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Co-evolutionary relationships associated with biogeographical context mediate the 
response of native prey to introduced predators, but this effect has not yet been dem-
onstrated for domestic cats. We investigated the main factors influencing the vulner-
ability of prey species to domestic cat Felis catus predation across Australia, Europe 
and North America, where domestic cats are introduced. In addition to prey data 
from empirical records, we used machine-learning models to compensate for unob-
served prey in the diet of cats. We found continent-specific patterns of predation: 
birds were more frequently depredated by cats in Europe and North America, while 
mammals were favoured in Australia. Bird prey traits were consistent across continents, 
but those of mammalian prey diverged, notably in Australia. Differences between prey 
and non-prey species included mass, distribution, and reproductive traits, except in 
Australian mammals where there was no evidence for a relationship between mass and 
the probability of being prey. Many Australian mammal prey also have a high extinc-
tion risk, emphasizing their vulnerability compared to European and North American 
counterparts. Our findings highlight the role of eco-evolutionary context in assessing 
predation impacts and also demonstrate the potential for machine learning to iden-
tify at-risk species, thereby aiding global conservation efforts to reduce the negative 
impacts of introduced predators.
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Introduction

Invasive predators have caused the decline and loss of many 
native species globally, particularly on islands (Medina et al. 
2011, Doherty  et  al. 2019, Bellard  et  al. 2017). In many 
cases, native insular species are naïve to such predators 
and become easy prey for generalist invasive predators 
(Anton  et  al. 2020). Such relationships between invasive 
predators and naïve prey have long been of interest for under-
standing co-evolutionary processes and for quantifying and 
managing the impacts of invasive species (Sih  et  al. 2010, 
Anton et al. 2020). To understand the responses of naïve prey 
to invasive predators, several hypotheses and theories have 
been developed (reviewed by Carthey and Blumstein 2018). 
For example, relaxed predation theory explores how prey spe-
cies in Australia respond to invasive predators, considering 
the marked differences in olfactory (Carthey et al. 2017) and 
visual cues (Edwards et al. 2021) exhibited by the continent’s 
marsupial predators compared to those of introduced preda-
tors from Europe. However, recent research indicates that a 
predator’s origin does not influence the capacity of native 
species to recognize it as a predator, suggesting that prey 
naivety might not increase a species’ vulnerability to intro-
duced predators (Anton et al. 2020). Moreover, small mam-
mals are wary of mesopredators, regardless of the predator’s 
origin, phylogenetic relatedness, or functional dissimilarities 
with native mammalian mesopredators (Wallach et al. 2022). 
Given these conflicting observations, the factors determin-
ing the vulnerability and naïvety of native species to intro-
duced predators at broad scales remain unclear, especially on 
continents.

Originating in North Africa, free-ranging domestic cats 
Felis catus (Driscoll et al. 2007, Kitchener et al. 2017) have 
been introduced by humans to many regions of the world 
since the 16th century. They are now found on all continents 
except Antarctica, and have been introduced to many islands; 
cats now have the largest geographic range among terrestrial 
carnivores (Baker et al. 2010). The ecological impacts of F. 
catus are well-documented worldwide, with island fauna 
especially vulnerable (Medina  et  al. 2011, Doherty  et  al. 
2019). However, the effects of F. catus on continents remain 
equivocal (Lynn et al. 2019, Woinarski et al. 2019), except 
in Australia where F. catus was introduced more recently (in 
1788) (Abbott 2002). While massive killing of birds and 
mammals by F. catus has been documented both in North 
America (Loss et al. 2013) and Europe (Woods et al. 2003), 
there is still limited evidence of any ecological impact on 
populations of the depredated species there. Nonetheless, 
the prey diversity of F. catus has been well-documented in 
comparison to other species with broad geographic distribu-
tions and large diet breadths, like Vulpes vulpes or Herpestes 
auropunctatus (Middleton et al. 2021), and therefore provides 
sufficient resolution to study the impacts of this introduced 
predator on native fauna across ecological assemblages.

We used cats to explore how different co-evolutionary and 
biogeographical histories affect the prey–predator relation-
ships of an introduced mammalian predator by identifying 

which native fauna are depredated in three continents: 
Australia, Europe and North America. Considering the 
naïvety of Australian species (especially mammals) to felines, 
we hypothesized that cats would prey on a larger proportion 
of species, and over a greater diversity of traits, than observed 
in the feline-adapted European and North American prey 
assemblages.

To test this hypothesis, accurate identification of prey 
records is essential, but current datasets are incomplete, ren-
dering it impossible to perform unbiased assessments. We 
addressed these limitations by constructing a comprehensive 
cat prey database by completing existing records from Europe, 
North America and Australia using a machine-learning clas-
sifier to predict likely (but undocumented) bird and mam-
mal species eaten by cats. These expanded datasets allowed us 
to: 1) identify species traits associated with a high likelihood 
of predation by F. catus within continents, 2) compare these 
traits among European, North American and Australian prey 
assemblages, and 3) identify prey orders experiencing dispro-
portionately high predation. We also assessed the proportion 
of threatened and non-threatened species in the diet of F. 
catus on each continent, shedding light on the implications 
of predation for native fauna conservation.

Material and methods

Building original datasets with cat-predation records

Following the methodology of Marino et al. (2021), we con-
structed a database encompassing all native bird and mammal 
species in Australia, Europe and North America. To ensure 
that we included only mainland species, we excluded all insu-
lar endemic species based on information from the IUCN 
database (2022) and BirdLife (2022). To identify species 
consumed by cats, we used the most comprehensive global 
diet database currently available for F. catus (Lepczyk et  al. 
2023). While this database might have limitations, such as 
being unable to distinguish true predation from scaveng-
ing, it remains the most complete and accurate resource for 
inferring predation patterns. Specifically, we focussed on prey 
records from continental locations, ensuring that they were 
identified at the species level. In cases where subspecies were 
involved, we considered only the entries at the species level. 
When the location was labelled ‘continental and island,’ we 
manually cross-referenced with the original articles to con-
firm continental predation and removed records for which 
we could not obtain confirmation. We then divided the 
listed native species of each continent into two categories: 
1) prey species, those recorded as being consumed by F. catus 
in Lepczyk et al. (2023) filtered for continental records, and 
2) species that were not recorded as prey. To be considered 
as prey of F. catus  for a particular continent, a species had 
to be recorded as prey on that continent. The IUCN red list 
of threatened species category was reported for each species 
in the database (IUCN 2022). To focus only on extant spe-
cies, we removed those categorized as ‘Extinct’ or ‘Extinct 
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in the Wild.’ Subsequently, we categorized all species classi-
fied as ‘Vulnerable,’ ‘Endangered,’ or ‘Critically endangered’ 
in the Red List as ‘threatened’. We classified ‘Least concern’ 
and ‘Near threatened’ species as ‘not threatened’. This pro-
cess resulted in six datasets: 691 birds and 257 mammals in 
Australia, 466 birds and 166 mammals in Europe, and 738 
birds and 368 mammals in North America.

For each species, we collected a set of morphological, 
physiological and behavioural traits. For birds, we sourced 
seven traits from two databases: body mass (continuous), tail 
length (continuous), hand-wing index (continuous; this mea-
sure of wing shape is as a proxy for dispersal ability), trophic 
level (categorical: 0 = scavenger, 1 = herbivore, 2 = omnivore, 
3 = carnivore), and primary lifestyle (categorical: insessorial, 
generalist, terrestrial, aerial, aquatic) from the AVONET 
database (Tobias et al. 2022); and habitat breadth (categori-
cal: 1, 2, 3, 4, ≥ 5) and average clutch size (numeric) from 
Marino and Bellard (2023). We selected these traits based 
on their importance in predicting whether birds were eaten 
by F. catus (e.g. body mass, primary lifestyle; Woinarski et al. 
2017), their relevance to anti-predator behaviour (e.g. hand-
wing index, tail length, trophic level; Møller  et  al. 2014, 
Diaz  et  al. 2021), their role in influencing vulnerability to 
invasive species (Marino  et  al. 2021, Marino and Bellard 
2023), and their implications for predicting prey–predator 
relationships more broadly (Gravel  et  al. 2013, Desjardins-
Proulx et al. 2017, O’Connor et al. 2020, Kopf et al. 2021, 
Caron et al. 2022).

For mammals, we collected six traits: body mass (continu-
ous), foraging niche (categorical: arboreal, ground, aerial, 
scansorial, generalist), habitat breadth (categorical: 1, 2, 3, 4, 
≥ 5), trophic level (categorical: 1 = herbivore, 2 = omnivore, 
3 = carnivore), activity period (categorical: nocturnal, diurnal 
and other) from Marino et al. (2021), and average litter size 
(continuous) from Soria et al. (2021). We chose these traits 
based on the same assumptions as for birds.

For both taxonomic groups, we defined habitat breadth as 
the number of different habitats where the species is found 
following the IUCN habitat classification scheme (ver. 3.1) 
(IUCN 2022). To evaluate the contemporary geographical 
range size of bird and mammal species across continents, we 
used spatial distribution data from BirdLife (2022) for birds 
and IUCN (2022) for mammals. We created a 10 × 10 km 
grid in the Mollweide projection to ensure equal-area cells, 
which avoids distortion across large regions. We overlaid spe-
cies ranges onto the grid, and counted the number of cells 
occupied by each species within each continent.

We obtained traits for a total of 675 birds (98% of spe-
cies) and 251 mammals (98% of species) in Australia, 441 
birds (95% of species) and 162 mammals (98% of species) in 
Europe, and 707 birds (96% of species) and 363 mammals 
(99% of species) in North America.

Improving prey lists using machine learning

We assessed the sampling coverage of the six prey datasets by 
calculating rarefaction and extrapolation of species richness 

coverage using the Hill number (order q = 0) and the esti-
mateD function in the ‘iNext’ R package (Chao et al. 2014, 
Hsieh et al. 2016). Coverage was 87% for birds in Australia 
and Europe, and 74% in North America; mammals had 90% 
coverage in Australia and Europe, and 85% in North America. 
To standardize the sampling effort across the datasets, we cal-
culated the expected species richness at 90% coverage (Fig. 1) 
(estimateD from ‘iNext’) (Chao et al. 2014, Hsieh et al. 2016), 
which corresponded to the highest coverage across the six data-
sets. This method enabled optimal use of data without exces-
sive extrapolation, which could inaccurately inflate estimates 
of species richness at high coverage (Roswell  et  al. 2021). 
These estimated coverages were similar to values in other stud-
ies using the same approach (Maucieri et al. 2023). The differ-
ence between the observed richness and the estimated richness 
at 90% coverage represents the number of species required 
to be reclassified as prey for each dataset. Next, we applied 
tree-based machine-learning algorithms for binary classifica-
tion that are efficient models for predicting predation events 
using ecological and morphological traits and phylogenetic 
data (Llewelyn et  al. 2023). Specifically, we used a gradient 
boosting framework implemented in R via the ‘xgboost’ pack-
age (Chen et al. 2015).

The traits we selected did not represent all dimensions of 
what can make a species likely prey for cats. We therefore 
incorporated phylogenetic information for potential prey 
species using phylogenetic eigenvectors to account for these 

Figure 1. Number of species recorded as Felis catus prey and species 
assigned as prey by gradient boosting. Purple bars represent the 
number of continental birds and continental non-aquatic mammals 
recorded as prey in Lepczyk et al. (2023) in Australia, Europe and 
North America. Yellow bars represent the number of species needed 
to reach the expected species richness of each dataset at 90% cover-
age using coverage-based rarefaction and extrapolation curves with 
the Hill number q = 0.
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missing dimensions (i.e. as latent traits; Guénard et al. 2013). 
We extracted phylogenies for birds and mammals from www.
VertLife.org and we calculated phylogenetic eigenvectors 
for all species using the ‘MPSEM’ (Guénard and Legendre 
2022), ‘ape’ (Paradis and Schliep 2019) and ‘phytools’ (Revell 
2012) R packages.

We adopted a bootstrap approach to assign the prob-
ability of each species depredated by F. catus, running 333 
different optimized models for each of the six datasets. We 
used 333 models because this number offered a good com-
promise between computation time and the number of pre-
dictions of predation probability per species, ensuring that 
each species was predicted at least 50 times. This bootstrap 
process involved successively selecting 90% of species from 
each dataset randomly and splitting these subsets randomly 
into training (70% of species) and validation datasets (30% 
of species). We constructed each model using all the traits 
from the original datasets, ten phylogenetic eigenvectors, 
and the geographic range of species as predictors. We opti-
mized three hyperparameters (i.e. learning rate, maximum 
depth of tree, and maximum number of boosting iterations 
for each model) using grid search, and we selected the model 
that minimized the log loss function. For each of the 333 
models, we derived probabilities of being prey for the spe-
cies found in the validation dataset, resulting in mean values 
between 0 and 1. To increase the number of prey species 
for birds and mammals in the three continents to achieve 
the estimated 90% coverage, we identified species that had 
not been recognized as cat prey, but which were considered 
likely candidates based on the probability attributed by the 
models (Fig. 1). Rather than adopting a uniform and arbi-
trary probability threshold (usually set at 0.5) for inclusion, 
we ranked species according to their probability of cat pre-
dation determined by our model (Supporting information). 
We based the inclusion criteria on this ranking only, without 
considering specific probabilities. We then added as many 
species (starting with the species with the highest probability 
of predation) as necessary to achieve the pre-defined 90% 
coverage (Fig. 1). As a result, we classified species as prey 
if they were either (a) found in F. catus prey records or (b) 
shifted to the prey category based on the predicted machine-
learning ranking. Species that had not been recorded as prey 
and were not shifted after the reclassification step remained 
categorized as non-prey. For each of the 333 optimized 
models obtained from the bootstrap, we also computed the 
area under the receiver operating curve (AUC), accuracy, F1 
score, Matthews correlation coefficient, sensitivity, and spec-
ificity from these models to evaluate goodness of fit.

We evaluated the contribution of each predictor by calcu-
lating the mean absolute Shapley importance scores (SHAP) 
using the ‘fastshap’ R package (Greenwell et al. 2023), which 
is model-agnostic. For each bootstrapped dataset, we aver-
aged the mean absolute SHAP of the predictors across 333 
models using the sv_importance function in the ‘shapviz’ R 
package (Mayer 2024). Due to the small sample sizes, the 
model-agnostic SHAP method included all observations in 
each dataset (Lundberg and Lee 2017). We chose the SHAP 

approach for its unified measure of predictor importance, 
applicable across different algorithms, enabling comparison of 
their characteristics. Additionally, we visualized the marginal 
effect of each variable by plotting the covariate against its cor-
responding SHAP for each observation, showing how each 
predictor influences model outputs (Supporting information).

We also compared the species predicted as prey, the good-
ness of fit, and the importance of predictor variables from the 
gradient boosting framework to those derived from applying 
a random forest algorithm using the randomForest function 
in the ‘randomForest’ R package (Liaw and Wiener 2002).

Comparing prey species within and among 
continents

Tree-based machine-learning algorithms, despite their higher 
accuracy compared to generalized linear models (Pichler et al. 
2020), can be difficult to interpret because these algorithms 
does not provide direct relationships between predictors and 
the probability of a species being prey. To identify the traits 
with the highest influence on the predictions of our boot-
strapped models, we selected the predictors with the highest 
mean absolute SHAP and checked for collinearity between 
those selected predictors. We focused on weakly correlated 
predictors to avoid redundancy between the different analy-
ses. To evaluate collinearity among the selected predictors, we 
developed a generalized linear model using the glm function 
in R, with prey status (prey versus not prey) as the depen-
dent variable and each predictor as an independent variable. 
We assessed the variance inflation factor for each predictor 
using the check_collinearity function from the ‘performance’ 
R package (Lüdecke et al. 2021). If a predictor in the model 
exhibited a variance inflation > 2 (indicating collinearity), we 
removed one of the collinear variables. We repeated this pro-
cess until we achieved a set of variables that did not exhibit 
collinearity. We did not include phylogenetic eigenvectors 
due to the difficulty of linking them to identifiable traits.

To compare geographic ranges among continents, we 
standardized by dividing the geographic range of each species 
by the maximum value of the geographic range of a species in 
the same continent. Additionally, when the distribution of a 
trait was non-Gaussian, we normalized using a square-root or 
loge transformation for subsequent tests.

To compare trait values between prey and non-prey spe-
cies across and within continents, we employed different 
regression analyses according to the nature of each trait. We 
applied ordinal regression using the polr function from the 
‘MASS’ R package (Ripley et al. 2013) for habitat breadth, 
an ordered integer . We applied beta regression to the square-
root transformed geographical range, a continuous variable 
constrained between 0 and 1, using the betareg function from 
the ‘betare’g R package (Cribari-Neto and Zeileis 2010). We 
used linear regression for all other (continuous) traits with the 
lm function from the ‘stats’ R package (www.r-project.org). 
Each model included continent and prey status as interacting 
independent variables, with the trait value as the dependent 
variable, modelled as:
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trait prey status continent prey status continent� � � �   (1)

We examined residual diagnostics for all models using Q-Q 
plots (details in the Supporting information). To identify the 
top-ranked model, we compared the saturated model (1) to 
less-complex models using all possible combinations of its 
independent variables (details in the Supporting informa-
tion), with evaluations based on their Akaike information 
criterion weights (wAIC) and the proportion of deviance or 
variance they explained. The proportion of variance explained 
corresponded to the R2 for the linear regressions and the pro-
portion of deviance explained corresponded to Mcfadden’s 
pseudo R2 for other regressions. We used the wAIC (~ model 
probability) and deviance or variance explained to evaluate 
the relative likelihood of the interaction effect by indicating 
support for the saturated versus less-complex models. This 
analysis tested whether the relationship between species sta-
tus and a trait varied among continents. Based on the satu-
rated model (1), we then used pairwise comparisons between 
continents and prey status using the pairs function from the 
‘emmeans’ R package (Lenth and Lenth 2018) to quantify 
the magnitude of the difference in trait values between groups 
of species. Hereafter, we refer to Δallcontinent when compar-
ing prey and non-prey groups of species in a continent, and 
Δpreycontient A – continent B when comparing prey species between 
two continents, based on pairwise comparisons.

For birds, we assessed the vulnerability of orders among 
continents by calculating Spearman’s ρ, and the number of 
prey species per order. We focussed on the number of species 
and not the proportion of prey per order to avoid the extreme 
sensitivity of results imposed by orders with few species. Due 
to few common orders between continents, we did not assess 
the vulnerability of orders between continents for mammals.

Results

Prey species prediction with gradient boosting

The 90% coverage-based rarefaction and extrapolation indi-
cated the need to add putative F. catus prey species. For birds, 
61, 77 and 175 species needed to be added to the prey lists for 
Australia, Europe and North America, respectively; for mam-
mals, 22, 16 and 29 species were needed for these regions 
(Fig. 1). In these standardized datasets that contained prey 
from empirical records and predicted by supervized machine 
learning, we observed differences between birds and mam-
mals and among continents in terms of the proportion of 
species that cats depredate. In Australia, the percentage of 
species that were putative prey was 59% (151 of 257) for 
mammals, which was higher than for birds (35%; 239 of 
691). In contrast, 43% (72 of 166) of mammal species and 
47% (218 of 466) of bird species were prey in Europe; and 
33% (120 of 368) of mammal species and 54% of bird spe-
cies (401 of 738) were prey in North America (Fig. 1).

Bootstrapping revealed good predictive power for both taxa, 
with a mean AUC > 0.77 for birds and > 0.85 for mammals 

in the three continents (standard deviations of AUC scores 
computed from the 333 optimized models < 0.07). The other 
metrics of goodness of fit confirmed these results for both taxa 
and all the continents (Supporting information).

For birds, bootstrapping showed that geographical range 
size, hand-wing index, body mass, beak length nares, tail 
length, and clutch size were the most important predictors 
to classify a species as prey in the three continents, ranging 
from 0.21 to 0.012 (Supporting information). Phylogenetic 
eigenvectors had a small effect on the models, with a mean 
absolute SHAP ranging from 0.026 to 0.0094 (Supporting 
information).

For mammals, geographical range size, litter size, body 
mass, and habitat breadth were the most important predictors 
for classifying a species as prey in the three continents, rang-
ing from 0.24 to 0.020 (Supporting information). Phylogeny 
had a larger effect than for birds, with a mean absolute SHAP 
for eigenvectors ranging from 0.047 to 0.010 (Supporting 
information). The results from the random forest were simi-
lar to those from ‘xgboost’ (Supporting information).

Traits of prey species within and among continents

For birds, the variance inflation analysis indicated collin-
earity between loge(body mass), tail length, and loge(beak 
length nares) (VIF > 2); we therefore show results only for 
loge(body mass) (Supporting information). For each analysed 
trait, models that incorporated the interaction between prey 
status and continent as independent variables demonstrated 
superior goodness of fit, indicated by the highest wAIC and 
percentage of deviance or variance explained (Supporting 
information). This indicated that the relationship between 
bird vulnerability and trait values differs across continents. 
Nonetheless, there were some consistent differences between 
prey and non-prey bird species across continents. Compared 
to non-prey species, prey species had greater geographi-
cal ranges (ΔallAUS = 0.34 ± 0.019, ΔallEUR = 0.37 ± 0.022, 
ΔallNAM = 0.27 ± 0.017) and loge(clutch size) (ΔallAUS = 0.26 
± 0.042, ΔallEUR = 0.29 ± 0.050, ΔallNAM = 0.39 ± 0.040), 
and lower hand-wing indices (ΔallAUS = −2.75 ± 1.21, 
ΔallEUR = −8.71 ± 1.43, ΔallNAM = −13.87 ± 1.14) and 
loge(body mass) (ΔallAUS = −0.56 ± 0.14, ΔallEUR = −1.13 ± 
0.16, ΔallNAM = −1.43 ± 0.13) (Fig. 2, Supporting informa-
tion). For each continent, prey tended to be more similar 
to each other in terms of their traits than they were to the 
non-prey species of the same continent (ΔpreyEUR-NAM = 4.36 
± 1.28, ΔpreyEUR-AUS = 3.39 ± 1.42, ΔpreyNAM-AUS = −0.97 
± 1.23 for hand wing index ; ΔpreyEUR-NAM =0.38 ± 0.15, 
ΔpreyEUR-AUS = 0.17 ± 0.16, ΔpreyNAM-AUS = −0.22 ± 0.14 
for loge(body mass), and ΔpreyEUR-NAM = 0.11 ± 0.044, 
ΔpreyEUR-AUS = 0.41 ± 0.049, ΔpreyNAM-AUS = 0.30 ± 0.043 
for loge(clutch size)). 

The similarities between bird prey species were confirmed 
at the phylogenetic level by the similarity of orders’ vulner-
ability (i.e. proportion of species recorded as prey per order) 
across continents (Fig. 4A). Specifically, there was a strong 
correlation between Europe and North America in terms of 

 16000587, 0, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07169 by C

ochrane France, W
iley O

nline L
ibrary on [23/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 6 of 13

vulnerability to cat predation (ρ = 0.93, p < 0.001) and a 
moderate correlation between Australia and North America, 
and Australia and Europe (ρ = 0.65, p = 0.003; and ρ = 0.66, 
p = 0.003, respectively). Among birds, many Passeriformes 
were prey species, including 128 species in Australia, 113 in 

Europe, and 244 in North America. However, vulnerabil-
ity differed among continents for this order. Passeriformes 
were more vulnerable in Europe and North America, with > 
64% of species predicted as cat prey, compared to < 41% in 
Australia. In Australia, parrots (Psittaciformes) were highly 

Figure 2. Distributions of bird species traits between prey and non-prey of Felis catus. Dots represent Australian (blue), European (orange), and 
North American (green) species. Darked-coloured dots represent non-prey species (neither found in F. catus prey records nor predicted as prey). 
Light dots represent prey species (either found in F. catus prey records or predicted as prey). Boxes illustrate the mean and bootstrapped confi-
dence interval of both non-prey and prey species within each continent. The selection of traits for birds was based on their importance as predic-
tors for classifying prey records using the gradient-boosting algorithm. Numbers represent the mean of each species group.
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vulnerable to cat predation, with 73% (n = 38) of parrot spe-
cies predicted as prey.

For mammals, models including interactions between 
prey status and continent typically demonstrated superior 
goodness of fit, except for habitat breadth where the model 

that did not include an interaction between prey status and 
continent performed best Fig. 3 (Supporting information). 
Mammal prey were smaller than, but had similar litter sizes to 
non-prey in Europe and in North America (ΔallEUR = −1.86 
± 0.40, ΔallNAM = −0.69 ± 0.28 for loge body mass, and 

Figure 3. Distributions of mammal species traits between prey and non-prey of Felis catus. Dots represent Australian (blue), European (orange), 
and North American (green) species. Darked-coloured dots represent non-prey species (neither found in F. catus prey records nor predicted as 
prey). Light dots represent prey species (either found in F. catus prey records or predicted as prey). Boxes show means and their bootstrapped 
confidence intervals for both non-prey and prey species within each continent. The selection of traits for mammals was based on their impor-
tance as predictors for classifying prey records using the gradient-boosting algorithm. Numbers represent means for each species group.
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ΔallEUR = 0.43 ± 0.30, ΔallNAM = 0.13 ± 0.21 for litter size). 
In Australia, prey and non-prey species had similar mean 
body mass, but prey had higher litter sizes (ΔallAUS = 0.027 
± 0.33 for loge body mass and ΔallAUS = 1.45 ± 0.25 for lit-
ter size) (Supporting information). For geographical range 
and habitat breadth, similar differences between prey and 
non-prey emerged across the continents (ΔallAUS = 0.097 ± 
0.026, ΔallEUR = 0.31 ± 0.037, ΔallNAM = 0.15 ± 0.026 for 

geographical range, and ΔallAUS = 0.70 ± 0.23, ΔallEUR = 0.45 
± 0.29, ΔallNAM = 0.78 ± 0.20 for habitat breadth). Prey 
mammals within each continent tended to be more similar to 
each other than to non-prey species from the same continent 
(ΔpreyEUR-NAM = −0.60 ± 0.37 for loge body mass and ΔpreyEUR-

NAM = −0.14 ± 0.28, ΔpreyEUR-AUS = 0.32 ± 0.27, ΔpreyNAM-

AUS = 0.47 ± 023 for litter size). However, an exception to 
this pattern was observed in Australia where prey mammal 

Figure 4. Proportion of species in mammal and bird orders that are Felis catus prey in Australia, Europe and North America. (A) Prey pro-
portions across continental bird orders, (B) prey proportions across continental non-aquatic mammal orders. Each bar represents the pro-
portion of species predicted as prey per order based on whether the species were found in F. catus prey records or predicted as prey by the 
machine-learning model. Numbers along bars indicate the count of unique species predicted as prey within that order. The dotted red lines 
indicate the point at which 50% of species within an order are predicted as prey. Orders that surpass this threshold have more species that 
are preyed on by F. catus than those not preyed on by F. catus. Black stars indicate the absence of species from that order on the continent.
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species were more similar to non-prey species in terms of 
body mass, compared to the differences observed in their 
European and North American counterparts (ΔpreyEUR-AUS =  
−1.28 ± 0.36, ΔpreyNAM-AUS = −0.69 ± 0.31 for loge  
body mass).

All Australian taxonomic orders were vulnerable to preda-
tion. Chiroptera had the lowest proportion of species classi-
fied as prey (33%; 20 species). In contrast, marsupials had 
a high vulnerability, especially Dasyuromorphians (83%; 45 
species) and Peramelemorphians (100%; 7 species) (Fig. 4B). 
All Monotremata and Notoryctemorphia were predicted to 
be prey (but there are only two species in each of these orders 
in Australia). In Europe, Eulipotyphla and Chiroptera were 
the most vulnerable orders, with 21 and 24 prey species cor-
responding to 77 and 61% of the species in these orders, 
respectively. In North America, Lagomorpha was the most 
affected order (70%; 14 species).

Conservation implications of cat predation across 
continents

For birds, we observed similar partitioning of threatened spe-
cies in prey species group and non-prey species group across 
continents, but with a lower proportion of threatened species 
in the prey group (3.3–3.8% of threatened birds) compared 
to the non-prey group (10.1–11.7% of threatened birds) 
(Fig. 5). For mammals, we observed the same pattern, but 
Australia had a higher proportion of threatened species in the 
prey group (17.9%; Fig. 5) than in Europe and North America 
(6.6%). Australia also had a high proportion of threatened 
mammal species in the non-prey group (26.0%), similarly to 
Europe (24.4%), but unlike North America (9%) (Fig. 5).

Discussion

We investigated ecological differences among the prey species 
of F. catus across three continents by combining existing lit-
erature on global cat prey records with predictions obtained 
through machine-learning techniques. We found similarities 
in morphological and ecological traits, geographical range 
sizes and phylogeny among the prey species across Australia, 
Europe and North America. For birds, small species with 
large geographical ranges and large clutch sizes had a higher 
probability of being recorded as prey of F. catus on all conti-
nents. For mammals, body masses and litter sizes varied across 
regions. Among Australian mammals, mean body mass was 
similar for prey and non-prey species, whereas prey species 
had larger litter sizes compared to non-prey species. We did 
not observe this pattern in Europe or North America where 
prey mammals were smaller than non-prey mammals and had 
the same litter sizes as non-prey mammals. We also identified 
patterns of phylogenetic vulnerability in F. catus prey across 
continents. Parrots, which are absent from Europe and North 
America, were the species most likely to be victim to cat pre-
dation among the different orders in Australia. Passeriformes 
and Piciformes were the most vulnerable bird orders in Europe 

and North America according to the same criteria (Fig. 4a). 
For mammals, endemic Australian marsupials were highly 
vulnerable to F. catus predation (Fig. 4b), which is consistent 
with previous findings (Edwards et al. 2021).

Novelty as a hypothesis for different predation 
patterns

Australia is a continental island with lineages that have 
evolved in the absence of felid predators. Discounting the 
dingo Canis dingo, a canid predator that was introduced to 
Australia about 4000 years ago, there is currently only one 
large (~ 6.1 kg; Bradshaw et al. 2021) endemic mammalian 
predator in Australia (devil Sarcophilus harrisii, now restricted 
to the island of Tasmania). Thylacines Thylacinus cynocepha-
lus – thought to have had similar ecological traits as canids 
(Rovinsky et al. 2021) – went extinct in mainland Australia 
about 3200 years ago (White et al. 2018), and with S. har-
risii, were the only large mammalian predators in Australia 
that survived the Late Pleistocene pulse of megafauna extinc-
tions (Bradshaw et al. 2021). Native dasyurid quolls Dasyurus 
maculatus share some dietary overlap with F. catus (Glen et al. 
2011), suggesting quolls are endemic Australian predators 
potentially exerting similar co-evolutionary pressures on 
native species. However, their likely use of different visual 
and olfactory cues, along with distinct hunting methods, sug-
gest that their predation pressure is substantially lower and 

Figure 5. Number of threatened species among prey and non-prey 
species of Felis catus. Yellow and orange bars represent prey species, 
including species either found in F. catus prey records or predicted 
as prey by the machine-learning model. Purple bars represent non-
prey species (neither found in F. catus prey records nor predicted as 
prey). Orange and darker purple indicate species categorized as 
threatened in the IUCN Red List (Vulnerable, Endangered or 
Critically endangered). Lighter colours represent non-threatened 
species (Least concern or Near threatened). Numbers show the 
number of species in each group.
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different to that of F. catus. (Moseby et al. 2022). Although 
other large mammalian predators have been introduced to 
Australia, including the dingo and the European red fox V. 
vulpes, recent literature has identified F. catus as the most 
novel mammalian predator ‘archetype’ of Australian invasive 
species (Banks et al. 2018, Edwards et al. 2021). In contrast, 
native Felis spp. are endemic to Europe and are sympatric 
with two other feline species (Lynx lynx and L. pardinus). In 
North America, while there are no endemic species of Felis, 
there are two genera and three species of endemic felines: L. 
canadensis, L. rufus and Puma concolor. The unique preda-
tion patterns of F. catus on Australian mammals compared to 
Europe or North America are therefore likely attributable to 
the cat’s higher evolutionary novelty in Australia. According 
to the ‘relaxed’ predation theory (Edwards et al. 2021), mar-
supial species (especially those > 2 kg) are particularly vulner-
able to new predators larger than quolls due to the absence 
of coevolution with this type of predator. This could account 
for the higher average body mass of mammalian prey of cats 
in Australia and the vulnerability to predation of many spe-
cies within orders like Diprotodontia. Although global stud-
ies (Edwards et al. 2021, Wallach et al. 2022) indicate that 
mammals generally recognize both native and introduced 
predators, research has mainly focussed on smaller mam-
mals, and there is a concordant lack of data on the response 
of larger species (Edwards et al. 2021). Furthermore, cats in 
Australia might prey upon juveniles of larger species, and 
our approach did not identify whether predation occurred 
on juveniles or adults, or even whether a record referred to 
scavenging only. Thus, juveniles of the largest Australian 
marsupial would show body mass and other traits compat-
ible with cat predation, whereas this would not be the case 
in Europe or North America where juveniles of the species 
with the largest body mass would be too big and/or have 
other traits not compatible with cat predation. Other fac-
tors, such as landscapes more conducive to cat hunting, or 
a mismatch between anti-predator behaviours of Australian 
mammals and cat hunting tactics, might also contribute to 
the observed differences. The general absence of differences 
between continents in bird prey traits suggests greater stabil-
ity in prey–predator relationships for that group.

Existing threats on prey species

For mammals and birds, traits can be linked to extinction 
risk (Purvis et al. 2000, Atwood et al. 2020), the number of 
threats (Greenville  et  al. 2021, Capdevila  et  al. 2022), and 
the type of threat to which they are exposed (Chichorro et al. 
2019, Leclerc et al. 2020). Larger body mass is often associ-
ated with a higher extinction risk and more threats, whereas 
larger geographic ranges and litter sizes reduce extinction risk.

We found the opposite relationship for the bird prey of 
F. catus in Europe, North America and Australia – smaller 
species with broader geographic ranges and larger clutch sizes 
were more likely to be recorded as prey. This suggests that 
predation pressure from cats is not biassed toward currently 

threatened species. From a conservation perspective, this 
result is encouraging because species more likely to be eaten 
by cats are also the least-threatened species on continents, 
meaning that cat predation does not exacerbate extinction 
risk in many bird species already deemed vulnerable. Previous 
works already identified parrots as particularly vulnerable to 
non-native predators (Marino and Bellard 2023) and at high 
risk of extinction on islands (Matthews et al. 2022), in con-
trast to Passeriformes (Evans et al. 2021).

We can also make the same conclusion for mammals 
in Europe and North America, where the least-impacted 
species are those most likely to be eaten by cats. However, 
because body mass was a good predictor of the probabil-
ity of a mammal being classified as threatened (Supporting 
information), the consumption of many threatened mam-
mals by F. catus in Australia could explain the dispropor-
tionately high number of prey already threatened on that 
continent. The greater vulnerability of Australian marsupi-
als to F. catus predation is noteworthy, particularly consider-
ing the already precarious status of many Australian species, 
with some facing extinction due to introduced mammal 
predators (Woinarski et al. 2015).

Limitations

Our study addressed the incompleteness of the F. catus diet 
record, a known issue highlighted by species accumulation 
curves and corroborated by Lepczyk et al. (2023). To mitigate 
this gap, we applied a 90% coverage-based rarefaction and 
extrapolation to assess the prey richness within each dataset. 
Despite the utility of these estimates for assessing richness, 
extrapolation at high coverages might not always be reliable 
(Roswell  et  al. 2021) and could overestimate the number 
of missing prey. Thus, we adopted a conservative strategy 
to standardize dataset coverage while maximizing data and 
minimizing extrapolation bias.

In the datasets, 1) we included scavenging, which can be 
challenging to distinguish from true predation; 2) some stud-
ies focussed on rare and threatened species, often limited to 
single species; and 3) there was a low probability of record-
ing rare or range-restricted species as prey. These potential 
biases can have diverse effects; for example, scavenging can 
affect the relationships detected between traits and predation 
probability if the traits of scavenged species differ from those 
of species cats depredate. Further, the contrasting effects of 
species abundance on their inclusion in diet records (i.e. rare 
species less likely to be detected in diet studies, but single-
species studies aimed at identifying predators biassed towards 
rare/vulnerable species) make it difficult to draw definitive 
conclusions regarding potential over- or under-representa-
tion of these species in our database.

Low detectability and the direct derivation of IUCN 
threat categories from geographical range data suggest that 
comparing threatened and non-threatened species among 
prey and non-prey should be interpreted with caution, even 
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if discriminations are pronounced. The difficulty of quantify-
ing detectability problems in binary databases emphasizes the 
need for more continuous measures of predation pressure, 
despite the difficulty of obtaining such data.

By considering species as two groups (depredated or 
not), we could not detail the relationships between traits 
and predation probability as did Woinarski et al. (2017) for 
Australian birds and Woolley  et  al. (2019) for Australian 
mammals. Woinarski  et  al. (2017) identified an optimal 
body mass with a higher likelihood of predation by F. catus 
(particularly for smaller species), consistent with our find-
ings. Woolley  et  al. (2019) identified an optimal range of 
body mass where the likelihood of predation was highest, 
with both smaller and larger species showing lower probabil-
ities of being prey, but also noted predation across the entire 
body mass range. Unlike us, they used a body-mass thresh-
old, excluding larger species considered scavenged, which 
could explain our broader range of accepted prey body mass. 
Woolley et al. (2019) and Woinarski et al. (2017) assumed 
that species not observed as cat prey were indeed non-prey 
species, which appears to be an acceptable assumption for 
Australia (i.e. where cat diet has been studied in detail; 
Fig. 1), but might not be elsewhere due to potential missing 
prey data.

However, when comparing the marginal effects of traits on 
predicting prey status based on the 333 predation prediction 
models (trained on observed prey and non-prey species), we 
found a pattern similar to that detected by Woinarski et al. 
(2017) and Woolley  et  al. (2019). In Europe and North 
America, we found a linear relationship between body mass 
and the probability of being depredated, with smaller species 
more likely to be prey (Supporting information).

Conclusion

Our findings emphasize the need for a more ecologically real-
istic approach when studying and reporting the impacts of F. 
catus at continental scales, particularly in Europe and North 
America. The existing literature in these regions often pro-
vides prey numbers without clearly elucidating the genuine 
ecological impacts of F. catus on native species diversity. Our 
study demonstrates that F. catus, as introduced predators, 
exhibit selectivity based on specific traits, making some spe-
cies more likely to be preyed upon than others. This selectiv-
ity is particularly stable for birds, with species showing similar 
traits across various biogeographical contexts. In contrast, 
Australian mammalian prey had different traits from those 
in Europe and North America, emphasizing the importance 
of biogeographical context in shaping prey–predator dynam-
ics for mammals. Understanding the dietary preferences of 
F. catus in different regions could help to elucidate how bio-
geographical differences influence prey–predator relation-
ships. This knowledge will also improve our ability to identify 
species most at risk from F. catus predation, enabling us to 
anticipate and mitigate potential negative impacts in both the 
short and long term.
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