analyse
the rebound behaviour of the sphere. This is done by inves-
tigating the coefficient of restitution, which is the ratio of
rebound velocity to impact velocity, representing the energy
loss during impact. Their results suggest that there is a crit-
ical velocity above which the sphere undergoes finite plastic
deformation. At lower velocities, the coefficient of restitution
is only dependent on the ratio of impact velocity to the yield
velocity (Vi /Vy). However, at velocities higher than the crit-
ical value, the coefficient of restitution is not only dependent
on (Vi /Vy), but also on the ratio of the effective Young’s
modulus to yield strength (E*/Y ) of the sphere. Based on
these findings, Wu et al. propose equations for coefficient
of restitution for both small deformation and finite plastic
deformation regimes.

Nevertheless, it should be noted that although FEM is
a well-established method, the problem of mesh distortion
and element entanglement during large deformations affects
the accuracy of the calculations. On the other hand, in
recent years, a new method known as the Material Point
Method (MPM) has been developed by Sulsky et al. [45]
that overcomes this drawback. MPM discretises the mate-
rial domain by a finite set of Lagrangian material points
(integration points in FEM). Additionally, the space occu-
pied by the body is discretised by an Eulerian background
mesh. These material points are then tracked during the
deformation process and each of them is assigned with a
position and carries the state variables. The algorithm used
in MPM is as follows: initially, information is mapped from
the material points to the mesh nodes. Then, the solution

to the momentum equations is calculated on the nodes. In
the end, the nodal solution is mapped back to the mate-
rial points to update their position and state variables [46].
The moving integration points naturally bypass the mesh
distortion problems typical of FEM and provide a more
convenient solution for problems concerning extensive defor-
mation. There are few instances of MPM being used to
study impact of materials that undergo plastic deformation
[47–49]. The work of Li et al. [48] is of particular interest
as it implements MPM to model impact of elastic-perfectly
plastic disks of different mechanical properties on a rigid
target. Their results show that the normalised contact law
(force normalised by the contact force at yield and displace-
ment normalised by radius of the particle) depends on and
can be determined from E*/Y and Vi /Vy. Moreover, when
the coefficient of restitution is expressed in terms of Vi /Vy,
three distinct zones of deformation behaviour are identified:
small deformation, full plasticity and large deformation. Li
et al. suggest that the coefficient of restitution is only depen-
dent on Vi /Vy in the first two zones and they express this
dependency by formulating their own analytical expressions.
For the third zone, their numerical results are in perfect
agreement with Wu et al. [42] equation for coefficient of
restitution.

Considering the drawbacks of the other methods and the
fact that MPM has seldom been used for simulation of par-
ticle impact, it is timely to carry out a comprehensive study
of the impact phenomenon by MPM, especially when large
deformation is concerned. Following the approach of Wu
et al. [42] and Li et al. [48], we analyse the effect of a
much wider range of material properties, especially parti-
cle density, using three-dimensional MPM simulations to
model high-velocity impact of single elastic-perfectly plas-
tic particles on a rigid target. The analysis is focussed on
the amount of energy dissipated through plastic deforma-
tion, and coefficient of restitution. Typically, the classical
updated Lagrangian formulation ofMPM (ULMPM) defines
the reference configuration based on the configuration of the
previous time step. This can lead to cell-crossing instability
as the material points might not lie at an optimal position
inside the background mesh elements. Moreover, the refer-
ence configuration is updated at each time step, which makes
ULMPM relatively computationally expensive. Hence, the
current study utilises the somewhat novel total Lagrangian
formulation of MPM (TLMPM) to compensate for these
drawbacks. In TLMPM, the reference configuration is fixed
and the material points are always associated with their ini-
tial positions. This provides an efficient approach in terms of
numerical stability and computational expenses.
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2 Methodology

2.1 Explicit material point method

An implicit formulation of MPM coupled with Contact
Dynamics (CD) method for treatment of frictional contact
can be found in [50–53]. In this work, an explicit total
Lagrangian formulation of MPM [46, 54] is coupled with
a new implicit contact algorithm to model the particle.

To describe a continuum body in its initial configuration, a
domain �0 is considered in RD, D being the domain dimen-
sion, with an external boundary ∂ �0. The body is subjected
to prescribed displacements and forces on its independent
complementary parts of the boundary, i.e. the Dirichlet
boundaries, ∂ �0

u and the Neumann boundaries, ∂ �0
f. The

conservation of linear momentum of the body is expressed
by Eq. (1) below:

∇ · Π(X , t) + b(X , t) � ρ(X , t)a(X , t) in �0, (1)

whereP(X,t), b(X,t), ρ(X,t) and a(X,t) are respectively the
first Piola–Kirchhoff stress tensor, the body force, the density
and the acceleration of a point at position X in its initial con-
figuration at time t. The boundary conditions are described
by:

{
u(X , t) � û(t) on ∂�u

0,

Π(X , t).n � f (t) on ∂�
f
0 ,

(2)

where u(X,t) and û(t) are the displacement and the pre-
scribed displacement fields, respectively. The terms f (t) and
n respectively denote the prescribed load and the outward
unit normal vector to ∂ �0.

In the MPM, the body is divided into Np material
points and mass is automatically conserved as each point is
appointed with a fixed amount of mass. In order to solve
Eq. (1), it is important to note that MPM is identical to
FEMwith the difference that the integration points (material
points) are mobile. So, a weak form of Eq. (1), as described
by Nezamabadi et al. [55] is first calculated using the rele-
vant boundary conditions and is then discretized into Finite
elements. Finally, MPM discretises the FEM integrals using
a Dirac delta function and the resulting equation is shown by
Eq. (3):

Manode(t) � f int (t) + f ext (t) (3)

where anode is the nodal acceleration and

M �
Ne∑
e�1

Ne
p∑

p�1
mpN p0 Lumped mass matrix,

f int (t) �
Ne∑
e�1

Ne
p∑

p�1
G p0Π p(t)Vp0 Internal force vector,

Sum of body forces and surface tractions, f S f ext (t) �
Ne∑
e�1

Ne
p∑

p�1
N p0bp(t) + f S(t).

where Ne and Np
e denote the number of the background

mesh elements and that of the material points for an element,
respectively. Also,mp and Vp0 are respectively the mass and
volume of the material point in the reference (initial) con-
figuration. Np0 is the shape function matrix (interpolation
matrix) for a material point p and its function is to relate the
quantities associated with the material points to the variables
associated with the nodes of the element to which the mate-
rial point belongs, at the reference configuration. Gp0 is the
gradient of Np0. It should be noted that f S also includes the
nodal contact forces, fC , between several bodies. In order to
determine the nodal velocities vnode from the material point
velocities vp, a weighted squares approach is used by solving
the equation below:

Pnode(t) � Mvnode(t) �
Ne∑
e�1

Ne
p∑

p�1

mpNp0vp(t) (4)

where Pnode is the nodal momentum.
Equation (4) is solved using an explicit time integra-

tion procedure. Details of the algorithm used to update the
material points position and state variables and the Contact
Dynamicsmethod to calculate the nodal contact forces can be
found in detail in [56] and are not repeated here. An in-house
MPM code is used for the current study.

2.2 Verification

In order to verify the method, the case of small deforma-
tion for impact of an elastic spherical particle is investigated
through comparison with the analytical contact model pro-
vided by Johnson [20]. This is done by simulating normal
impact of an elastic sphere at 1 m/s with a rigid wall placed
1.5 mm below it. The time step is set as 1 ns for the simu-
lation. The sphere is discretised into 74,227 material points
and 132,651 eight-node elements along with the cubic-spline
shape function are used. The properties of the sphere are
as follows: Radius, R � 12.5 mm, Young’s modulus, E
� 4.9 MPa, Poisson’s ratio, υ � 0.25 and density, ρ �
1404 kg/m3.

According to Johnson [20], Hertz equation can be used as
the contact law for impact of an elastic sphere undergoing
small deformation, as shown by Eq. (5):

F � 4

3
R1/2E∗δ3/2 (5)

where F is the contact force, and δ is the displacement of the
centre of the particle. E* is the effective Young’s modulus
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Fig. 1 Variation of contact force
and displacement with time for
impact of a sphere undergoing
small elastic deformation;
comparison between analytical
[20] (dashed lines) and MPM
results (discrete symbols)

of the sphere defined as E* � E/(1–υ2). The relationship
between δ and time t is given by:

t � δ∗

Vi

∫
d(δ/δ∗)[

1 − (δ/δ∗)5/2
]1/2 (6)

where:

δ∗ �
(

15mV 2
i

16R1/2E∗

)2/5

(7)

in which Vi is the impact velocity, δ* is the maximum dis-
placement of the centre of the particle during impact and m
is the mass of the particle. Deresiewicz [57] has evaluated
Eq. (6) numerically, providing the values for δ/δ* and 2t/T ,
with T being the total contact time given by Johnson [20]
according to Eq. (8):

T � 2.87

(
m2

RE∗2Vi

)1/5

(8)

By calculating the maximum contact force, F*, from
Eqs. (5) and (7), the change in contact force and displacement
with time can be obtained in a dimensionless form. This is
shown in Fig. 1 with the MPM results overlaid for compari-
son. It should be noted that the numerical total contact time
is considered from the first instance the particle makes con-
tact with the wall, to the time where contact is last detected.
Considering Fig. 1, there is a good agreement between the
analytical and the numerical results obtained from the MPM
simulation, confirming the accuracy of the method.

2.3 Case studies and simulation setup

As mentioned before, the current work aims to study the
impact deformation behaviour of elastic-perfectly plastic
particles having a wide range of material properties. Thus,
four different densities of 1000, 2000, 4000 and 8000 kg/m3

are considered. As shown byWu et al. [42] and Li et al. [48],
the ratio of the effective Young’s modulus to yield strength
of the material (E*/Y ) plays an important role in the defor-
mation behaviour of the particle. In the current work, three
different values of 1, 10 and 100 GPa for Young’s modulus,
and eight different values of 20, 40, 80, 160, 320, 640, 1280
and 2560 for the ratio of Young’s modulus to yield strength
(E/Y ) are investigated. This is done for the four different val-
ues of density, leading to a total of ninety six cases being
studied. The values of yield strength corresponding to each
case are shown in Table 1.

For all of the cases, particle radius is set as 250 µm and
Poisson’s ratio as 0.35. For each case, the particle is normally
impacting awall placed 30µmbelow itwith an impact veloc-
ity of 50 m/s. After conducting a sensitivity analysis, a time
step of 10 ps is selected and the particle is discretised into
74,227 material points. The mesh size is adjusted in a way
that the ratio of the element size to the distance between
the material points in each dimension is 1.5 for cases with
a Young’s modulus of 100 GPa and 1.05 for cases with a
Young’s modulus of 1 and 10 GPa. Damping is not applied.
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Table 1 The values of yield strength, Y , corresponding to each of the
studied cases

E/Y (-) E (GPa)

1 10 100

Y (MPa)

20 50 500 5000

40 25 250 2500

80 12.50 125 1250

160 6.25 62.50 625

320 3.13 31.25 312.50

640 1.56 15.63 156.25

1280 0.78 7.81 78.13

2560 0.39 3.91 39.06

Fig. 2 Visualisation of the modelled particle after rebound for different
cases: a ρ � 8000 kg/m3, E � 100 GPa, E/Y � 160; b ρ � 8000 kg/m3,
E � 1 GPa, E/Y � 40; c ρ � 2000 kg/m3, E � 1 GPa, E/Y � 320 and
d ρ � 1000 kg/m3, E � 1 GPa, E/Y � 1280. The orientation is chosen
randomly to provide the best view of the extent of deformation

3 Results and discussion

3.1 Extent of deformation

In order to display the diversity in the modelled extents
of deformation, visualisations of the particle after rebound
are shown in Fig. 2 for four different cases, as an exam-
ple. Considering Fig. 2d, it is clear that the method allows
for modelling very large deformation. However, it should be
noted that for a number of the cases with a very low yield
stress, as highlighted in the Appendix, the deformation is so
extreme that no results are obtained.

3.2 Coefficient of restitution

The coefficient of restitution, e, is calculated using Eq. (9):

e =
Vr
Vi

(9)

where Vr and Vi are the absolute values of the rebound and
impact velocity of the particle in the impact direction, respec-
tively. In order to find Vr , the velocity of the particle in the
impact direction is first calculated for each time step using
the following equation:

Np∑
p�1

mpv
z
p/

Np∑
p�1

mp (10)

where vpz is the velocity of material point p in the impact
direction (z axis here). Subsequently, the first instant at which
the calculated velocity reaches a constant value after contact
is lost is considered the rebound instant and the correspond-
ing velocity is taken as the rebound velocity.

The coefficient of restitution obtained from Eq. (9) is plot-
ted as a function of Vi /Vy for all the cases and presented
in Fig. 3a, where Vy is the velocity required for the onset
of plastic deformation, given by Johnson [20], as shown in
Eq. (11). It should be noted that due to the high number of
the case studies, no legends are displayed on any of the forth-
coming graphs, and the reader is referred to Table 2 for the
designation of the symbols.

Vy �
(
26Y

ρ

)1/2( Y

E∗

)2

(11)

Considering Fig. 3a, when the coefficient of restitution
is plotted as a function of Vi/Vy, a family of curves start
to form where all the data points corresponding to a certain
value of E/Y group together (in line with the findings of
Wu et al. [42]). As a general trend, there is decrease in the
coefficient of restitution with increase in Vi/Vy. Since Vi is
the same for all the studied cases in the current work and the
change in Vi /Vy is simply due to the change in Vy, this trend
is expected; decrease in Y and increase in ρ, i.e. decrease
in Vy translates to an earlier onset for plastic deformation,
which in turn leads to a diminish in the recovered elastic
energy. The trend is rapid for smaller values of E/Y (which
generally correspond to small deformation) and slows down
with further increase in E/Y . It should be noted that for the
cases where the coefficient of restitution is less than 0.1, the
trend becomes less orderly due to numerical errors, as the
extreme deformation results in a lower number of material
points per mesh cell.

According to Wu et al. [42], when (Vi/Vy)/(E*/Y )2 ≥
0.008, the particle is considered to have undergone large
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Fig. 3 Coefficient of restitution, e, as a function of aVi/Vy and b dimen-
sionless group (Vi/Vy)/(E*/Y ). The dashed line is themodel ofWu et al.
[42], shown by Eq. (12). For designation of the symbols, see Table 2.
Note that the data points in each data set correspond to different densities

deformation and the coefficient of restitution can be deter-
mined from Eq. (12).

e � 0.62

(
Vi/Vy

E∗/Y

)−1/2

(12)

Consequently, the coefficient of restitution for the cur-
rently studied cases that fit this criterion (all cases except for
three) is plotted as a function of (Vi/Vy)/(E*/Y ) and shown in
Fig. 3b, along with Wu et al. model superimposed for com-
parison. As seen in Fig. 3b, even though displaying e based
on (Vi /Vy)/(E*/Y ) unifies the data to a certain extent, Wu

Table 2 Symbol reference for all the graphs. NA denotes “not applica-
ble”

Legend
E (GPa)

E/Y (-) 1 10 100
20

40

80

160

320

640

1280

2560 NA

et al.’s model (dashed line) appears to deviate from theMPM
simulation results for extensive deformations. This is due to
the fact that only six different cases are considered in Wu
et al. study (two and six different values for Young’s modu-
lus and yield strength, respectively and one value for density),
whereas the currentwork studies amuchwider range ofmate-
rial properties.Moreover, the criterion suggested byWu et al.
to mark the boundary between small and large deformation
is not deemed reasonable based on the results of the current
work: there are multiple cases that fit the criterion yet their
plastic strain in the impact direction is no more than 1% of
the original particle diameter.

Whilst using the dimensionless group (Vi /Vy)/(E*/Y )
does not fully unify the data for such a wide range of mate-
rial properties, expressing the coefficient of restitution by
the group [1-(2Yεp/ρVi

2)]0.5 leads to better unification for
the full range, as shown in Fig. 4. Here, εp is the equiva-
lent plastic strain at the instant of rebound, calculated from
Eq. (13) where εpij is the deviatoric plastic strain.

εp �
√
2

3
ε
p
i jε

p
i j (13)

With regards to Fig. 4, coefficient of restitution correlates
well with the group 2Yεp/ρVi

2 which describes the ratio of
plasticwork resulting from impact to the initial kinetic energy
of an elastic-perfectly plastic particle. Moreover, presenting
the data in this manner reveals that coefficient of restitution is
not sensitive to Young’s modulus for elastic-perfectly plastic
particles and the resultant decrease of e fromunity is uniquely
due to plastic deformation. Interestingly, the fitted line inter-
cepts the x axis at about [1–(2Yεp/ρVi

2)]0.5 � 0.2, suggesting
that the particle will not rebound if more than 96% of the ini-
tial kinetic energy is dissipated by plastic deformation.
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Fig. 4 Coefficient of restitution, e, as a function of the dimensionless
group [1-(2Yεp/ρVi

2)]0.5. For designation of the symbols, see Table 2

3.3 Plastic deformation

In order to probe the link betweenmaterial properties and the
plastic deformation induced by particle impact, the equiva-
lent plastic strain, εp, is plotted against ρVi

2/Y , as displayed
in Fig. 5a. Considering the graph, εp increases with increase
in ρVi

2/Y which is expected as the increase in the latter
is due to the decrease in the yield strength of the mate-
rial or increase in the incident kinetic energy. Moreover, the
data points remarkably unify and follow a common trajec-
tory up to a certain point, after which they start to deviate
from the common course. The unification is observed for
data points corresponding to cases with relatively higher val-
ues of ρVi

2 /Y . This suggests that for high-energy impact of
highly deformable materials (large deformation), the extent
to which an elastic-perfectly plastic particle undergoes plas-
tic strain is only affected by the yield strength and the incident
kinetic energy of the particle, with no sensitivity to Young’
modulus. Interestingly, when εp is expressed by the group
(ρVi

2 /Y )(E/Y )0.2, as shown in Fig. 5b, the data points cor-
responding to cases with relatively lower values of ρVi

2 /Y
unify only up to a certain value for the dimensionless group
(approximately 0.1). This implies that for impact of elastic-
perfectly plastic particles, if the yield strength of the material
is relatively high or the incident kinetic energy is relatively
low (small deformation), the plastic strain caused by impact
is not only dependent on yield strength and the initial kinetic
energy, but also on Young’s modulus of the material.

Considering the above discussion, a threshold value of
0.1 is chosen for the dimensionless group (ρVi

2 /Y )(E/Y )0.2

to distinguish between these two regimes of behaviour: for
cases with (ρVi

2 /Y )(E/Y )0.2 < 0.1, the equivalent plastic

Fig. 5 Equivalent plastic strain, εp, as a function of a ρVi
2/Y and

b dimensionless group (ρVi
2/Y )(E/Y )0.2 for different cases. For des-

ignation of the symbols, see Table 2

strain is sensitive to Young’s modulus and can be obtained
from the equation of the fitted line in Fig. 6a.As for caseswith
(ρVi

2 /Y )(E/Y )0.2 > 0.1, plastic strain becomes independent
of Young’s modulus, and the fitted line in Fig. 6b can be
used for estimating the equivalent plastic strain. A summary
is shown in Eq. (14).

εp �

⎧⎪⎪⎨
⎪⎪⎩
0.32

[(
ρV 2

i
Y

)( E
Y

)0.2]1.25
if

(
ρV 2

i
Y

)( E
Y

)0.2
< 0.1

0.47

(
ρV 2

i
Y

)1.03

if

(
ρV 2

i
Y

)( E
Y

)0.2
> 0.1

(14)
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Fig. 6 Equivalent plastic strain, εp, as a function of a dimensionless
group (ρVi

2/Y )(E/Y )0.2 for cases with (ρVi
2/Y )(E/Y )0.2 < 0.1 and

b ρVi
2/Y for cases with (ρVi

2/Y )(E/Y )0.2 > 0.1. For designation of
the symbols, see Table 2

So as to further inspect the effect of material properties on
plastic deformation of the impacting particle, the percentage
of the initial kinetic energy dissipated by plastic deformation,
Wp/Wi × 100, is plotted as a function of Vi/Vy and shown
in Fig. 7a.Wp is the plastic work/energy, calculated, in sim-
ple terms, by deducting the recovered elastic energy from
the total deformation energy for each time step. It should be
noted that as damping is not considered in the system, after
rebound, the recovered elastic energy is not dissipated. This
results in fluctuations in the value of the elastic energy and

Fig. 7 Percentage of the initial kinetic energy dissipated by plastic
deformation,Wp/Wi × 100, as a function of a Vi /Vy and b dimension-
less group (E/Y )1.5[ρ(Vi

2–Vy
2)/Y ] for different cases. For designation

of the symbols, see Table 2

consequentlyWp, especially for soft particles. Thus, the val-
ues shown in Fig. 7a for Wp/Wi × 100 are average values,
taken after rebound.

With regards to Fig. 7a, similar to what was observed
for e, when Wp/Wi × 100 is expressed by Vi/Vy, a fam-
ily of curves start to form based on E/Y , but the unification
of data is poor. In general, there is increase in the percent-
age of the energy dissipated by plastic deformation with
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increase in Vi/Vy due to the decrease in Vy, i.e., the mate-
rial getting more deformable. This trend is rapid and slows
down as Vi/Vy is increased further. For the purpose of data
unification, Wp/Wi × 100 is subsequently plotted against
the dimensionless group (E/Y )1.5[ρ(Vi

2–Vy
2)/Y ], as shown

in Fig. 7b. In doing so, two regimes of behaviour can be
recognised: for cases corresponding to small deformation,
the percentage of the energy dissipated by plastic deforma-
tion is significantly affected by the combination of material
properties expressed by the dimensionless group, where a
rapid increase in Wp/Wi × 100 is observed with increase
in (E/Y )1.5[ρ(Vi

2–Vy
2)/Y ]. For this regime, a somewhat

good unification is achieved up to the value of 40 for the
dimensionless group, as shown in Fig. 8a. However, for
the cases that undergo large deformation, Wp/Wi × 100
is less sensitive to (E/Y )1.5[ρ(Vi

2–Vy
2)/Y ], suggesting that

for extensive deformation, the amount of the induced plas-
tic work as percentage of the initial kinetic energy cannot
be fully described by this combination of material proper-
ties. It was previously observed that for the cases undergoing
large deformation, the equivalent plastic strain is indepen-
dent of Young’s modulus. Thus, as shown in Fig. 8b,Wp/Wi

× 100 is alternatively expressed by ρ(Vi
2–Vy

2)/Y , for the
cases which fit the criterion (E/Y )1.5[ρ(Vi

2–Vy
2)/Y ] > 40,

i.e. the data points that deviate from the common trajectory
in Fig. 7b. Noting Fig. 8b, a better unification is achieved
when the term (E/Y ) is removed from the dimensionless
group. This implies that for highly deformable materials,
Young’s modulus has no influence on the percentage of the
incident kinetic energy dissipated by plastic deformation of
the particle during impact. However, it should be noted that
the dependency ofWp/Wi × 100 on ρ(Vi

2–Vy
2)/Y for large

deformation is still much weaker compared to that ofWp/Wi

× 100 on (E/Y )1.5[ρ(Vi
2–Vy

2)/Y ] for small deformation.
This suggests that for extensively deformable materials (or
very high-energy impacts), the deformation of the particle
is potentially dominated by the rate of plastic flow. Never-
theless, the equations of the fitted lines in Fig. 8a and b can
be used to get an approximate prediction for the percentage
of the initial kinetic energy loss due to plastic deformation
based on the material properties, as summarised in Eq. (15):

Wp

Wi
× 100 �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

10.40 ln

[( E
Y

)1.5 ρ
(
V 2
i −V 2

y

)
Y

]
+ 46.60 if

( E
Y

)1.5[ ρ
(
V 2
i −V 2

y

)
Y

]
< 40

2.82 ln

[
ρ
(
V 2
i −V 2

y

)
Y

]
+ 93.52 if

( E
Y

)1.5[ ρ
(
V 2
i −V 2

y

)
Y

]
> 40

(15)

Another perspective from which plastic deformation can
be studied is via investigating the extent to which the parti-
cle flattens due to impact. To this end, Hdeformed /H0, which
describes the “flattening extent” of the particle, is plotted as
a function of ρVi

2 /Y , as shown in Fig. 9. Hdeformed and H0

Fig. 8 Percentage of the initial kinetic energy dissipated by plastic
deformation, Wp/Wi × 100, as a function of a dimensionless group
(E/Y )1.5[ρ(Vi

2–Vy
2)/Y ] for cases with (E/Y )1.5[ρ(Vi

2–Vy
2)/Y ] < 40,

and b ρ(Vi
2–Vy

2)/Y for cases with (E/Y )1.5[ρ(Vi
2–Vy

2)/Y ] > 40. For
designation of the symbols, see Table 2

denote the length of the imaginary centre line that connects
the top and bottom of the particle parallel to the impact direc-
tion, before and after impact, respectively (refer to Fig. 9).
Consequently, decrease in Hdeformed /H0 implies an increase
in the flattening extent. It should be mentioned thatHdeformed

ismeasured after rebound as an average value, due to the fluc-
tuations caused by the elastic waves in the particle.

Considering Fig. 9, a master curve is obtained when
Hdeformed /H0 is expressed by ρVi

2 /Y . Also, Hdeformed

/H0 is intuitively decreasing with increase in ρVi
2 /Y , i.e.
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Fig. 9 Hdeformed /H0 , as a function of ρVi
2/Y for different cases. For

designation of the symbols, see Table 2

increase in the incident kinetic energy or decrease in the yield
strength of the particle. The trend is initially slow when the
material is less deformable, or the impact energy is low.How-
ever, the flattening extent increases at a faster rate for more
deformable materials, or high-energy impacts. Figure 9 sug-
gests that based on the value of yield strength and the incident
kinetic energy, the flattening extent of the particle can be pre-
dicted. This is beneficial for high-velocity impact deposition
techniques like cold spraying, where the particles experi-
ence extensive deformation, i.e. depending on the density and
yield strength of the material, the impact velocity required to
achieve a desired extent of flattening for the particles can be
decided.

4 Conclusions

A numerical study of the impact phenomenon for elastic-
perfectly plastic spherical particles has been carried out using
MPM. The method is first verified through comparison with

the analytical contact model of Johnson [20] for impact of an
elastic spherewith a rigidwall. Subsequently,MPMis used to
study the impact of an elastic-perfectly plastic particle with
a rigid wall, covering a wide range of material properties
and extents of deformation. The results show that for elastic-
perfectly plastic particles with the studied range of material
properties, the coefficient of restitution is not affected by
Young’s modulus of the particle, but rather by the plastic
flow. Additionally, it is found that for large deformation, the
percentage of the initial kinetic energy loss due to plastic
deformation, as well as the equivalent plastic strain are only
affected by the particle yield strength and the impact energy.
However, in the case of small deformation, the amount of the
stored elastic energy also plays a role in the initial energy dis-
sipation due to plastic deformation and the equivalent plastic
strain. It is also shown that the extent to which the particle
flattens due to impact correlates well with the incident kinetic
energy and yield strength of the material. In the end, MPM
proves to be a valuable tool for study of large deformation,
compensating for the shortcomings of the other available
methods.
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Table 3 The studied cases are
colour coded based on the
simulation success: red signifies
the cases for which no result is
obtained and green signifies the
cases for which the simulation is
successful

ρ (kg/m3) 1000 2000 4000 8000
E (GPa)

E/Y (-) 1 10 100 1 10 100 1 10 100 1 10 100
20
40
80

160
320
640

1280
2560
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